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Contact resonance force microscopy (CR-FM) methods such as atomic force 
acoustic microscopy show great promise as tools for nanoscale materials research. 
However, accurate and reliable CR-FM measurements require the simultaneous 
optimization of a large number of experimental conditions. Among these variables are 
cantilever spring constant, applied static load, reference material, and resonant mode 
(mode type and order). In addition, results depend on the models used for data analysis 
and interpretation (e.g., choice of contact-mechanics model). All of these parameters are 
linked in numerous ways that are not straightforward to classify. In this chapter, we 
present a “user’s guide” to quantitative measurements of nanomechanical properties with 
CR-FM methods. The discussion emphasizes the experimental methods and their 
practical implementation, providing a snapshot of the current state of the art. We discuss 
the basic physical principles involved and show how they can be used to make informed 
choices about experimental parameters and operating conditions. Experimental data and 
the results of theoretical models are provided as specific examples of the abstract 
concepts. Ideas for future work are also discussed, including ways to simplify the 
measurement process or improve measurement accuracy. The objective is not only to 
enable readers to perform their own CR-FM measurements, but also to optimize 
experimental conditions for a given material system. By gaining a better understanding of 
the underlying measurement principles, more researchers will be encouraged to further 
extend the technique and use it for an ever-wider range of applications for the nanoscale 
characterization of materials. 
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Abbreviations 

a Contact radius between the tip and the sample  
 Tilt angle of the cantilever 
b Thickness of the cantilever 
 Exponent to describe the dependence of contact stiffness on applied force 
cB Characteristic parameter of the cantilever 
d Deflection of the cantilever 
d0 “Jump to contact” deflection of the cantilever 
E Young’s modulus 
E* Reduced elastic modulus 
FN Static force applied normal to the surface by the tip 
fn Contact-resonance frequency of the nth flexural mode 
fn

0 Natural (free) frequency of the nth flexural mode 
 Relative position of the cantilever tip 
h Height of the tip 
klever Flexural stiffness or spring constant of the cantilever 
k,  Normal, lateral contact stiffness 
L Length of the cantilever 
L1 Distance from the fixed end of the cantilever to the tip 
L’ Distance from the free end of the cantilever to the tip 
M Indentation (plane strain) modulus 
m Exponent to describe the tip-sample contact 
n Mode number 
 Poisson’s ratio 
p0 Normal component of the compressional stress applied at the sample  
 surface by the tip 
R Radius of curvature of the tip 
r Radial distance from the axis of the tip 
 Mass density 
S Sensitivity of the mode response; derivative of the frequency versus  
 contact stiffness curve 
s Sensitivity of the cantilever 
r Radial component of the tensile stress in the sample  
z Normal component of the compressional stress in the sample beneath  
 the axis of the tip  
w Width of the cantilever 
xn

0 Wavenumber of the nth flexural free resonance 
z Normal depth from the surface of the sample 

AFM Atomic force microscopy 
AFAM Atomic force acoustic microscopy 
CR-FM Contact resonance force microscopy 
NI Instrumented (nano-) indentation 
SAWS Surface acoustic wave spectroscopy 
UAFM Ultrasonic AFM 
UFM Ultrasonic force microscopy 
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1 Introduction 

“The ability to accurately and reproducibly measure the properties and performance 
characteristics of nanoscale materials, devices, and systems is a critical enabler for 
progress in fundamental nanoscience, in the design of new nanomaterials, and ultimately 
in manufacturing new nanoscale products [1].” This quotation from the US National 
Nanotechnology Initiative emphasizes the need for measurement tools in emerging 
nanomaterial applications, a field predicted to generate a multibillion-dollar market 
within 10 years. One specific measurement need is for nanomechanical information—
knowledge on the nanoscale of mechanical properties such as elastic modulus, adhesion, 
and friction. Accurate information is essential not only to predict the performance of a 
system before use, but also to evaluate its reliability during or after use. The measurement 
need is motivated partly by the fact that new applications often involve structures with 
nanoscale dimensions (e.g., nanoelectromechanical systems, nanoimprint lithography). 
Measurements of such structures by necessity must provide nanoscale spatial resolution. 
Other new structures have larger overall dimensions, but integrate disparate materials on 
the micro- or nanoscale (e.g., electronic interconnect, nanocomposites). In such cases, 
nanoscale information is needed in order to differentiate the properties of the various 
components. 

Many methods to measure small-scale mechanical properties have been devised, 
including ones based on indentation [2-4], on ultrasonics [5,6], and on other physical 
phenomena [7,8]. Such methods often have drawbacks: they are not sufficiently 
quantitative, are limited to specialized geometries, and so forth. For instance, 
instrumented or “nano-” indentation (NI) [2] is inherently destructive, creating indents 
hundreds to thousands of nanometers wide. Conventional NI techniques may also provide 
insufficient spatial resolution as dimensions shrink further. A promising approach 
combines low-load NI techniques with force modulation and scanning [3]. However, the 
lateral resolution is still restricted by the radius (a few hundred nanometers) of the 
Berkovich diamond indenter employed. 

Atomic force microscopy (AFM) methods present an attractive alternative for 
measuring mechanical properties. The small radius of the cantilever tip (~5 nm to 50 nm) 
provides nanoscale spatial resolution. Furthermore, the scanning capability of the AFM 
instrument enables rapid, in-situ imaging. AFM was originally developed to measure 
surface topography with atomic spatial resolution [9]. Since then, several AFM 
techniques have been demonstrated to sense mechanical properties [10-13]. Methods to 
measure mechanical properties that are based on force-displacement curves have also 
been extensively developed (see Ref. [14] for a review). Force-displacement methods 
work best when the compliance of the cantilever is roughly comparable to that of the test 
material. Therefore, these methods are better suited to very compliant (“soft”) materials, 
and lose effectiveness as the material stiffness increases. The most promising AFM 
methods for quantitative measurements of relatively stiff materials such as ceramics or 
metals are dynamic approaches in which the cantilever is vibrated at or near its resonant 
frequencies [15]. These methods are often labeled “acoustic” or “ultrasonic”, due to the 
frequency of vibration involved (~100 kHz to 3 MHz). Among them are ultrasonic force 
microscopy (UFM) [16,17], heterodyne force microscopy [18], ultrasonic atomic force 
microscopy (UAFM) [19] and atomic force acoustic microscopy (AFAM) [20]. 
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Of these methods, AFAM (and to a lesser extent, UAFM) has achieved the most 
progress in quantitative measurements. A general name for approaches such as AFAM 
and UAFM is “contact resonance spectroscopy AFM” or more simply “contact resonance 
force microscopy” (CR-FM). The key concepts of CR-FM are illustrated in Fig. 1.1. 
Resonant vibrational modes of the cantilever are excited either by an external actuator, as 
shown in the figure, or by an actuator attached to the AFM cantilever holder. When the 
tip of the cantilever is out of contact with the sample [Fig. 1.1(a)], the resonant modes 
occur at specific frequencies that depend on the geometry and material properties of the 
cantilever. When the tip is placed in contact [Fig. 1.1(b)], the frequencies of the resonant 
modes increase due to tip-sample forces [Fig. 1.1(c)]. CR-FM involves measuring the 
frequencies at which the free and contact resonances occur. The mechanical properties of 
the sample are then deduced from these frequencies with the help of appropriate models. 
Quantitative measurements have also been demonstrated with UFM methods [21]. 

 
Fig. 1.1 Concepts of contact resonance force microscopy (CR-FM). Resonant modes of the cantilever are 
excited by a piezoelectric actuator when the tip is (a) in free space and (b) in contact with a specimen under 
an applied static force. (c) Resonant spectra. The lowest-order contact resonance occurs at a higher 
frequency than the first free-space resonance, but is lower than the second free-space resonance. 
 

 

 
In this chapter, we present a “user’s guide” to quantitative measurements of 

nanomechanical properties with CR-FM methods. An earlier chapter in this series by 
Rabe [22] provided a comprehensive review focusing on the technique’s theoretical 
foundation. Here, the discussion emphasizes the experimental methods and their practical 
implementation, providing a snapshot of the state of the art. Current best practices for 
data acquisition and analysis are not merely stated, but are explained and justified in 
terms of the physical principles involved. Practical examples are provided to illustrate the 
concepts discussed. Our objective is to enable readers not only to perform CR-FM 
measurements, but also to optimize experimental conditions for their particular needs. By 
gaining a better understanding of the underlying measurement principles, more 
researchers will be encouraged to further extend the technique and use it for an ever-
wider range of applications. 

 
2 Cantilevers for Contact Resonance Force Microscopy 

Accurate CR-FM measurements begin by choosing a suitable cantilever. 
Measurements on stiff materials (modulus greater than approximately 50 GPa) involve 
relatively stiff cantilevers—ones with a spring constant klever of approximately 30 N/m to 
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50 N/m. A variety of such cantilevers are available commercially and are usually sold as  
“noncontact” or “intermittent contact” probes. As seen below, interpretation of CR-FM 
data requires a model for the vibrating cantilever. The model assumes that the cantilever 
is a uniform rectangular beam, so that analytical expressions can be derived. For this 
reason, the cantilevers typically used in CR-FM have a simple rectangular shape and are 
micromachined from single-crystal silicon (Si). The long axis of the cantilever is oriented 
in the <110> crystalline direction, and the axis of the tip is <001>-oriented. 

 
Table 2.1 Properties of cantilevers used in CR-FM experiments. Shown are the nominal length L, width w, 
thickness b, and nominal spring constant klever cited by the manufacturer. Also given are the measured 
values of the four lowest free resonant frequencies and the frequency ratio fn

0/f1
0 of the nth free frequency 

to the first free frequency. f4
0 could not be measured for cantilevers #1 and #2 due to bandwidth limitations 

of the AFM photodiode. The “theory” column shows the values of fn
0/f1

0 predicted by the analytical model 
discussed in the text. 
 

cantilever # 
property 

1 2 3 4 
theory 

L (m) 225 230 230 450 

w (m) 38 40 40 55 

b (m) 7 7 3 4 

klever (N/m) 48 40 3.5 1.6 

f1
0 (kHz) 171.66 167.68 72.76 20.99 

f2
0 (kHz) 1066.5 1071.2 501.57 131.40 

f3
0 (kHz) 2937.3 3011.7 1464.2 368.24 

f4
0 (kHz) — — 2956.4 721.09 

 

f2
0/f1

0 6.21 6.39 6.89 6.26 6.27 

f3
0/f1

0 17.11 17.96 20.12 17.54 17.55 

f4
0/f1

0 — — 40.63 34.35 34.39 

 
Table 2.1 contains information about several AFM cantilevers. The table shows the 

nominal length L, width w, thickness b, and spring constant klever for each cantilever, as 
given by the manufacturer. For a simple rectangular cantilever beam, klever may be 
determined from the relationship klever = Eb3w/(4L3), where E is Young’s modulus. The 
table also gives measured values of the frequency fn

0 of the nth order flexural free 
resonance for each cantilever. Cantilever #1 is the type most frequently used for CR-FM 
experiments in our laboratory. Cantilever #2 has dimensions and spring constant similar 
to those of #1, but was made by a different manufacturer. Note that these cantilevers are 
relatively long. Shorter cantilevers with similar values of klever are available (e.g., L ≈ 125 
m), but their resonant frequencies will be higher and could be difficult to detect, given 
the finite bandwidth of the AFM photodiode detector. Cantilever #3 is similar to #1 and 

 5



#2 in length and width, but is thinner and therefore has a lower klever. The spring constant 
of cantilever #4 is even lower, because it is thinner and longer. 

