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Multiscale Green’s function for the deflection of graphene lattice
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We show analytically that the continuum limit of the lattice-statics Green’s function of a graphene sheet
corresponds to the Green’s function for an elastically stable Kirchhoff plate but not the Green’s function for
two-dimensional Christoffel equations. This correspondence demonstrates the mechanical stability of graphene
in deflection and is necessary for relating its mechanical parameters to its lattice parameters. An explicit

expression is derived for relating the continuum flexural rigidity to the force constants of graphene. This
relationship can be used to measure flexural rigidity of graphene directly from experimentally observed phonon
dispersion curves. The flexural rigidity is predicted to be 0.797 eV by using the Tersoff-Brenner empirical
potential. Numerical examples are presented to show the usefulness of the correspondence in bridging the

lattice and continuum length scales in graphene.
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I. INTRODUCTION

Graphene is a two-dimensional (2D) hexagonal lattice of
covalently bonded carbon atoms. It is regarded as one of the
most exciting materials with a strong potential for applica-
tion in powerful devices.? In order to develop graphene-
based devices, a major challenge is to control/manipulate the
curvature of graphene that is either suspended in a solution
or laid on a substrate. This would require an understanding
of the mechanical deflection of graphene and to develop
techniques for its multiscale modeling, ranging from the ato-
mistic to the device level. Recent observations of graphene
ripples have sparked great interest in this problem.?

The deflection in graphene can be efficiently modeled by
using the lattice Green’s function (GF) at the atomistic level
and the continuum GF at the macroscopic level, provided we
can establish a correspondence between the lattice and the
continuum GFs. Such a correspondence has been rigorously
proved for normal three-dimensional (3D) solids* but not yet
for graphene. The objective of this paper is to show analyti-
cally that this correspondence holds for the case of graphene
and to analyze the fundamental deflection behavior of
graphene in terms of its lattice and continuum GFs.

The correspondence between the lattice and the con-
tinuum model of graphene is needed to understand the ob-
served stability’ of a graphene sheet against deflection. It
was previously believed that a 2D lattice would be unstable,
and hence, would not exist in reality.>” The present calcula-
tions show that the lattice GF for graphene in the continuum
limit corresponds to the Kirchhoff plate model, which is
known?® to be stable. This correspondence is also useful for
determining the mechanical parameters of graphene from its
lattice parameters by using the standard methods of the lat-
tice theory,” and is needed for integrating the lattice and the
continuum GFs for multiscale modeling applications.!%-12
The GF-based multiscale modeling is a powerful technique
for solving a variety of problems involving multiple length
scales. Recently the GF method has been used to develop
multiscale boundary conditions and has been applied to ato-
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mistic simulations in graphene and graphite.'3

It can be rigorously proved (see, for example, Ref. 4) that
the asymptotic limit of the lattice GF of a solid is the GF for
the corresponding Christoffel equations for the continuum
model. As shown in the next section, the asymptotic limit of
the 2D lattice GF, in the general case, is In(r) in the complex
r space as r— o, where r is the distance between the source
and the field points. Its real part is In(r) and its imaginary
part is arctan(r,/r,), where the x and the y axes are assumed
to be in the plane of the 2D solid. The real part corresponds
to the plane strain and the imaginary part to the antiplane
strain. Henceforth, in this paper we will refer to only the real
part of the Green’s function. This behavior agrees with the
GF for the Christoffel equations in 2D (see, for example,
Ref. 14). However, the 2D Christoffel equations correspond
to a line force parallel to the z axis in a 3D continuum, such
as the force field, due to a straight dislocation. The 2D
Christoffel equations do not correspond to a point force in a
2D solid.

