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Abstract

In this brief paper we discuss an approach to multiple se-
quence alignment based on treating the alignmenet process
as a stochastic control problem. The use of a model based
on a Markov decision process leads to a linear program-
ming problem whose solution is linked to a suggested align-
ment. Our goal is to avoid the expense in time and compu-
tation encountered when dynamic programming based al-
gorithms are used to align a large number of sequences.
The dual linear programming problem can also be defined.
We implemented the method on a set of cytochrome p450
sequences and compared our suggested alignments of 3 se-
quences with that obtained by CLUSTALW. Further details
can be found in the reference [1] .

1. Introduction

A multiple sequence alignment of k strings can be
thought of as a two- dimensional array k × L where L is
the length of a single string. Algorithms for multiple align-
ment are based on the minimization of the total cost over
the set of all alignments A,

min
A

∑

j

c(aj), (1)

where aj is the jth column of the array, and c(a), the cost of
the aligned column a, is specified in advance. Dynamic pro-
gramming is the most widely employed method for aligning
small numbers of sequences. However there is an increas-
ing need for efficient methods of aligning large numbers
of sequences and/or very long sequences using algorithms
that can take advantage of advances in large scale compu-
tation. Development and implementation of algorithms for
solving large linear programming (LP) problems is a well

established area of research with many industrial applica-
tions. Our goal is to use advances in this area to address
the issue of computationally efficient large scale alignment.
The LP discussed here is a standard formulation of a prob-
lem in Markov decision processes. Markov decision theory
has been used to solve a variety of optimization problems
in fields such as economics, biology and network control.
However its application to alignment problems appears to
be new.

2. Markov Decision Process

A markov decision process or controlled markov chain is
a stochastic process (Xt, at), t = 0, 1, · · ·, where Xt ∈ X,
a finite sample space and at ∈ A, with A, called the set
of actions. An element of the set X is called a state of the
process. Define the history of the process as the sequence,
ht = (x1, a1, · · ·xt−1, at−1, xt). A policy is a sequence
π = (π1, π2, · · ·). If history ht is observed at time t then
the controller chooses action a with probability πt(a|ht).
In full generality a policy is a sequence of probability mea-
sures indexed by time, but in many applications of interest
these measures simplify. In particular a deterministic pol-
icy is defined by a function f : X → A with at = f(xt).
Once an action at time t is chosen, the next state is chosen
at random with probability Pij(a) where Xt = i, Xt+1 = j
and at = a where i, j = 1, · · ·m.

To fix ideas suppose our task is to find an optimal global
alignment for 3 sequences. The MDP(Markov Decision
Process) model for our application is based on an extended
alphabet A ∪ {−}. Here X = {A ∪ −}3. Each state is a
3-tuple of elements from the extended alphabet associated
with a column of a triple alignment of single sequences. The
time index is the index of aligned columns moving from left
to right. The set of actions is A = {0, 1}3. At time t, the
action at is a 3-bit binary that describes the pattern for the
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next column. The number 1 means a letter appears, while −
is denoted by 0. The protein alignment problem therefore,
has a state space with 213 elements and 8 actions. Each pair
(Xt, at) has a cost C(Xt, at) associated with being in state
Xt and making the decision to choose action at.

3. The Linear Programming Problem

There are a variety of possible expressions for the total
cost of the alignment associated with the MDP described
in the previous section. We will discuss the expected dis-
counted cost. We seek a policy whose associated expected
discounted cost is minimal. The minimal cost itself can be
written for a fixed discount rate 0 < α < 1 as,

Vα(i) = min
π

Eπ[
∞∑

t=0

αtC(Xt, at)|X0 = i] (2)

where minimization is performed on the set of all poli-
cies π. Thus Vα(i) is the least mean discounted cost of a
state-action path starting at state i. Our goal is to find a pol-
icy π∗ whose associated cost is this cost. Such an optimal
policy exists for our problem and it is a deterministic policy.
To find it we must first find the costs themselves. They are
the solution of the following LP [1]

max
∑m

i=1 u(i) (3)

s.t.∀a u(i) ≤ C(i, a) + α
∑m

j=1 Pij(a)u(j) (4)

Here maximization is over all bounded nonegative func-
tions, u : X → R+. Once such a function u is found, it
can be shown that u = Vα.

3.1. Alignment using the solutions of the LP

To generate a suggested alignment from the solution of
equations (3)-(4), we recall (see reference [1] and cited ref-
erences there) that Vα(i) satisfies the relation,

Vα(i) = min
a

[C(i, a) +
n∑

j=1

Pij(a)Vα(j)] (5)

known as Bellman’s equation. Let a∗
i be the value of a for

which the minimum is attained. Then a∗
i is the assigned

value for state i under the optimal deterministic policy. The
suggested alignment comes from the insertion of gaps ac-
cording to the zeros occurring in {a∗

i }.

3.2. Computational Results

The constraints in equation (4) require a knowledge of
the elements {Pij(a)}. These are estimated from a set
of aligned protein sequences. Counts of the number of

transitions from one state- an aligned column, to the next
along with the action represented by the letter-gap pattern
of the suceeding column are made and the frequency is
taken to be the estimate of the transition probability. Thus if
n(i, j, a) = # of times Xt = i, Xt+1 = j, action a is taken,
and n(i, a)=# of times Xt = i, action a is taken

Pij(a) ≈ n(i, j, a)/n(i, a).

We implemented this method and computed a suggested
alignment for 3 sequences coming from the cytochrome
p450 family. The {Pij(a)} were computed from a set of
98 triples created from an original set of 100 aligned se-
quences. Each sequence was 775 symbols long. The se-
quences were aligned using CLUSTALW. The matrix build-
ing software used to identify states (4714) and compute
transition frequencies took 155 seconds. The linear pro-
gramming problem was solved with PCx and this took
255.79 seconds. The cost functions used in the problem
came from Blosum62 along with a gap penalty and column
costs were computed by adding all pairwise costs and divid-
ing by 3. General agreement with the results of actual align-
ments was good. A discussion of the comparison between
our suggested alignment and that given by CLUSTALW can
be found in [1].

4. Other Work and Conclusion

Another linear programming problem the so-called dual
problem can also be formulated. Here we seek quantities
{xja}j∈X,a∈A that can be interpreted as the amount of dis-
counted time the process spends in the state-action (j, a),
that minimize the resulting cost,

∑

i∈X

∑

a∈A

xiaC(i, a).

This problem and a related dual problem associated with the
long term average cost will be implemented in the future. In
the latter case we have been able to show asymptotic opti-
mality in a pathwise sense as well as in the sense of optimal
expected cost [1].

In conclusion, we have described the very first steps in
creating a flexible software platform that on the one hand
allows users to align sequences using cost functions and
training data of their choice but at the same time allows for
the inclusion of new linear programming and optimization
solvers as they develop.
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