To perform measurements, cantilevers are mounted in the standard holder provided 
by the AFM manufacturer. Recent research indicates that the mounting or clamping 
conditions of the cantilever in the holder can affect the measurements in some cases [23]. 
Depending on the specific holder used, it may therefore be advisable to develop an 
improved mounting method (e.g., gluing the cantilever in the holder, using a firmer 
clamp). Further work is needed to better understand the practical implications of these 
effects on measurements. 

Before performing contact experiments, the cantilever’s free (natural) frequencies 
when the tip is out of contact must be measured. The values of the free frequencies are 
used to characterize the cantilever’s properties, as discussed below. Typically, the free 
frequencies fn

0 of the lowest two or three flexural modes are measured. One way to 
measure the free frequencies is with the AFM’s “tuning” software intended for 
intermittent-contact operation. The subroutine controls a small piezoelectric actuator at 
the clamped end of the cantilever. Depending on the frequency characteristics of the 
actuator, however, it may be difficult to excite the higher-order modes in this way. 
Alternatively, the free frequencies can be measured with a piezoelectric actuator mounted 
beneath the specimen. The cantilever is brought close to, but not in contact with, the 
specimen. Driving the actuator at relatively high voltages creates acoustic vibrations that 
are large enough to excite the cantilever’s free resonances via air coupling. Measured 
values of fn

0 for cantilevers #1-#4 are given in Table 2.1. 
Determining the free frequencies is necessary for data analysis, but also serves a 

second purpose. The ratio fn
0/f1

0 of the nth free mode to the lowest mode f1
0 is an 

indicator of measurement quality. The closer the measured values of fn
0/f1

0 are to those 
predicted by the analytical model, the more likely it is that the model accurately describes 
the dynamics of the actual cantilever. Table 2.1 contains the measured ratios fn

0/f1
0 for the 

four cantilevers. The predicted and measured ratios differ by less than 3 % for #1 and #2, 
and less than 0.2 % for #4. The discrepancies are probably due to small variations in the 
micromachining process, for instance small irregularities in the cross section or a 
thickness variation along the length of the cantilever [24]. In the case of cantilever #3, the 
measured and predicted values of fn

0/f1
0 differ by more than 10 %. Use of such cantilevers 

should be avoided if possible. One possible explanation for the discrepancy is that the top 
side of cantilever #3 contains a thin reflective film to boost the detected signal amplitude. 
In practice, we are able to achieve adequate signal amplitude with uncoated cantilevers. 

The scanning electron microscope (SEM) can be used to obtain additional 
information about cantilevers. Figure 2.1 shows SEM images of two cantilevers that are 
candidates for CR-FM experiments. Figures 2.1(a)-(c) were acquired with a cantilever 
similar to #1 in Table 2.1, while Figs. 2.1(d)-(f) were acquired with cantilever #2. Several 
observations can be made from the images. First, the cross section of each cantilever is 
actually trapezoidal, not rectangular. This is more pronounced in the first cantilever. The 
cross section is uniform throughout most of the length of the cantilever, but varies in both 
width and thickness at the very end of the cantilever. In addition, the tip is not located at 
the very end of the cantilever. The distance between the tip and the end of the cantilever 
differs from cantilever to cantilever. Finally, the tip of cantilever #2 is noticeably longer. 
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Fig. 2.1 SEM images of single-crystal silicon cantilevers. (a) Plan view of the underside of a cantilever 
similar to #1 in Table 2.1. (b) Side view and (c) plan view of the tip end of the cantilever. (d) Closeup of 
the tip end of cantilever #2 in Table 2.1. (e) Plan view of the underside of cantilever #2. (f) Side view of the 
tip end of the cantilever. 
 

 

 
3 Data Acquisition Techniques 

In this section, we describe current practices for quantitative measurements of 
elastic modulus with CR-FM. A “recipe” is presented based on standard practices of our 
own and other groups. Following this recipe will enable readers to perform similar 
measurements themselves. Familiarity with the recipe is also necessary to understand 
subsequent discussions about improving and optimizing measurements. 

Figure 3.1 shows a block diagram of the apparatus used in our laboratory for CR-
FM experiments. The constituent components, all of which are commercially available, 
include (a) an AFM instrument, (b) a function generator and piezoelectric actuator to 
excite the cantilever resonances, (c) a lock-in amplifier for frequency-selective signal 
detection, and (d) a computer for instrument control and data acquisition. The equipment 
used in our laboratory is specified here, but other equipment with similar characteristics 
could also be used [25]. 
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Contact-resonance experiments have been performed with several different AFM 
instruments, including the Digital Instruments Dimension 3000 (Veeco Metrology, Inc., 
Santa Barbara, CA) and the Asylum MFP-3D (Asylum Research, Santa Barbara, CA). 
The AFM instrument must meet two main requirements. First, it must provide access to 
the unfiltered, high-frequency photodiode detector signal. Second, the bandwidth of this 
signal must be sufficient to detect frequencies up to at least 2 MHz (preferably 3 MHz). 
Access is provided in some instruments by an accessory unit. The ability to input an 
external signal for image acquisition is also useful, although not strictly required for 
modulus measurements. 

 
Fig. 3.1 Block diagram of apparatus for CR-FM experiments. 
 

 

 
As a piezoelectric actuator, we find it convenient to use ultrasonic contact 

transducers designed for nondestructive testing (Panametrics, Olympus NDT, Waltham, 
MA). Longitudinal transducers with the excitation motion normal to the transducer 
surface are suitable for experiments involving flexural modes. The piezoelectric element 
in these transducers is heavily damped for a broad frequency response (typically, –6 dB 
rolloff at ±50 % of the center frequency). Thus, a single transducer with a center 
frequency of 1 MHz or 2.25 MHz can excite all of the cantilever resonances from 
approximately 100 kHz to 3 MHz. Another advantage of these transducers is their 
relatively large diameter (approximately 1 cm to 3 cm). This means that reasonably large 
specimens can be accommodated, and that the vibration amplitude varies fairly slowly 
across the specimen. The simplest way to mount the sample is to bond it directly to the 
top of the transducer. Various glues provide a rigid bond, but sample removal is easier if 
an acoustic couplant such as glycerin is used. Samples mounted in this way should be 
allowed to “settle” for several hours or overnight to ensure stable measurements. 
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The piezoelectric transducer is driven with a continuous sine wave signal from a 
function generator (33120A, Agilent Technologies, Santa Clara, CA). The primary 
requirements are a programmable output with adjustable frequency (~10 kHz to 3 MHz) 
and amplitude (0 V to 5 V peak-to-peak). The required voltage amplitude depends on the 
actuator used. The actuator vibration must be sufficiently strong to excite the resonant 
modes of the cantilever when the tip is in contact, yet the vibration amplitude must be 
sufficiently small that the tip and the sample remain in contact at all times. Continuous 
contact ensures a linear elastic regime, so that the assumptions of the data analysis model 
are valid. With the transducers described above, a driving amplitude of approximately 
100 mV or less is usually adequate. Optical measurements with a Michelson 
interferometer on similar transducers suggest that the peak vibration amplitude at the 
surface of the transducer is much less than 0.1 nm at this level of excitation voltage. 

The photodiode detector signal from the AFM instrument is connected to the input 
of a lock-in amplifier (SR844, Stanford Research Systems, Sunnyvale, CA). The lock-in 
must have sufficient bandwidth to detect the contact-resonance frequencies. The sync 
signal from the function generator provides the reference signal for the lock-in amplifier. 
With this arrangement, the output amplitude of the lock-in gives the amplitude of 
cantilever vibration only at the excitation frequency. 

Data acquisition software is straightforward and can be created with commercial 
tools such as LabVIEW (National Instruments Corp., Austin, TX). In the data acquisition 
routine, the function generator is programmed to output a continuous sine wave with a 
specific frequency and amplitude. The resulting output signal of the lock-in amplifier is 
then recorded. The excitation frequency is incrementally increased, and the sequence is 
repeated until the desired maximum frequency is reached. In this way, a spectrum of the 
cantilever vibration amplitude versus frequency is recorded. Both the amplitude and 
phase of the lock-in amplifier signal are recorded. To date, the phase information has not 
been formally used in the data analysis. However, it can be useful in identifying the exact 
resonant frequency if the amplitude peak is very small. 

Examples of experimental contact-resonance spectra are shown in Fig. 3.2. The data 
were acquired with cantilever #1 in Table 2.1. Spectra of the first, second, and third free-
space flexural resonances are shown in Figs. 3.2(a), (c), and (e), respectively. The 
corresponding contact-resonance spectra are shown in Figs. 3.2(b), (d), and (f). The 
sample was a <102> SnO2 nanobelt [26]. Spectra are shown for two values of the static 
cantilever deflection d. Using the relation FN = klever d between the deflection d and the 
resulting static force FN and assuming klever = 48 N/m, it is found that FN = 0.7 N and  
2.2 N for d = 15 nm (dashed line) and d = 45 nm (solid line). The spectra show that the 
peak contact-resonance frequency increases with increasing FN (or d). As discussed 
below, such behavior is predicted by the contact mechanics models used for data 
analysis. The amplitude of the signal also tends to increase with increasing FN, although 
this is not always true. The signal amplitude can be seen to decrease with increasing 
mode number or frequency. One explanation for this trend could be rolloff in the 
frequency response of the AFM photodiode detector. 