The difference between a line force in a 3D continuum
and a point force in a 2D continuum arises due to the fact
that the displacement field in the continuum model is a con-
tinuous and differentiable variable. The equations of elastic
equilibrium depend upon all components of the strain field.
The strain field is related to the derivatives of the displace-
ment field. For the displacement field to be differentiable, it
must be defined over a finite continuous range and not just at
discrete points. In the case of a line force in a 3D continuum,
the displacement field @ is uniform in the z direction. This
implies that du;/ 9z (i=x,y, or z) and the corresponding strain
field are zero. This reduces the equations of elastic equilib-
rium to only two space variables x and y, which are referred
to as 2D Christoffel equations. These equations correspond
to plane strain and the corresponding GF has a In(r)
behavior.!#

On the other hand, in the case of a point force in a 2D
solid, the dependence of the displacement field on the z co-
ordinate has to be written in terms of the Dirac delta function
&(z) because the solid exists only on the plane at z=0. In this
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case du,;/dz and the corresponding strain field at z=0 is the
derivative of the delta function, which is undefined or for-
mally infinite. An infinite strain implies that a 2D solid is
mechanically unstable. This difficulty is avoided in the con-
tinuum model of a plate by assuming the plate to be of “van-
ishing” thickness that approaches zero only in the math-
ematical limit. The derivatives in the plate theory are
evaluated before the limit of zero thickness is taken. This
procedure makes the plate stable. This model of a plate is
thus basically different than the line force in a continuum in
which the displacement is uniform in the z direction. The
continuum GF for the deflection of a Kirchhoff plate due to a
point force varies as 7> In(r),® whereas the GF for a line force
in a 3D continuum varies as In(r).

To summarize, the problem is that the asymptotic limit of
the lattice GF for a point force in a general 2D solid is the
continuum GF for a line force in a 3D solid and not the point
force in a 2D solid. An exact 2D solid, that is, a solid with
physically zero thickness, would be unstable against deflec-
tions. A stable 2D solid has to be modeled as a plate of
“vanishing” thickness but its GF does not correspond to the
lattice GF of a general 2D solid. This situation is different
than the general 3D solids in which the lattice GF corre-
sponds exactly to the continuum GF.

In the present work, we resolve the above inconsistency
by showing analytically that the continuum limit of the lat-
tice GF in the special case of graphene in the deflection
mode is indeed 7 In(r) and not In(r). This unusual behavior
of the GF arises because of the unusual phonon dispersion of
graphene. In general, the phonon frequency in any solid (1D,
2D, or 3D) would vary linearly with k in the long-
wavelength limit,° where k is the magnitude of the phonon
wave vector k. As shown in Sec. II, it is the linear k depen-
dence of the phonon frequency in the long-wavelength limit
that gives the In(r) behavior in the asymptotic limit of a
general 2D lattice. In the special case of graphene, the pho-
non frequency for the transverse modes polarized normal to
the plane of graphene varies as k> (Ref 15 and 16) and not k.
We show that the k? dependence of the phonon dispersion
leads to the r?In(r) behavior of the lattice GF in the
asymptotic limit. This clearly establishes the correspondence
between the lattice and the continuum GF for a plate. This is
also consistent with the mechanical stability of graphene.’

In Sec. II, we derive an expression for the lattice GF for
an infinite 2D solid and obtain a simple analytical expression
for its asymptotic limit based on the Born von Karman
model® for the graphene lattice!® and the Tersoff-Brenner
potential'” for the interatomic interactions. This asymptotic
limit establishes a linkage between the lattice and the con-
tinnum GFs, as needed for the GF-based multiscale
modeling.!®!> The mechanical properties of graphene are
determined by its electronic configuration as well as its ionic
interactions and lattice structure. We consider here only the
ionic part and the lattice structure. In the adiabatic approxi-
mation, inherent in the Born von Karman model, the elec-
tronic energies can be added to the ionic energies. Of course
the electrons also affect the ionic interactions. This part of
the electronic contribution is phenomenologically included
in the Tersoff-Brenner potential.'”

We also derive an analytical formula for the flexural ri-
gidity, D, of graphene in terms of the interatomic force con-
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stants. The flexural rigidity of a plate is a measure of its
resistance to flexural deformation.® Using the Tersoff—
Brenner empirical potential,'” we obtain D=0.797 eV. In
Sec. III, we present a multiscale model of the deflection of
graphene by linking the discrete lattice model with the con-
tinuum boundary conditions. We examine the behavior of a
clamped circular graphene sheet under a uniform force field,
and analyze the difference between the values predicted by
the lattice and the continuum models. Finally, we present
conclusions in Sec. IV.