CR-FM experiments consist of acquiring contact-resonance spectra for two 
specimens in alternation: the “test” (unknown) specimen and a “reference” specimen 
whose elastic properties are known. Reasons for this referencing approach are discussed 
below in Sec. 4. The elastic properties of reference specimens can be determined by 
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various means, including pulse-echo ultrasonics [27] and instrumented (nano-) 
indentation [2,28]. For accurate measurements, the elastic properties of the reference 
specimen should be similar to those of the test specimen [24,29,30]. If possible, a means 
to measure both specimens at the same time should be devised in order to avoid repeated 
mounting and unmounting. It is important that the alignment of the laser spot on the 
cantilever remains the same throughout all of the measurements. This ensures that 
measurements made at the same static deflection d correspond to the same static load FN, 
without direct measurement of the spring constant klever. 

 
Fig. 3.2 Examples of experimental results. (a), (c), and (e): Spectra of the first, second, and third free-space 
flexural resonances. (b), (d), (f): Corresponding contact-resonance spectra for d = 15 nm (dashed line) and 
d = 45 nm (solid line). 
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The basic measurement procedure consists of the following steps: 
 
1. Measure the free frequencies fn

0 of the two lowest flexural modes. 
 
2. Bring the cantilever into contact with the reference specimen. The tip must remain 

stationary (i.e., set the scan size to zero). 
 
3. Acquire force-distance (“force calibration”) curves to determine the cantilever 

sensitivity (“optical lever sensitivity”). The sensitivity s relates the deflection d of 
the cantilever to the output voltage of the photodiode detector. Thus if s = 100 
nm/V, increasing the setpoint voltage by 0.1 V will increase d by 10 nm. Also note 
the “pull-on” or “jump to contact” deflection d0, which indicates the adhesion.  

 
4. Set the static deflection d of the cantilever to a specific value. Typically, d ranges 

from 10 nm to 60 nm. Elastic contact between the tip and the sample is needed to 
ensure that the analysis model is valid. Therefore d should be at least ten times 
larger than the deflection d0 due to adhesion. However, d should be kept as low as 
possible to minimize potential damage to both the tip and the sample. 

 
5. Acquire contact-resonance spectra for the lowest two flexural modes. Typically, 

spectra are acquired for three or more values of d at a given location on the 
specimen. This not only increases the number of data points, but also provides 
insight into the tip-sample contact.  

 
6. Repeat steps 2-5 on the test specimen, at the same values for d. The setpoint 

voltages may differ slightly from those for the reference specimen. 
 
7. Repeat steps 2-5 on the reference and test specimens in alternation, ending with the 

reference specimen. Perform sets of measurements several times on both 
specimens, in order to achieve a statistically sufficient number of data. 

 
4 Data Analysis Methods 

Data analysis consists of two distinct steps, each involving a separate model. First, 
the measured frequencies are related to the tip-sample interaction force by means of a 
model for the dynamic motion of the cantilever. Next, the interaction force—the contact 
stiffness—is used to determine the elastic properties of the sample through a model for 
the contact mechanics between the tip and the sample. Here, we present without proof the 
equations needed for both models. For further discussion, the reader is referred to Ref. 
[22]. The development here is intended to facilitate software implementation. Because 
the analysis models are based on analytical formulas, calculations are straightforward to 
implement in commercial software such as LabVIEW or IDL (ITT Visual Information 
Solutions, Boulder, CO). 
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4.1 Model for Cantilever Dynamics 

Figure 4.1(a) shows the model to describe the cantilever’s vibrations in free space. 
It is important to note that a distributed-mass model is used, not a point-mass (harmonic 
oscillator) model. It has been shown that the point-mass approximation does not produce 
accurate results under the conditions described here [31,32]. Because estimates of the tip 
mass are typically less than 0.5 % of the cantilever mass, it is neglected. The cantilever is 
modeled as an elastically isotropic beam of uniform cross section with length L, width w, 
thickness b, density , and Young’s modulus E. The tip is located at a distance L1 < L 
from the clamped end of the cantilever. The remaining distance to the free end of the 
cantilever is L', so that L = L1 + L'. The flexural spring constant of the cantilever is klever = 
Eb3w/(4L1

3). The frequency fn
0 of the nth free flexural resonance is related to the 

wavenumber xn
0 by 
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10.996]. Experimental values for the cantilever parameter cBL for each mode can 
therefore be calculated from the measured values of the free frequencies fn
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approach means that cantilever properties such as L and E need not be determined 
directly. Equation 4.1 also shows that 
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Inserting the values of xn
0L given above into Eq. 4.3 yields the ratios listed in Table 2.1. 

 

 
Fig. 4.1 Models for cantilever dynamics. (a) Tip out of contact. (b) Tip in contact. Only normal (vertical) 
elastic forces are considered. (c) Tip in contact, with both normal and tangential elastic forces included. 
 

 

 12



Figure 4.1(b) depicts the simplest model for cantilever dynamics if the tip is in 
contact. In this case, the tip-sample interaction is entirely elastic and acts in a direction  
normal (vertical) to the sample surface. The tip-sample interaction is represented by a 
spring with spring constant k, also known as the contact stiffness. By considering the 
dynamics of this system [32], it is found that the normalized contact stiffness k/klever is 
given by  

  

  
   LxLxLx

LxLxLxLxLxLx
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Here, xn is the wavenumber of the nth flexural contact resonance. Rewriting Eq. 4.4 in 
terms of the relative tip position ratio  = L1/L and rearranging terms, we find 
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In the data analysis, Eq. 4.5 is used to calculate k/klever for each measured contact-
resonance frequency fn. First, the values of fn are used to calculate xnL: 

0
0

n

n
nnBn

f

f
LxfLcLx    , (4.6) 

where Eq. 4.1 has been used. From the experimental values of xnL, Eq. 4.5 is then used to 
plot k/klever as a function of the relative tip position  = L1/L for each mode n. Figure 4.2 is 
an example of the resulting plot. The graph shows that the values of k/klever are the same 
for the two flexural modes at only one value of . This value of k/klever where the two 
modes intersect or “cross” is taken as the solution. An online calculator that performs this 
operation for n = 1 and 2 is available [33]. 

To aid the reader in developing data analysis software, Table 4.1 contains 
experimental values of the contact-resonance frequencies and the corresponding values  
of k/klever and L1/L. It can be seen that for these data, the calculated values of L1/L ≈ 0.97. 
Direct measurement of the cantilever dimensions in SEM and optical micrographs 
suggests that the actual tip location L1/L ≈ 0.91–0.92 for this particular cantilever. 
Discrepancies between the calculated and measured values of L1/L have been observed 
previously [24,34]. The most likely explanation is the deviation of the cantilever’s actual 
behavior from that predicted by the idealized beam model. For instance, Fig. 2.1 reveals 
that the cantilever cross section near the tip end is not uniform for this type of cantilever. 
A mass or volume analysis of the actual cantilever shape suggests a higher value of L1/L 
than that obtained from simple length analysis. 
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Table 4.1 Examples of experimental results. The test specimen was a <102> SnO2 nanobelt (NB) and the 
reference material was <100> Si. Measurements were performed with cantilever #1 in Table 2.1. Shown 
are the contact-resonance frequencies f1 and f2 of the lowest two flexural modes versus the cantilever static 
deflection d. Also shown are the values of the relative tip position L1/L for which the normalized contact 
stiffness k/klever is the same for both modes. 
 

specimen trial # d (nm) f1 (kHz) f2 (kHz) L1/L k/klever 

15 732.0 1803.4 0.974 63.7 

30 734.5 1806.4 0.973 64.1 
Si <100> 

(reference) 
1 

45 737.3 1832.8 0.973 67.5 

15 727.3 1784.2 0.976 61.3 

30 732.5 1802.8 0.974 63.7 
SnO2 NB 

(test) 
1 

45 734.5 1817.8 0.973 65.5 

15 735.0 1818.0 0.973 65.6 

30 737.8 1827.5 0.972 66.8 
Si <100> 

(reference) 
2 

45 739.3 1840.5 0.972 68.5 

 
Fig. 4.2 Normalized contact stiffness k/klever as a function of the relative tip position L1/L. Results are 
shown for n = 1 (green line) with f1 = 734.5 kHz and n = 2 (pink line) with f2 = 1806.4 kHz (see Table 4.1). 
The measurements were made with cantilever #1 in Table 2.1. The arrows indicate the values of k/klever and 
L1/L where the two curves intersect or “cross.” 
 

 
 

If lateral elastic forces are included, the model shown in Fig. 4.1(c) is used. The 
cantilever is tilted by an angle  with respect to the sample surface. The tip has height h. 
The elastic interaction between the tip and the sample is represented by two springs: a 
vertical spring with stiffness k and a horizontal (tangential) spring with stiffness . The 
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vertical contact stiffness k normalized by the flexural cantilever stiffness klever is given by 
[34-36] the positive root of 
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The inclusion of lateral forces greatly increases the number of variables involved. It is 
therefore desirable to use the simpler model in Fig. 4.1(b) when possible. The conditions 
under which this model is valid are discussed in Sect. 6. More detailed discussions of this 
model and its application to CR-FM analysis have been presented elsewhere [22,34,36]. 

Damping (inelastic or dissipative) interactions are beyond the scope of this 
discussion. In the model for cantilever dynamics, damping is included by means of one or 
more dashpots in parallel with the springs. This model is discussed in detail elsewhere 
[22,36]. Analysis of CR-FM data with the inclusion of damping effects has been 
presented [37,38]. Further work is needed to develop a practical data analysis procedure 
that includes damping terms. 
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4.2 Model for Contact Mechanics 

After obtaining values for the normalized contact stiffness k/klever from the 
measured contact-resonance frequencies, we can use these values to determine elastic 
properties of the specimen. This step of the analysis requires a second model, namely one 
for the contact mechanics between the tip and the sample. A complete discussion of 
contact mechanics is given elsewhere [39]. The analysis is similar in many respects to 
that used to interpret instrumented (nano-) indentation data [2,28]. 

The key parameters of two different models for contact mechanics are shown in 
Fig. 4.3. The indentation moduli of the tip and the sample are Mtip and Ms, respectively. 
Figure 4.3(a) represents Hertzian contact between a hemispherical tip with radius of 
curvature R and a flat sample. A vertical (normal) static load FN is applied to the tip, 
creating a circular contact of radius a. Figure 4.3(b) shows flat-punch contact between a 
flat tip and a flat sample. In this case, the contact area is constant with FN and is 
determined by the tip diameter 2a. For both cases, the vertical contact stiffness k between 
the tip and the sample is given by 

*2aEk    ,  (4.8) 

where E* is the reduced elastic modulus for the tip-sample system: 

stip MME

111
*

   . (4.9) 

For elastically isotropic materials, the indentation or plane strain modulus M = E/(1-2), 
where E is Young’s modulus E and  is Poisson’s ratio. Then 
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* EEE

22
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To determine E* from Eq. 4.8, it is necessary to know the contact radius a. For a flat 
indenter (“flat punch”), a is constant. For Hertzian contact, a is given by  

3
*4

3

E

RF
a N   . (4.11) 

 
Fig. 4.3 Models for (a) Hertzian contact between a hemispherical tip and a flat sample and (b) flat-punch 
contact between a flat tip and a flat sample. 
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In principle, one could measure a directly (for a flat punch), or determine 
experimental values for R and FN and calculate a. Equation 4.8 or 4.11 could then be used 
to determine E* and hence M. In practice, a referencing or comparison approach is used 
[24,29] in which measurements are performed on the test (subscript s) and reference 
(subscript ref) samples at the same values of FN. The approach assumes that the values of 
Mref and thus E*ref are known. Then it can be shown [29] that 
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lever

ref

lever

s

ref

m

ref

s
ref

k

k
k

k

E
k

k
EE































 ***   , (4.12) 

where m = 3/2 for Hertzian contact and m = 1 for a flat punch. From the values of E* 
obtained by Eq. 4.12 with the experimental values of ks/klever and kref/klever , the modulus 
M of the sample can be calculated with Eq. 4.9. As discussed in Sect. 7, the true shape of 
the tip is usually intermediate between a hemisphere and a flat [40]. Thus m = 3/2 and m 
= 1 represent upper and lower limits on M. Values for E* obtained with this approach for 
the data in Table 4.1 are shown in Table 4.2. Also included are the values of the sample 
modulus M calculated from E* assuming Hertzian and flat-punch contact. 

 
Table 4.2 Results of contact-mechanics analysis for the data in Table 4.1. The contact-stiffness ratio 
ktest/kref is given for each combination of test and reference measurements. The corresponding values of the 
reduced elastic modulus E* and the indentation modulus M of the test specimen are shown, assuming either 
Hertzian (m=3/2) or flat-punch (m=1) contact. The values Mtip = Mref = 165.1 GPa were used. 
 

data pair d (nm) ktest/kref 
E* (GPa) 

m = 1 
M (GPa) 

m = 1 
E* (GPa) 
m = 3/2 

M (GPa) 
m = 3/2 

15 0.963 79.5 153.4 78.1 148.0 

30 0.993 82.0 162.9 81.7 161.8 test 1/ ref 1 

45 0.971 80.2 155.9 79.0 151.6 

15 0.936 77.2 145.1 74.7 136.4 

30 0.953 78.7 150.2 76.7 143.5 test 1/ ref 2 

45 0.956 78.9 151.3 77.2 145.0 

 
The referencing approach invented by Rabe and coworkers [29] represents an 

important measurement innovation for CR-FM methods. Accurate determination of 
properties such as R, a, and FN are extremely difficult due to their small size. Moreover, 
the Si tip often changes size and shape over the course of the measurements. This means 
that direct characterization approaches such as the “area function” method used in 
nanoindentation [28] are fraught with error for AFM tips. The referencing method avoids 
these issues. It also avoids direct measurement of the cantilever spring constant klever, 
which can be difficult to do with sufficient accuracy (see, for instance, Ref. [41]). As 
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long as the laser alignment on the cantilever remains constant, a given cantilever 
deflection always yields the same applied static force FN. The only assumption made 
about the tip shape is that of axial symmetry. 

 
5 Survey of Contact Resonance Force Microscopy Measurements 

Table 5.1 contains a survey of modulus measurements reported in the literature 
[24,26,29,30,37,42-56]. All of the listed experiments used CR-FM methods, although 
some [50,55] used a data analysis approach different from that described above. The 
body of work has grown significantly in recent years. The table indicates the wide scope 
of materials that have been examined. In some cases, “model” materials such as bulk 
single crystals or blanket thin films were investigated in order to better understand certain 
measurement issues. In other cases, the spatial resolution of CR-FM made it possible to 
examine micro- to nanoscale features such as piezoelectric domains and grain boundaries. 
Some measurements were made with the point-by-point approach described above, while 
others involved quantitative images (modulus maps). 

Also shown in Table 5.1 are values for the approximate measurement uncertainty  
for each experiment. The values were estimated from information given in the references. 
In many cases,  was determined by scatter in the individual measurements and not by an 
uncertainty analysis. Strictly speaking, these values correspond to measurement precision 
or repeatability, not accuracy. Previous discussions of accuracy [44,48] gave a 
conservative estimate of 40 %. It can be seen from Table 5.1, however, that many 
experiments achieve better measurement uncertainty—as low as ±1 % in some cases. 
There are many factors that account for the variation in  from experiment to experiment, 
for instance, sample smoothness or uniformity, the amount of tip wear during 
measurements, and assumptions made in the data analysis concerning tip shape. It should 
be noted that the lowest values of  have usually been achieved in imaging experiments 
[30,46,51], which yield a very large number of measurements for statistical analysis. 

Other work besides that listed in Table 5.1 has been performed to characterize 
materials with CR-FM methods. Martensitic phase transformations in nickel-titanium 
alloys were studied by measuring the cantilever vibration amplitude near resonance as a 
function of temperature [57]. The dependence of contact-resonance frequencies on the 
thickness of tungsten and polymer films was examined [58]. Measurements of contact-
resonance frequencies were used to determine Young’s modulus of polypyrrole polymer 
nanotubes [59]. Contact-resonance measurements and images were used along with other 
methods to characterize nanocrystalline chromium nitride films [60]. 

So far, we have discussed measurements of flexural contact-resonance frequencies 
to determine the elastic modulus M. Other work has utilized torsional cantilever modes to 
obtain additional information. Various CR-FM methods have been used to investigate the 
tribological properties of materials (see, for instance, Refs. [16,61-65]). Detailed reviews 
of this topic can be found elsewhere [66,67]. It was also recently shown that by 
measuring the contact-resonance frequencies of both flexural and torsional modes, shear 
elastic properties such as Poisson’s ratio or shear modulus could be determined 
independently from Young’s modulus or M [34]. 
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Table 5.1 Survey of experimental results for the indentation modulus M measured by CR-FM. The first 
two columns give the material and the type of specimen, including the thickness t if appropriate. Values in 
the “” column represent the estimated measurement uncertainty. 
 

material specimen M (GPa)  (%) comments ref. 

Al film, t = 1.09 m 54-81 ± 3-5 compared to SAWS & NI 42 

Au film, t = 300 nm 
CaF2 
MgF2 
Si 

<100> single 
crystals 

102-104 
121-123 
164-180 
169-181 

± 1-5 
dual reference method; 
values depend on which 
reference specimens used 

30 

BaTiO3 <100> grain 
(a) 75-350 
(b) 318 ± 30 
(c) 220 ± 50 

± 9-23 
values for (a) modulus map; 
(b) a-domains; 
(c) c-domains 

43 

clay (dickite) c-axis particles 6.8 ± 2.7 ± 15-40 multiple reference materials 44 

diamond-like 
carbon (DLC) 

films, t = 5 nm 
          t = 20 nm 

107 ± 12 
210 ± 63 

± 10-30 “preliminary values” 45 

DLC thin film 35-300 ± 4 values from modulus map 46 

epoxy/silica nanocomposite plate 7-80 N/A modulus maps 47 

nanocrystalline
(nc) ferrites 

films, t = 200 nm 70-190 ± 8-10 M vs. oxidation temperature 48 

glass (FSG) film, t = 3.08 m 57-64 ± 5 humidity effects observed 37 

GaAs 
InP 

<100> single 
crystals 

112-125 
88-96 

± 1-15 
values depend on model  
and cantilever used 

49 

lead zirconate 
titanate (PZT) 

plate, t = 7 mm 
137 ± 18 
147 ± 19 

± 13 
inhomogeneous sample;  
values for two positions 

29 

PZT plate, t = 300 m 
(a) 132 
(b) 116 

N/A values (a) within domain,  
(b) at domain boundary 

50 

Nb film, t = 280 nm 86-127 ± 1-18 
values depend on models,  
cantilever, reference(s) 

24,42 

Nb film, t = 200 nm 119 ± 7 ± 6 modulus map 51 

nc Ni 
films, t = 53 nm 
          t = 204 nm 
          t = 772 nm 

223 ± 28 
220 ± 19 
210 ± 26 

± 9-13 
nanocrystalline effects; 
consistent with NI and  
SAWS results 

52,53 

Si <111> single crystal 171-174 ± 1 compared to NI 29 

SnO2 nanobelt t = 44 nm 154 ± 18 ± 9-12 agrees with UFM results 26 

nc SnSe film, t = 20 nm 20-50 N/A modulus map 54 

WC-Co cermet plate 
730 ± 50 (WC)
 260 ± 40 (Co)

± 7-15 analysis by fit to full  
spectrum; no reference 

55 

ZnO nanowires  26-134 nm diameter 115-218 ± 7-13 size effects observed 56 
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6 Theoretical Principles for Optimizing Experiments 

As discussed above, CR-FM involves two separate models: one for the cantilever 
dynamics, and one for the tip-sample contact mechanics. To achieve good measurements, 
the experimental parameters must be chosen to satisfy both models simultaneously. In 
this section, we address the key issues of each model that are involved in optimizing 
these parameters.  
 
6.1 Cantilever Dynamics: Which Modes? 

In the procedure described above, the frequencies of the two lowest-order flexural 
resonances are measured. Why are these particular modes used? The answer is found by 
considering the relation between the contact-resonance frequency fn and the normalized 
contact stiffness k/klever. We will call this relation the “response curve.” Figure 6.1 shows 
fn versus k/klever for the first three flexural modes (n = 1, 2, 3). The values of fn are 
normalized to the first free flexural frequency f1

0. Such curves are calculated with Eq. 4.5, 
Eq. 4.7, or with an online calculator [33]. The figure shows that the response is 
qualitatively similar for each flexural mode. When k/klever is relatively small, fn remains 
close to its free-space value fn

0. As k/klever increases, the change in frequency for a given 
change in contact stiffness gradually increases. Figure 6.1(a) shows that the relative tip 
position L1/L affects the overall shape of the response curve. 

The region of the response curve with the highest sensitivity is where the frequency 
change is the greatest (i.e., with the largest slope or derivative). In this region, small 
changes in contact stiffness produce measurable changes in the contact-resonance 
frequency. It can be seen from Fig. 6.1 that this region occurs at higher values of k/klever 
as the mode number n increases. To ensure accurate measurements, experimental 
parameters should be chosen to maximize the sensitivity of at least one mode. When 
k/klever increases beyond the region of highest sensitivity for a given mode, the mode 
approaches a “pinned” state, where even relatively large changes in contact stiffness 
result in only small frequency shifts. Here, the contact-resonance frequency of the nth 
mode approaches the free-space frequency of the (n+1)th mode. Experimental conditions 
should be chosen to avoid mode pinning. Not only is this the least sensitive part of the 
response curve, but in addition measurements made under pinned conditions could be 
misleading. Measurements made at different static forces FN will yield very similar 
values of fn and thus very similar values of k/klever. This could lead to the incorrect 
conclusion that the tip shape is flat. 