II. LATTICE STATICS GREEN’S FUNCTION OF A
GRAPHENE SHEET

We consider a hexagonal 2D graphene lattice with crys-
tallographic axes taken as the reference frame and one of the
hexagonal vertices as the origin. The z axis is assumed to be
normal to the plane of the lattice. The 2D primitive vectors
of graphene lattice structure' are (V3,1)a and (v3,-1)a,
where 2a is the lattice constant. Graphene lattice has two
atoms per unit cell, which we label by x where k=A or B,
respectively, for the atoms equivalent to that at the origin and
that at (2/ \E,O)a. We label each unit cell by the index L.
Thus Lk denotes the atom « in the unit cell L and r(Lk)
denotes the position of the lattice site. We define the 3 X 3
force-constant matrices ® between pairs of atoms’ as fol-
lows:

fLy=2,  ®LkLk)u(l'«) (1)

where f and u denote the force and displacement vectors
respectively for an atom. Although the lattice itself is 2D, the
force-constant matrices, and the force and displacement vec-
tors are 3D because it deforms in the 3D space. For this
model, the matrix elements @, =®_,=0, where i=x or y. The
zz elements are equal for all atoms in the same neighbor
shell. In the Tersoff-Brenner potential each atom directly
interacts with its first and second neighbors only. We denote
®_ = for all the three nearest neighbors and & for all the six
second neighbors of the atom at the origin. The values of y
and § are, respectively, 5.248 and —0.8747 eV /A2,

First, we calculate the lattice-statics GF (Ref. 4 and 9) for
an infinite solid. We take the Fourier transform of the force-
constant matrix, which is just the dynamical matrix multi-
plied by the atomic mass. This matrix is Hermitian 6 X 6 and
is block diagonal. The 2 X 2 block matrix corresponding to z
modes, that is, for displacements in the z direction, is de-
noted by Z(k). Its matrix elements, labeled by A and B, are
given below:

Zyak) =Zgp(k) =3v+ 66282 cos(\"gkx)cos(ky)
+cos(2k,)], (2)

Zyplk) =~ eXP(- %)[eXp(w’gkx) +2 cos(ky)], (3)
AY

where 1= V’Tl. The two eigenvalues of Z(k) are
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wi’a(k) =Zuk) = A1 +4 cos(v’gkx)cos(ky) +4 cos?(k,)]"?,
4)

where the plus and the negative signs give the optical and the
acoustic mode frequencies w, and w,, respectively. The
lattice-statics GF (Ref. 4) for the deflection (z displacements)
is given by

GO LK) =+, 1770 explik - [r(LK) (04T,

(5)

where the sum is over all k vectors in the first Brillouin zone
and N is the number of the k vectors. Since Z(k) is just a
2 X 2 matrix, the sum over k in Eq. (5) can be easily evalu-
ated.

We now evaluate the asymptotic limit of G for large
[r(Lk")-r(0k)| by using Duffin’s lemma.* Since Z~!(k) has
poles at k=0, the asymptotic limit of the sum in Eq. (5) is
obtained by expanding Z around k=0, treating r and k as
continuous variables, and replacing the summation by an in-
tegral. The continuum model does not distinguish between
sublattices and, in the acoustic modes, the two sublattices
vibrate in phase. We, therefore, assume both « and ' in Eq.
(5) to be type A and write r for r(LA). This gives the follow-
ing from Eq. (5) in the asymptotic limit. r— oo:

1
E0) T EyK)

1
G(0,r) = v [ }exp(Lk -r)dk, (6)
where the integration is over all k space and V is the area of
the first Brillouin zone,

E (k)= (y+60)k*- %(‘y+ 188)k*, (7)
and
E,(k)=6y—(y+ 65)k2—11—2(7+185)k4. (8)

Note that E,(k) and E, (k) are functions of k and do not
depend upon the angle of k. The GF, therefore, is isotropic,
as expected for a hexagonal lattice. Since the 1/E, (k) term in
Eq. (6) does not have a pole at k=0, it does not contribute to
the integral in the asymptotic limit. This is consistent with
the continuum model, which does not include optical modes.