In addition, lateral effects become increasingly significant as the tip approaches a 
pinned state [68]. This can be seen in Fig. 6.1(b), which compares the response curve for 
normal forces alone (solid lines) to that for normal and lateral forces combined (dashed 
lines). The difference between the two curves for each mode increases with k/klever. 
Operating under conditions of high sensitivity therefore has the added benefit that the 
simpler (normal-forces only) model for data analysis is valid. 

More insight into mode sensitivity can be gained from Fig. 6.2. Like Fig. 6.1, Fig. 
6.2(a) shows how fn varies with k/klever. Figure 6.2(b) shows the sensitivity S of each 
mode as a function of contact stiffness. S is defined as the derivative of fn/f1

0 with respect 
to k/klever [69]. Analytical expressions for S for the flexural and torsional modes of 
cantilevers with both uniform and nonuniform cross sections have been published 
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elsewhere [70]. Other theoretical work that includes lateral and damping forces in the 
calculation of S has been published [71,72]. The values of S in Fig. 6.2(b) were calculated 
numerically from the curves in Fig. 6.2(a). The circles indicate the values of k/klever at  
which S is a maximum for each mode, while the thick lines show where S is at least 80 % 
of the maximum value. (There is no thick line or circle shown for n = 1 because the 
region of greatest sensitivity occurs for k/klever < 1.) Figure 6.2(b) clearly shows that the 
absolute mode sensitivity is greatest for n = 1 and decreases as n increases. This leads to 
the generalization that the lowest-order modes possible should be used. The figure also 
indicates that the value of k/klever at which S is a maximum increases with increasing n. 

 
Fig. 6.1 Normalized contact-resonance frequency fn/f1

0 vs. normalized contact stiffness k/klever for the three 
lowest-order flexural modes (n = 1, 2, 3). The curves in (a) were calculated assuming normal forces only 
for L1/L = 1.0 (solid lines) and L1/L = 0.97 (dashed lines). In (b), the solid lines indicate the calculated 
response for L1/L = 0.97 assuming normal forces only. The dashed lines were calculated including both 
normal and lateral forces with L1/L = 0.97,  = 11°, h/L1 =0.05, and/k = 0.9. 
 

 

 
The information in graphs such as these help to establish rough guidelines for mode 

selection. The values used in Fig. 6.2 for the parameters L1/L, /k, , and h/L1 are 
representative of typical experimental conditions. With these values, we calculate that 
adding lateral forces changes k/klever by approximately 5 % or less for the following 
conditions: for n = 1, k/klever < 40; for n = 2, k/klever < 200; for n = 3, 120  k/klever  600. 
The most sensitive range of k/klever (80 % or more of maximum) is approximately as 
follows: for n = 1, k/klever < 1; n = 2, 0  k/klever  40; and for n = 3, 30  k/klever  210. In 
many experiments in the literature, k/klever ranges from approximately 50 to 100. From a 
sensitivity perspective, the second and third flexural modes seem the best choice for these 
measurements. Lateral effects are also more significant for the first mode than for the 
third mode in this range of k/klever. However, from a practical standpoint, the third mode 
is usually more difficult (if not impossible) to detect than the first mode. The absolute 
sensitivity of the first and third modes is also approximately the same for this range of 
k/klever. These facts may explain why the first and second modes have typically been used 
in experiments on stiff materials. It is important to recognize that the guidelines will 
change somewhat depending on the values of L1/L, /k, , and h/L1 used. Readers are 
therefore encouraged to perform their own calculations. 
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Fig. 6.2 (a) Normalized contact-resonance frequency fn/ f1
0 as a function of normalized contact stiffness 

k/klever for n = 1, 2, and 3. The curves were calculated including both normal and lateral forces with L1/L = 
0.97,  = 11°, h/L1 = 0.05, and /k = 0.9. (b) Sensitivity S  as a function of normalized contact stiffness 
k/klever for n = 1, 2, and 3. The circles indicate the point of maximum sensitivity for each mode. The thick 
lines indicate where S is at least 80 % of its maximum value. The region of maximum sensitivity for n = 1 
occurs for k/klever < 1. 
 

 

 
The effect of including lateral forces in the data analysis is further illustrated in Fig. 

6.3, which shows the normalized contact stiffness k/klever versus relative tip position L1/L 
for the three lowest-order flexural modes. The curves in Fig. 6.3 were calculated with 
contact-resonance frequency data from Table 4.1. If only normal forces are included 
(solid lines), the different mode pairs cross at different values of k/klever and L1/L. Data 
analysis with this approach will yield a greater measurement uncertainty, because the 
variation in the crossing-point value of k/klever for different mode pairs will result in a 
larger scatter in M. If lateral effects are included (dashed lines), it is possible for all three 
modes to converge at a single value of k/klever. (The value of L1/L also converges, and in 
this case increases to a value somewhat closer to that estimated from measurements of the 
cantilever’s dimensions.) It might be possible to exploit this convergence effect to 
experimentally determine /k or h/L1. For the data given here, the values of k/klever for the 
first and third modes change more than those for the second mode when lateral effects are 
included. This conclusion can also be reached from a detailed inspection of response 
curves like those in Figs. 6.1(b). However, it is the value of k/klever at which the mode 
pairs cross that is important. The figure shows that the crossing-point value of k/klever is 
virtually the same for the mode pairs n = 1,2 and n = 2,3 whether lateral effects are 
included or not. Because k/klever changes much more for the mode combination n = 1,3 
when lateral forces are included, measurements with this pair are less reliable than with 
either mode pair n = 1,2 or n = 2,3 in this case. 
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Fig. 6.3 Normalized contact stiffness k/klever as a function of relative tip position L1/L for data obtained with 
cantilever #1 in Table 2.1. The results are shown for the measured values f1 = 734.5 kHz, f2 = 1806.4 kHz, 
and f3 = 3226.0 kHz for the contact-resonance frequencies of the three lowest flexural modes. The solid 
lines were calculated assuming vertical forces only, while the dashed lines include both normal and lateral 
forces with  = 11°, h/L1 = 0.03, and /k = 0.9. 
 

 

 
6.2 Contact Mechanics: What Forces? 

Section 6.1 shows that conditions are optimized for certain values of k/klever. How 
do we select the experimental parameters to ensure these values? To do so, one must 
understand and correctly apply the principles of contact mechanics. Here, the discussion 
is limited to Hertzian contact mechanics. The corresponding discussion for flat-punch 
contact is simpler because the contact area does not depend on force. 

The cantilever spring constant klever directly affects the ratio k/klever, but it also 
influences the contact stiffness k through the applied force FN. FN is determined by klever 
and the static cantilever deflection d through FN = kleverd. For Hertzian contact, the 
relationship between k and FN is found by combining Eqs. 4.8 and 4.11: 
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Further considerations affect the choice of klever and FN. FN must be sufficiently greater 
than any adhesion forces present to ensure that an elastic model for contact mechanics is 
valid. Moreover, the applied force determines the stress field in the sample, which 
determines the volume of the sample that is measured. For this discussion, it is simpler to 
work in terms of the contact radius a. Equation 4.11 gives the relation between a and FN. 
For Hertzian contact, the compressional stress z directly beneath the indenter as a 
function of depth z into the sample is given by [39] 
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where p0 = 3FN/(2a2) is the maximum stress applied at the surface, z = 0. Equation 6.2 
shows that z decreases rapidly with increasing distance into the sample. For z = 3a, z = 
0.1p0; thus for z > 3a, z is considered negligible. This leads to the general guideline that 
measurements probe to a depth z ~ 3a [39,73]. 

This guideline can be used to tailor the experimental conditions to a particular 
sample. For instance, measurements of bulk specimens or relatively thick films should 
probe sufficiently deeply to minimize the contribution of any damage or contamination 
layers. Such layers are typically a few to several nanometers thick. For klever ~ 40 N/m on 
materials with M > 50 GPa, the probed depth exceeds 10 nm at an applied force of a few 
hundred nanonewtons, so this condition is easily met. In other cases, it may be important 
to minimize the measurement depth. In thin-film systems, for instance, the properties of 
the substrate will affect the measurements if the stress field extends too deeply. By 
keeping the applied force, and thus the depth of measurement sensitivity, sufficiently 
low, the film properties can be measured directly without the added complication of 
incorporating substrate effects in the data analysis. For nanocrystalline nickel films on 
silicon, a film only ~50 nm thick was directly measured with CR-FM methods [53]. 
Utilizing this effect to determine film thickness has also been investigated [58,74]. 

 
Fig. 6.4 Experimental values of the indentation modulus M as a function of applied static force FN for a 
nanocrystalline Ni film ~15 nm thick on a <001> Si substrate. The dashed lines show the values of M for 
<111> Ni and <100> Si. The error bars represent the standard deviations of six separate measurements. 
 

 
 

Figure 6.4 provides an example of depth effects. CR-FM experiments were 
performed on a sample containing a nanocrystalline nickel (Ni) film ~15 nm thick on a 
<001> Si substrate. The reference sample was a single crystal of <001> Ni with 
indentation modulus MNi = 219 GPa. Contact-resonance spectra were acquired at values 
of the static cantilever deflection d = 10, 20, 30, 40, 50 and 60 nm. With a cantilever 
spring constant klever = 11 ± 1 N/m, the corresponding range of applied static force FN was 
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approximately 110 nN to 660 nN. It can be seen in Fig. 6.4 that the measured value of M 
depends on FN. At low applied forces, the stress field does not significantly penetrate into 
the Si substrate, and the values of M are similar to those measured in thicker 
nanocrystalline Ni films (~200-230 GPa) [53]. As the applied force increases, the stress 
field extends further into the substrate, and the measured response depends on the 
properties of both the Ni film and the Si substrate. At the highest values of FN, the 
volume of material probed in the measurement consists more of the substrate than of the 
thin film. The response is therefore dominated by the properties of the substrate, and the 
measured values of M approach that of <001> Si (165 GPa). The cantilever used in these 
experiments was more compliant than those typically used (klever ~ 40 N/m). In the case 
of stiffer cantilevers, even very low deflections result in forces that are too high to sense 
only the properties of the film. Cantilevers with even lower values of klever could also be 
used to ensure suitable values of FN. In that case, it might be necessary to utilize higher-
order resonant modes to minimize lateral effects and maximize sensitivity. 