Both E,(k) and E, (k) are proportional to w?(k). The lead-
ing term in E,(k) in Eq. (7) as k— 0 is k%, which gives the
linear dependence of the phonon frequencies on k in the
continuum model. The integral of this term in Eq. (6) is
proportional to In(r) (see, for example, Ref. 14). Hence, for a
general 2D solid, the asymptotic limit of the lattice GF varies
as In(r). As discussed in Sec. I, this corresponds to the con-
tinuum GF for a line force in a 3D solid and not to a point
force in a 2D solid. This is the inconsistency described in
Sec. I in the correspondence between the lattice and the con-
tinuum GF for 2D solids.

However, graphene is unusual because the coefficient y
+646 of the k? term in Eq. (7) is zero. Hence the leading term
in the expansion of E,(k) for graphene in Eq. (7) is the k*
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term and not the k> term. This is not just an artifact of the
Tersoff—Brenner potential. It is an inherent characteristic of
the graphene lattice and has also been observed experimen-
tally in graphite.>!® Thus, we obtain the following expres-
sion from Egs. (6) and (7) for graphene:

6 Jexp(tk~r)
V(y+180) k*

G(0,r)=- dk. 9)

The integration in Eq. (9) can be done analytically by
differentiating under the integral sign with respect to x and y
components of r. This gives

3 \Er2 In(r)

GO, =~
©.1) 27(y+ 180)a”

(10)

where we have used V=2/3m2a? for the area of the first
Brillouin zone of graphene. Independently from above, the
continuum GF for a Kirchhoff plate® is given by

7 In(r)

8D

Gg(0,r) = , (11)
where D(=EI) is the flexural rigidity of the plate. In the
definition of the continuum flexural rigidity, E is the Young’s
modulus and / is the moment of inertia. Given in Ref. 8 is the
point force solution of a finite circular plate. The above for-
mula (11) can be derived by taking the plate radius to ap-
proach infinity and dropping the lower order terms.

We see from Egs. (10) and (11) that G(0,r) has exactly
the same dependence on r as the GF for the Kirchhoff model.
If the k* term in Eq. (7) were not zero as in the general case
of a 2D solid, G(0,r) would have a In(r) behavior and not
agree with the Kirchhoff model. Since the Kirchhoff plate is
elastically stable, the correspondence between Egs. (10) and
(11) shows the stability of the graphene lattice in the elastic
limit. Comparing Egs. (10) and (11), we obtain

—_

V3
D=-— 188)a>. 12
36(~y+ )a (12)

For the Tersoff-Brenner potential, a=1.2563 A, which gives
D=0.797 eV.

We see from Eq. (10) that the GF diverges with increasing
r. The divergence at large r is associated with the singularity
at k=0 in Eq. (6). Physically the divergence of the GF can be
understood as follows: If one applies a vertical force at the
center of a 2D solid of finite rigidity, the displacement will
be zero at infinity and infinite at the center. Alternatively,
when measured relative to the center, the displacement of the
center will be zero and increase with distance, as predicted
by Eq. (10), because of the lack of constraining forces.

III. MULTISCALE MODELING OF DEFLECTION OF A
GRAPHENE LATTICE

Although Eq. (5) gives the lattice-statics GF for any atom,
a direct real-space calculation is useful for modeling the me-
chanics of materials. The above derivation shows that the
asymptotic behavior of the lattice-statics GF is the con-
tinuum plate GF. We exploit this correspondence in a cell
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FIG. 1. (Color online) Variation of deflection with distance r due
to a unit point force. The symbols indicate atoms.

model and show numerically the asymptotic approach in real
space. A cell refers to a finite region of the solid containing
discrete atoms. We calculate the GF and its derivative di-
rectly from Eq. (1) for cells of different radii and use the
continuum plate GF (Ref. 8) as the boundary condition. The
continuum GF boundary condition is imposed by assigning
values of the continuum GF (i.e., physical displacement) to
the atoms over the cell boundary. The atomic deflection and
radial derivative for cells of radii 2, 3, and 4 nm are shown in
Figs. 1 and 2, respectively. The derivative was computed by
differentiating a continuous field interpolated with nearby
atomic positions with base functions 1, r, and 2 In(r).