The contact radius a also determines the lateral extent of the measurement 
sensitivity. At z = 0, the radial tensile stress r as a function of distance r from axis of the 
indenter is given by [39] 
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where  is Poisson’s ratio. For  ~ 0.2 to 0.3, r falls to 10 % of its maximum value at r ~ 
1.1a to 1.4a. The lateral spatial resolution is approximately twice this value, or ~2a to 3a, 
and not simply a. Thus, a balance must be maintained between achieving sufficient depth 
of penetration and high lateral spatial resolution. For the representative values FN = 1 N, 
R = 25 nm, and E* = 82.5 GPa,  we obtain a = 6.1 nm. Thus 3a ≈ 20 nm is a conservative 
estimate of both lateral and depth resolution. 
 
6.3 An Example 

The following example illustrates the principles involved in selecting experimental 
conditions. A sample of interest has an indentation modulus M = 80 GPa. Using Eq. 4.9 
and assuming Mtip = 165 GPa for the <100> Si tip, we find E* = 54 GPa. The radius R of 
the cantilever tip typically ranges from less than 10 nm (new) to approximately 50 nm 
(used) [40]. To probe to a depth z ≈ 3a = 10 nm, FN ≈ 200 nN to 500 nN from Eq. 4.11. 
With these values of E*, R, and FN, from Eq. 4.12 we obtain k ≈ 400 N/m to 800 N/m at 
the minimum load. At a maximum load of 2 N, k ≈ 600 N/m to 1200 N/m. For klever = 40 
N/m, this means that k/klever ≈ 10 to 30. For these values of k/klever, modes n = 1 and n = 2 
are relatively sensitive and have minimal lateral effects. Therefore, this combination of 
klever, FN, and d is a suitable choice for this specimen. Note that for klever = 1 N/m, 
deflections of d = 200 nm and greater would be needed to achieve 3a ≈ 10 nm. Some 
AFM instruments do not permit such large values of d. This is one reason why relatively 
stiff cantilevers are often used. 

The referencing approach described in Sec. 4.2 avoids the need to determine 
absolute values of klever and FN . The approach presents a distinct practical advantage, 
because accurate measurements of klever and AFM forces remain a challenge [14,41]. 
However, this discussion shows that the values of klever and FN  critically affect the 
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experimental conditions. Without direct measurements of klever, it is possible only to 
estimate properties such as FN  and a. Therefore, calculations such as the ones in the 
previous paragraph can only estimate k/klever. The actual values of k/klever may also differ 
from those calculated for other reasons. For instance, the actual contact mechanics are 
likely to differ from Hertzian behavior. It is advisable to compare the values of k/klever 
obtained in the first few measurements to the predicted values. The operating conditions, 
particularly FN, can then be adjusted to enhance the response. 

 
7 Practical Issues for Optimizing Experiments 

The previous sections have discussed how some of the underlying theoretical 
principles affect measurement sensitivity. There are also some purely practical issues that 
must be considered when choosing the experimental conditions. In this section, we 
discuss some of these issues. 
 
7.1 Exciting and Detecting the Cantilever’s Resonant Modes 

In the method described above, the resonant modes of the cantilever are excited by 
a separate actuator (transducer) mounted beneath the specimen. One might wonder why 
this additional transducer is used, when almost all AFM instruments contain a built-in 
actuator. Intended for use in intermittent-contact mode, this actuator is located in the 
cantilever holder and excites vibrations from the clamped end of the cantilever. If the 
electrical drive signal to the actuator can be externally controlled, CR-FM measurements 
can be performed with this “internal” actuator instead of an “external” transducer. This 
approach may be useful in certain applications, for instance if the sample is curved or 
otherwise prohibits access from below. 

Figure 7.1 compares spectra obtained with an internal actuator and an external 
transducer. Figures 7.1(a) and (c) show the spectra of the first and second free 
resonances, while Figs. 7.1(b) and (d) contain the spectra of the corresponding contact 
resonances. All of the contact-resonance spectra were acquired without changing the 
contact between the tip and the sample. Although the free-resonance spectra appear 
similar, the contact resonances obtained by the different excitation means are 
significantly different. Spectra obtained with the internal actuator contain background 
signals and extraneous peaks that hinder identification of the contact-resonance 
frequencies. These signals may be due to resonant modes of the actuator itself, or else the 
silicon plate on which the cantilever is fabricated [23]. Figure 7.1 also shows that the 
frequency response of the internal actuator may not be adequate to sufficiently excite the 
higher-order resonant modes. Because results depend strongly on the specific AFM 
instrument used, general conclusions should not be drawn from the spectra in Fig. 7.1. 

Alternatively, a custom actuator can implemented to excite the cantilever 
resonances. This has usually been accomplished by attaching the actuator to the base of 
the cantilever [19,75]. However, cantilevers with integral actuation elements have 
recently been developed [76]. Excitation by means of a transducer beneath the sample 
was first developed as the AFAM method by Rabe and coworkers [22,31]. Excitation 
with an actuator at the clamped end of the cantilever was first developed as the UAFM 
method by Yamanaka and coworkers [19,75]. Mathematical analyses of both systems 
have been  published [22,77]. The analyses show that as long as damping terms are small, 
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the contact-resonance peaks occur at the same frequencies regardless of excitation 
method. However, the amplitude of the cantilever vibration and other details of the 
response spectrum differs between methods. 

 
Fig. 7.1 Spectra excited by an “external” transducer mounted beneath the sample (solid lines) and by the 
AFM’s “internal” piezoelectric element in the cantilever holder (dotted lines). The sample was a glass slide. 
Spectra for the first and second free resonances are shown in (a) and (c), while the corresponding contact-
resonance spectra are shown in (b) and (d), respectively. 
 

 
 
Practical issues also affect the ability to experimentally detect the contact 

resonances. In particular, the size and relative position of the laser spot can affect the 
detected signal amplitude [31,78,79]. This effect can be better understood by considering 
the vibration amplitude versus position on the cantilever that is predicted for a given 
mode and given contact stiffness [31]. Such considerations suggest that for optimum 
detection sensitivity, the best position of the laser spot is not always at the very end of the 
cantilever. The exact behavior depends strongly on the specific experimental conditions. 
Under typical experimental conditions, our experience has generally been that the 
amplitude of the first mode drops relatively sharply as the laser is moved away from the 
end of the cantilever towards its clamped base. The amplitude of the second mode drops 
more gradually with distance, and can sometimes actually increase as the spot is moved 
away from the tip end towards the clamped base. In this way, it may be possible to adjust 
the relative amplitudes of the detected modes. The finite diameter of the laser spot (~50 
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m) further complicates matters, especially for the higher-order modes. If the laser spot is 
sufficiently large compared to the wavelength of a given mode, the detected signal may 
be virtually zero in some positions. The lateral (side-to-side) position of the laser spot 
may also change the detected signal. Poor lateral positioning is one possible reason that 
spectra can sometimes appear asymmetrical. 

 
7.2 Tip Shape and Tip Wear 

Measurements are also affected by practical issues concerning the tip shape. One 
issue is the nonideal shape of the real cantilever tip and how it affects the nanoscale 
contact mechanics. As seen in SEM images such as those shown in Figs. 2.1, Fig. 7.2(a), 
and 7.3(a), the cantilever tip usually does not conform to an idealized shape such as a 
hemisphere. Several studies have been performed to better understand the effect of the 
true tip shape on measurements [40,45,49,80]. 

In our studies of tip shape [40], CR-FM experiments were performed with several 
cantilevers with similar characteristics. The tips of the cantilevers were imaged with 
high-resolution SEM techniques before and after each set of experiments. The SEM 
images were used to determine directly the tip shape and dimensions such as the tip 
radius R. These values were then compared to those inferred from the CR-FM data by 
means of contact-mechanics models. The results showed that none of the standard 
contact-mechanics models describe the actual behavior of the tips. Figure 7.2(b) shows 
the measured contact stiffness k as a function of static applied force FN for three 
cantilevers. Although the dimensions and free frequencies of the cantilevers were 
virtually identical, the dependence of k on FN  was different in each case. Based on the 
results from ten different cantilevers, we found that the force dependence was best 

described by k  FN
. The exponent  was varied to allow for tip shapes intermediate 

between a flat punch ( = 0) and a hemisphere ( = 1/3). 

 
Fig. 7.2 (a) SEM image of a new cantilever tip. The cantilever was similar to cantilever #1 in Table 2.1. (b) 
Vertical contact stiffness k as a function of the applied static load FN for three cantilevers obtained from the 
same manufacturer at the same time. The dotted lines indicate fits to the form k  FN

, where  = 0 
corresponds to a flat tip and  = 1/3 corresponds to a hemispherical tip. 
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Another practical issue is tip wear—changes in tip shape and size during use. When 
used in contact at loads up to a few micronewtons, sharp tips such as those shown in Figs. 
2, 7.2(a), and 7.3(a) gradually grow blunter, suddenly break, or plastically deform 
[40,45,49]. Gradual tip wear is illustrated in Fig. 7.3(b), which shows values for k/klever 
measured in alternation on fused silica (M ≈ 75 GPa) and an aluminum film (M ≈ 79 
GPa). Although the applied load was kept the same throughout the measurements, it can 
be seen that k/klever gradually increased due to tip wear. Tip wear means that the radius R 
increases, causing the contact radius a and thus k to increase. However, each subsequent 
measurement of k/klever for the aluminum film was greater than the previous one for fused 
silica (with one exception). Therefore, the referencing approach described above will 
yield accurate values for M despite gradual tip wear [29]. This motivates the practice of 
measuring the reference specimen before and after each measurement on the unknown 
specimen. Figure 7.3(b) shows that k/klever approaches an equilibrium value after a few 
dozen measurements. The exact behavior depends on the specific materials involved as 
well as the load history. Such results suggest that it might be desirable to “wear in” tips 
before use. Although this procedure could degrade the spatial resolution slightly, it could 
yield more reproducible results and lead to less data scatter. Systematic studies to 
investigate methodologies for such a “tip wear procedure” have not been reported. 