From Figs. 1 and 2, it can be seen that the deflection does
not converge with cell size around the source point where the
point force is applied. However, the radial derivative con-
verges well with cell size. Since the (first-order) derivative
converges well, the higher-order derivatives must also con-
verge well. It can be seen that the converged radial derivative
is different from the continuum counterpart in the vicinity of
the source point. On the other hand, it asymptotically ap-
proaches the continuum plate GF at large r.

Since the low k behavior of the integrand in Eq. (6) re-
flects the long-range behavior in real space, the singularity at
k=0 can be compensated by constraining the solid in real
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FIG. 2. (Color online) Variation of deflection slope with distance
r due to a unit point force. The symbols indicate atoms.
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FIG. 3. (Color online) Variation of atomic deflection with dis-
tance r from central atom in a clamped circular graphene lattice
subjected to a uniform force field. The symbols indicate atoms. The
solid line is the continuum model result as predicted by Eq. (13).

space at large r. We consider a graphene sheet clamped over
a circular boundary of radius r, under uniform pressure p.
Under the clamped boundary condition (for all the atoms
outside of the fixed circle), we solve Eq. (1) numerically for
a force field of 1 eV/nm per atom and a (nominal) radius of
3 nm. The calculated atomic deflections are plotted against
distance r from the central atom in Fig. 3. It can be seen that
all the atoms fall on a single curve, consistent with the trans-
verse isotropy of a hexagonal lattice.

We compare the lattice theory result given in Fig. 3 with
that predicted by the continuum model. The classical solu-
tion of the deflection of a clamped circular Kirchhoff plate
under a uniform pressure p is given by®

4 272
w=ﬂ[1—<1” . (13)
64D ro

In the present case p=36.579 eV/nm?, corresponding to 1
eV/nm per atom force applied on the graphene lattice. Since
the outer boundary of the lattice is zigzag, whereas for a
Kirchhoff plate it is exactly a circle, the effective value of r
in Eq. (13) is different than that used in the lattice theory. We
find an excellent fit between the lattice and the continuum
theory results that offers the same flexural rigidity D
=0.797 eV as analytically predicted in the previous section,
and ry=3.13 nm, which is close to 3 nm, the value chosen
for the lattice calculation. This result is interesting because it
shows that by choosing an effective value of r, the ordinary
plate solution can be a very good approximation for the exact
lattice-statics solution.

IV. CONCLUSIONS

We have analyzed the fundamental deflection behavior of
a graphene lattice. We have derived an analytic expression
for the zz component of the lattice GF of graphene and its
asymptotic limit that agrees with the 2D continuum GF of a
Kirchhoff plate. This correspondence shows the elastic sta-
bility of graphene in the continuum limit and can be used for
relating its mechanical parameters to its discrete lattice pa-
rameters. It would also be useful for the multiscale modeling
of graphene. Using the force constants derived from the
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Tersoff—Brenner potential, the value of the flexural rigidity of
graphene is found to be 0.797 eV. We have also shown that
the flexural rigidity of graphene is directly related to the
coefficient of the k* term in the phonon dispersion of the
acoustic mode. Since the phonon dispersion can be measured
[see, for example, Ref. 16] from which the coefficient of the
k* term can be obtained, our formulation provides a direct
method for measuring the flexural rigidity of graphene. In
addition to the analytical results, we have presented a cell
model for calculating the lattice-statics GF directly in real
space using the continuum GF as a boundary condition. Fi-
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nally, we have shown that a clamped graphene lattice under a
uniform pressure behaves closely like an isotropic Kirchhoff
plate.
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