 
Fig. 7.3 Examples of tip wear in CR-FM experiments. (a) SEM image of a sharp tip in side view. (b) 
Measured values of the normalized contact stiffness k/klever for fused silica (SiO2, triangles) and an 
aluminum film (Al, squares). The film was approximately 1 m thick on a sapphire substrate. The first 
measurement corresponds to a new tip similar to the one shown in (a). The measurements were made at a 
static deflection d = 30 nm, corresponding to an applied static force FN ≈ 1.2 N. (c) SEM image of a 
deliberately shaped tip in side view. (d) Normalized contact stiffness k/klever for SiO2 (triangles) and an Al 
film (squares) using the tip shown in (c). The first measurement corresponds to a new tip. The 
measurements were made at a static deflection d = 35 nm. 
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Results such as these could lead to improved measurement procedures. The 
experimental uncertainty in the modulus M is often inflated in order to accommodate the 
range of values that results from assuming m = 1 and m = 3/2 in Eq. 4.12. Developing a 
tip characterization procedure might allow a more exact value of m to be used for each set 
of measurements, and thus reduce uncertainty. The procedure could be based on the 
dependence of k on FN [40,80], or might take a different approach. 

A possible solution to tip wear, breakage, and deformation is the use of tips with a 
larger radius of curvature R. Figure 7.3 shows the results of CR-FM experiments to 
investigate this idea. As seen in Fig. 7.3(c), the cantilever had a deliberately rounded tip 
(Nanosensors, Neuchâtel, Switzerland). The nominal value of R ranged between 90 nm 
(end view) and 160 nm (side view). Figure 7.3(d) shows that the normalized contact 
stiffness k/klever rapidly approaches an equilibrium value, indicating very little wear. 
Similar results have been observed by another group [81]. Although further 
measurements are needed, these initial results suggest that larger tips may be useful for 
quantitative modulus measurements, if a decrease in spatial resolution can be tolerated. 

A final issue involving practical considerations is the choice of reference specimen. 
It has been found that the best quantitative results are obtained if the indentation modulus 
Mref of the reference material is similar to the modulus Ms of the unknown specimen. One 
reason is possible uncertainty in the value Mtip used in Eq. 4.9 for the modulus of the tip 
[30]. This can be better understood by rewriting the equations in Sec. 4.2 as 
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If the unknown and reference materials have similar modulus, kref  / ks ≈ 1. This means 
that the quantity in square brackets in Eq. 7.1 is small, and the impact of inaccuracy in the 
value of Mtip is minimized. The use of two reference materials has also been 
demonstrated as a way to overcome the difficulty of accurately knowing Mtip [22,24,30]. 

Another consideration in choosing reference materials is the presence of any surface 
layers such as oxides or adsorbed water. These layers cause the real system to deviate 
from the idealized one used in the data analysis. An oxide layer means that the sample is 
a two-layer system instead of a uniform half space. Capillary layers due to adsorbed 
water create significant adhesive forces, so that pure elastic contact cannot be assumed. 
Surface roughness is also a consideration. Smooth samples provide greater uniformity in 
the contact conditions across the surface, and therefore reduce data scatter. 

 
8 Imaging with Contact Resonance Force Microscopy 

So far in this chapter, we have described how CR-FM is used for measurements at a 
fixed sample position. However, the two-dimensional scanning capability of the AFM 
instrument makes it ideal for creating images of the spatial distribution in properties. One 
reason for the growing demand for spatial visualization of properties is the increasing 
integration of multiple materials on micro- and nanometer scales. The cause of failure in 
such systems is often a localized variation in properties. Because measurements of 
“average” sample properties are simply not sufficient in such cases, images are required. 
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Initially, images obtained by CR-FM methods gave only qualitative information 
about elastic properties [12,20,75,82]. Such “amplitude images” are nonetheless useful in 
many applications and are straightforward to acquire experimentally. In this approach, 
the excitation frequency is set close to that of the contact resonance for a particular mode. 
The output amplitude signal of the lock-in amplifier is connected to an auxiliary input 
channel of the AFM instrument and is used for image acquisition. The resulting image 
thus contains the relative amplitude of the cantilever vibration at the excitation frequency 
for each position on the sample. The contrast in amplitude images may be enhanced or 
suppressed by the choice of excitation frequency [29]. At relatively low frequencies, the 
cantilever vibration amplitude will be higher for regions with lower elastic modulus. 
More compliant regions will therefore appear brighter. Increasing the excitation 
frequency so that it is close to the contact-resonance frequency of stiffer sample 
components decreases the vibration amplitude of more compliant regions. Hence, stiffer 
regions will appear brighter. In this way, one can observe a reversal or “inversion” in 
image contrast by changing the excitation frequency [11]. 

Examples of amplitude imaging are shown in Fig. 8.1. The sample contained a 
blanket film of an organosilicate glass (denoted SiOC) approximately 280 nm thick. 
Copper (Cu) lines were deposited into trenches created in the SiOC blanket film. The 
sample was etched briefly in a hydrofluoric acid solution to remove any protective 
surface layers. The topography image of Fig. 8.1(a) reveals that the sample is very flat, 
with height variations less than ~5 nm to 10 nm. Figures 8.1(b) and (c) show amplitude 
images acquired at two different frequencies. Small features inside the Cu lines can be 
seen. These are most likely due to shifts in the contact area that arise from small 
topographical features (e.g., pores, polishing effects). In addition to the SiOC film and the 
Cu lines, bright regions can be seen at the SiOC/Cu interfaces. This feature corresponds 
to a thin barrier layer deposited on the sidewall of the trenches, and is not obvious in the 
topography image. In Fig. 8.1(b), the SiOC regions of the image are brighter than the Cu 
regions. However, the Cu regions are brighter in the image in Fig. 8.1(c), which was 
acquired at a higher excitation frequency. This information suggests that the contact-
resonance frequency of the Cu regions is generally higher than that of the SiOC regions. 
Because higher contact-resonance frequencies imply greater elastic modulus, it can be 
inferred that the modulus of the Cu lines is greater than that of the SiOC film. 

 
Fig. 8.1 Example of CR-FM or AFAM amplitude imaging. The sample contained copper (Cu) lines in an 
organosilicate glass (SiOC) film. (a) Topography. The image was acquired in contact mode, at the same 
time as the image in (c). (b) Amplitude image of the cantilever vibration for an excitation frequency f = 550 
kHz. (c) Amplitude image at f = 630 kHz. Images were acquired with a cantilever with lowest free-space 
frequency f1

0 = 151.3 kHz. 
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Figure 8.1 shows that components of different elastic stiffness are easily identified 
by amplitude imaging. However, the figure also illustrates the difficulties involved in 
trying to evaluate the relative stiffness of different sample components. Instead, 
quantitative imaging or mapping of nanoscale elastic properties is ultimately desired. 
Quantitative imaging requires detecting the frequency of the contact-resonance peak at 
each position as the tip moves across the sample. A single such contact-resonance-
frequency image can provide more information than an entire series of amplitude images. 
However, if the sample components differ greatly in their elastic properties, the contact-
resonance frequency will vary significantly across the sample, making detection more 
difficult. Several solutions to this challenge have been demonstrated [17,30,43,46,83-85]. 
Typically, there is a tradeoff between the imaging speed and the amount of custom 
hardware and software required. 

We have also developed techniques for nanomechanical mapping with CR-FM 
[51,86,87]. Our approach differs conceptually from other implementations, in that the 
starting frequency of the frequency sweep window is continuously adjusted to track the 
contact-resonance peak. In this way, a high-resolution spectrum is acquired with a 
minimum number of data points, even if the frequency of the peak shifts significantly 
throughout the image. Other approaches that lack feedback must perform a frequency 
sweep at every pixel over the same relatively wide range that encompasses all possible 
peaks. Our approach also utilizes a digital signal processor (DSP) architecture. One 
advantage of a DSP approach is that it facilitates future upgrades, because changes are 
made in software instead of hardware. 

A schematic of the “frequency-tracking” apparatus is shown in Fig. 8.2. The 
electronics are explained in greater detail elsewhere [87]. An adjustable-amplitude, 
swept-frequency sinusoidal voltage is applied to the piezoelectric actuator beneath the 
specimen. As the cantilever is swept through its resonant frequency by the actuator, the 
photodiode detects the cantilever’s vibration amplitude and sends this signal to the DSP 
circuit. The circuit converts the signal to a voltage proportional to the root-mean-square 
(rms) amplitude of vibration and digitizes it with an analog-to-digital (A/D) converter. As 
each sweep completes, the circuit constructs a complete resonance curve. It finds the 
peak in the resonance curve and uses this information in a feedback-control loop. The 
control loop adjusts a voltage-controlled oscillator (VCO) to tune the center frequency of 
vibration to maintain the cantilever response curve centered on resonance. The control 
voltage is also routed to an input port of the AFM instrument for image acquisition. Each 
pixel in the resulting image thus contains a value proportional to the peak (resonant) 
frequency at that position. A frequency range can be specified in order to exclude all but 
the cantilever mode of interest. A total of 128 data points are acquired for each resonance 
curve. At 48 kilosamples per second, the system acquires the full cantilever resonance 
curve 375 times per second. The AFM scan speed must be adjusted to ensure that several 
spectrum sweeps are made at each image position. For scan lengths up to several 
micrometers, an image with 256  256 pixels is usually acquired in less than 25 min. 
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Fig. 8.2 Schematic of experimental apparatus for contact-resonance-frequency imaging. 
 

 

 
An example of quantitative imaging with our frequency-tracking electronics is 

shown in Fig. 8.3. The images correspond to the same region of the SiOC/Cu structure as 
that shown in Fig. 8.1. The topography image in Fig. 8.3(a) shows the SiOC blanket film 
and the slightly recessed (less than 5 nm) Cu lines. The contact-resonance-frequency 
images for the two lowest flexural modes of the cantilever are shown in Figs. 8.3(b) and 
(c), respectively. The frequency images reveal directly that the contact-resonance 
frequency in the Cu regions is higher than that in the SiOC regions. 

Figure 8.3(d) shows a map of the normalized contact stiffness k/klever calculated 
from the frequency images in Figs. 8.3(b) and (c). The image was calculated on a pixel-
by-pixel basis with the analysis approach described above for point measurements. 
Depending on the application, it may be sufficient to evaluate the contact-stiffness map 
alone. In other cases, a map of the indentation modulus M may be needed. Calculating a 
modulus map from the contact-stiffness image involves the same models and 
assumptions used for point measurements. For instance, a specific contact-mechanics 
model must be chosen. Reference values of E* and k/klever are also needed. Here, we 
calculated the modulus map from the contact-stiffness image with the assumption that the 
tip was flat. We also assumed that the mean value of E* in the SiOC region corresponded 
to MSiOC = 44.3 GPa. This value was obtained from independent point measurements 
directly on the SiOC film with a borosilicate glass as the reference material. The average 
value of k/klever in the SiOC region of the image was used as the reference value. The 
resulting modulus map is shown in Fig. 8.3(e). In spite of the assumptions made to obtain 
the map, it shows how quantitative images of M can be achieved. Other mapping results 
are listed in Table 5.1. 
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Fig. 8.3 Example of quantitative CR-FM imaging. (a) Topography. (b) and (c) Contact-resonance 
frequency images of the first (f1) and second (f2) flexural modes, respectively. (d) Normalized contact 
stiffness k/klever calculated from (b) and (c). (e) Map of the indentation modulus M calculated from (d), as 
described in the text. The free-space frequencies of the cantilever’s lowest two flexural modes were f1

0 = 
151.3 kHz  f2

0 = 938.0 kHz. 
 

 

 
Imaging techniques might also be used to improve point measurements of M. 

Recently, values for M in homogeneous samples were obtained from contact-resonance-
frequency images [30]. Images for the two lowest flexural modes were acquired by 
scanning small regions of the sample. The average frequency of each image was 
determined and used to calculate the contact stiffness k/klever, from which M could be 
calculated. An advantage of this approach is that it yields many more data points in a 
much shorter time than can be obtained from individual point measurements. When 
combined with the use of two reference materials, the measurement uncertainty of this 
approach (scatter in data points) was typically less than 1 %. Further evaluation of this 
approach is needed, for instance to establish the variability in images acquired under 
nominally identical conditions. 

Other mechanical properties besides elastic modulus can be imaged with CR-FM 
methods, if they influence the contact stiffness between the tip and the sample. It was 
explained in Sec. 6.2 how CR-FM probes the sample properties to a depth z roughly three 
times that of the tip-sample contact radius a. CR-FM can thus be used to sense variations 
in mechanical properties beneath the surface, for example to investigate subsurface 
dislocations [88,89]. In other recent work, amplitude imaging was used to detect very 
large voids (diameter 50 m to 500 m) buried several hundred nanometers below the 
surface [90]. Cracks in buried layers have also been studied with UFM methods [91]. 
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Another property of technological interest is the relative bonding or adhesion 
between a film and a substrate. To investigate the sensitivity of CR-FM to variations in 
film adhesion [92], we fabricated a model system of gold (Au) and titanium (Ti) films on 
(001) Si. Figure 8.4(a) shows a cross-sectional schematic of the sample. A rectangular 
grid of Ti 1 nm thick containing 5 m  5 m holes (10 m pitch) was created on Si by 
standard microfabrication techniques. A blanket film of Au 20 nm thick and a topcoat of 
Ti 2 nm thick were deposited on top of the grid. A crude scratch test was performed by 
lightly dragging one end of a tweezer across the sample. Optical micrographs showed that 
this treatment had removed the film in the scratched regions without a Ti interlayer 
(squares), and left the gold intact in the scratched regions containing a Ti interlayer 
(grid). The result confirmed our expectation that the film adhesion was much stronger in 
regions containing the Ti interlayer. The Ti topcoat was included merely to prevent 
contamination of the AFM tip by the soft Au film. 

 
Fig. 8.4 Evaluation of film/substrate adhesion with CR-FM imaging. (a) Schematic of sample in cross 
section. (b) Map of the normalized contact stiffness k/klever calculated from contact-resonance-frequency 
images. (c) Average stiffness versus position across the center of (b). 
 

 

 
Frequency-imaging experiments were performed on the sample. A map of the 

normalized contact stiffness k/klever calculated from the resulting contact-resonance 
frequency images is shown in Fig. 8.4(b). The image shows that k/klever is lower in the 
region with poor adhesion (no Ti interlayer). A line scan of the average value of k/klever 
for 40 lines in the center of the image is shown in Fig. 8.4(c). The mean value of k/klever is 
39.1 ± 0.6 in the grid regions and 37.1 ± 0.5 in the square, a difference of 5 %. Additional 
images acquired at different sample positions consistently showed a decrease in k/klever of 
4 % to 5 % for the regions of poor adhesion that lacked a Ti interlayer. 

From Eq. 4.11, we estimate that a = 6 nm to 8.5 nm for our experimental 
parameters. The experiments should therefore probe the film interface (z = 22 nm to 24 
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nm ≈ 3a). The observed results are also consistent with theoretical predictions for layered 
systems with disbonds [74,93]. In that work, the film/substrate system was modeled with 
an impedance-radiation approach that included a change in boundary conditions at the 
disbonded interface (i.e., zero shear stress). For a disbond in an aluminum film 20 nm 
thick on (001) silicon, a reduction of approximately 4 % in the contact stiffness was 
predicted, very similar to our results. Although the parameters used in the theoretical 
study differed from those in our experiments, the overall combination of conditions (film 
and substrate modulus, applied force, etc.) was sufficiently similar to ours that we believe 
a comparison is valid. These results represent progress towards quantitative imaging of 
adhesion, a goal with important practical implications for many thin-film devices. 

 
9 The Road Ahead 

In this chapter, we have described contact resonance force microscopy (CR-FM) 
methods and their use for materials characterization on the nanoscale. CR-FM 
experiments involve measuring the resonant frequencies of a vibrating cantilever when its 
tip is in contact with a material. Models for the cantilever dynamics and for the tip-
sample contact mechanics are then used to relate the contact-resonance frequencies to the 
near-surface elastic properties. The basic physical principles have been discussed, as well 
as the experimental apparatus and current best practices for measurements. Principles to 
optimize experimental conditions were explained and used to motivate the best practices. 
Some of these principles are of a more theoretical nature, such as the signal response 
curve. Others are more practical, such as tip shape and wear. Finally, methods for 
qualitative and quantitative nanomechanical imaging with CR-FM were described. We 
hope that the discussion stimulates readers to envision applications of CR-FM in their 
own research. 

Although CR-FM methods are sufficiently mature to serve as a useful tool, there is 
still room for improvement. Extensions or refinements to the basic technique could not 
only yield better measurements, but could also lead to exciting new applications. Here, 
we briefly discuss some of the key directions for future work. The ideas can be grouped 
into three broad themes: improving precision and accuracy, reducing measurement time, 
and adapting techniques to new material systems. 

Measurement accuracy and precision might be improved by using custom-
fabricated cantilevers, instead of relying on commercially available ones. For example, 
optimal sensitivity in combined torsional- and flexural-mode experiments were hampered 
by the range of available cantilevers [34]. Accuracy could also be improved by 
fabricating cantilevers whose response more closely matches that predicted by the data 
analysis model. For instance, a nonuniform or nonrectangular cross section may shift the 
spacing of the free frequencies. Vibrational behavior can also be affected by asymmetries 
in the cantilever beam [94], or by the clamping conditions of the cantilever holder [23]. 
In one case, the resulting spurious modes were reduced by patterning the backside of the 
cantilever substrate [95]. A more radical approach involves redesigning the cantilever 
geometry. Examples of this approach in other AFM applications include cantilevers with 
higher-order modes that occur at an exact integer multiple of the fundamental mode [96], 
and cantilevers whose free frequencies are adjusted to accommodate the bandwidth of the 
AFM photodiode [97]. 
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Instead of designing a new cantilever, accuracy might be improved with a better 
model to predict the dynamic behavior of real cantilevers. One possibility is to replace 
the relatively simple analytic model with a more detailed model involving finite-element 
analysis (FEA). FEA models have been developed to evaluate the dynamic behavior of 
resonant cantilevers in free space [98] and in contact [99-101]. With a FEA approach, 
information about the actual geometry of the cantilever obtained from SEM or other 
imaging tools is easily incorporated. This feature is particularly valuable when the 
cantilever geometry varies significantly from a rectangular shape [100]. In spite of 
progress, an alternative to the existing analytical model that is suitable for practical 
measurements has not yet been reported. 

Measurements could also be improved by a better understanding of the tip-sample 
contact behavior. As discussed in Sec. 7.2, an improved procedure to characterize the true 
tip shape could increase precision. Work to characterize tips for other AFM applications 
might provide insight into this issue [102-104]. Tip wear also adds to measurement 
uncertainty. As described above and in Ref. [105], deliberately blunted or rounded tips 
could address this problem. In order to maintain high spatial resolution, however, sharp 
yet robust tips will ultimately be needed. Tips with hard wear coatings are commercially 
available and seem ideally suited. In practice, however, the coatings tend to fracture [45], 
and can be insufficiently smooth for consistent tip-sample contact. As with cantilever 
geometry, it may be necessary to fabricate custom tips. Carbon-coated tips with a 
hemispherical shape were created in one study with promising results [106]. 

Future work to reduce measurement time will contain both experimental and 
theoretical aspects. From a practical standpoint, minimizing tip wear could reduce 
measurement time in addition to increasing accuracy. More robust tips might enable 
measurement redundancy to be minimized and the number of reference measurements to 
be reduced. From a theoretical standpoint, measurement time could be cut virtually in 
half by devising a method that requires the frequency of only one resonant mode. 
Currently, the frequencies of two modes are needed to determine both the normalized 
contact stiffness k/klever and the relative tip position L1/L. Perhaps L1/L could be 
determined in another way, for instance through an additional calibration procedure, FEA 
modeling, or SEM imaging. Rapid or even simultaneous measurement of multiple modes 
would also reduce measurement time [107]. Increased speed in imaging applications is 
also important. There are physical limits on the ultimate scanning speed that can be 
attained. However, current times of ~30 min or longer to acquire one frequency image 
could be reduced considerably before reaching these limits. This is area of active research 
not only for AFM in general [108,109], but also for CR-FM in particular [17]. 

Extending the range of materials and applications that can be addressed with CR-
FM methods is an exciting prospect. For instance, dynamical processes could be studied 
if faster imaging rates were possible. Measurements on extremely thin films (~20 nm or 
less) also require refinements such as an analysis approach that includes the substrate 
properties [110]. New applications involving highly compliant materials such as 
polymers present other challenges, because CR-FM methods were originally developed 
for use on much stiffer materials. For instance, lower static forces are needed to prevent 
sample damage, requiring the use of cantilevers with a lower spring constant. To 
optimize the response of such cantilevers, measurements with higher-order mode pairs 
(e.g., n = 2, 3 or n = 3, 4) may be needed. Analysis of low-force data is also likely to 
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involve inelastic or damping effects (see, for example, Ref. [39] or [111]). Such effects 
can arise not only from a surface capillary layer, but from the viscoelastic nature of the 
material itself. It may eventually be possible to quantitatively evaluate extremely 
compliant (M < 100 MPa) materials with CR-FM [112]. 

The above discussion presents a variety of measurement challenges for CR-FM 
methods. Successfully meeting these challenges will enable  researchers to better address 
materials problems in emerging applications as well existing ones. The increased use and 
applicability of these methods will contribute to the rapid growth of nanoscale materials 
science. For all of these reasons, the future seems bright for CR-FM methods as a 
valuable tool for materials characterization. 
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