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Green’s Function for Multilayers with Interfacial Membrane and Flexural
Rigidities'

B. Yang’ and V. K. Tewary?

Abstract: A three-dimensional Green’s
function for a material system consisting of
anisotropic and linearly elastic planar multilayers
with interfacial membrane and flexural rigidities
has been derived. The Stroh formalism and two-
dimensional Fourier transforms are applied to
derive the general solution for each homogeneous
layer. The Green’s function for the multilayers
is then solved by imposing the surface boundary
condition, the interfacial displacement continuity
condition, and the interfacial traction discontinu-
ity condition. The last condition is given by the
membrane and bending equilibrium equations
of the interphases modeled as Kirchhoff plates.
Numerical results that demonstrate the validity
and efficiency of the formulation are presented for
the case of a stack of silicon thin films embedded
in epoxy.

Keyword: anisotropic elasticity, Fourier trans-
form, Green’s function, interface, interphase,
Kirchhoff plate, membrane, multilayers, Stroh
formalism.

1 Introduction

A special Green’s function for multilayered
anisotropic and linearly elastic solids with inter-
phases exhibiting membrane and flexural rigidi-
ties is derived by applying the Stroh formalism
and two-dimensional Fourier transforms (Ting,
1996). The Green’s function satisfies the sur-
face boundary condition, the interfacial displace-
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ment continuity condition and the interfacial trac-
tion discontinuity condition. The last condition is
given by the equilibrium equations of the inter-
phases treated as linear membranes and Kirchhoff
plates in the in-plane and the out-of-plane defor-
mation modes, respectively. This Green’s func-
tion is applicable to a planar multilayer system
where the interphases are thin but stiff compared
to the matrix layers and thus are suitably modeled
as Kirchhoff plates (Cao, Zhang and Cross, 1993;
Benveniste, 2006; Benveniste and Miloh, 2001;
Yoon, Lee, Lee, Koh, Kim and Lee, 2006).

The present work is an advance over the ear-
lier developed Green’s functions for generally
anisotropic planar bimaterials, trimaterials and
multilayers without interphase at the interfaces
(Pan and Yuan, 2000; Tewary, Wagoner and
Hirth, 1989; Yang and Pan, 2002a,b; Yang and
Tewery, 2006; Yuan, Yang and Yang, 2003).
Those Green’s functions were derived by apply-
ing the generalized Stroh formalism and two-
dimensional Fourier transforms (Ting, 1996).
They have been applied to solving several engi-
neering problems, including quantum dots (Yang
and Pan, 2003), bolted joints (Yang, Pan and
Yuan, 2003), and cracks (Yang, 2002) in com-
posite laminates/multilayers. The special Green’s
functions have been found to be very useful in
solving these engineering problems because their
application minimizes the required computational
effort. Furthermore, the solutions are accurate due
to the analytical or semi-analytical nature of the
Green’s functions. This advantage is particularly
attractive in dealing with problems with singulari-
ties such as cracks, interfacial free-edges, disloca-
tions, steps and point defects. The Green’s func-
tion as derived in the present paper offers the same
advantage in application to problems dealing with
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modern advanced materials consisting of multi-
layers exhibiting finite interfacial membrane and
flexural rigidities. It may also be applied to set up
a continuum base for Green’s function-based mul-
tiscale modeling (Tewary and Read, 2004; Yang
and Tewary, 2007) of such multilayered nanoma-
terials.

In Sec. 2, the Green’s function problem of a
multilayered anisotropic and linearly elastic solid
with interphases exhibiting membrane and flexu-
ral rigidities is formulated. In Sec. 3, the solu-
tion procedure is described. In Sec. 4, numerical
results for the case of silicon films embedded in
epoxy are presented that demonstrate the validity
and efficiency of the present formulation. In Sec.
5, conclusions are drawn.

2 Problem Formulation

Consider a laterally infinite solid made of M
planar layers of generally different materials, as
shown in Fig. 1. A Cartesian coordinate sys-
tem (x1, xp, x3) is attached to the system, with
the x3-axis perpendicular to the surfaces and inter-
faces. The materials within each layer are homo-
geneous, generally anisotropic, and linearly elas-
tic. The layers are perfectly bonded through inter-
phases that exhibit membrane and flexural rigidi-
ties. Equivalently, the system may be viewed as
a solid with embedded parallel plates with mem-
brane and flexural rigidities and of generally dis-
tinct materials buffering between adjacent plates.

X2 «— lstlayer
X1 4{ <4— st interface

X3

«— mth layer
<*— mth interface

Figure 1: A multilayered solid with interfaces ex-
hibiting membrane and flexural rigidities.
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Hooke’s law for each layer material is given by

0ij = Cijki €k, (D

where o is the stress tensor, € is the strain ten-
sor, defined by &; = %(uk,l +u; k), and Cjjyy is the
elastic stiffness matrix. In the definition of strain
€, u is the displacement, and the subscript prime
denotes the partial differentiation with respect to
the index that follows. For generally anisotropic
elastic material, C;j; consists of 21 independent
elements. The standard notation system is used in
the text. All Latin subscript indices range from
1 to 3. Later Greek subscript indices range from
1 to 2. A bold-faced symbol for a tensor implies
that its indices range from 1 to 3. Repeated in-
dices indicate the convention of summation.

Across the interphases, which are modeled as
plates of trivial thickness but exhibiting mem-
brane and flexural rigidities, the traction is dis-
continuous. Meanwhile, the displacement is con-
tinuous. The interfacial displacement continuity
condition is given by

Wy, = Uy 1atx3 = hy, (2)

where h,, is the vertical level of the mth interface
between the mth and (m+1)th layers. The inter-
facial traction discontinuity condition is given by
(Timoshenko and Woinowsky-Krieger, 1959)

(o-m-i-l - Gm)n = qum atx3 = hma (3)

where n = (0, 0, 1), and differential operator F is
given by

2 2 2
—(E]]%-FE(,(,%) _(EIZj'Eﬁﬁ)%azy
F=| —(En+Ee)ss —(Esois+Ends)
0 0

0

0 “)

Dy 2% +2H=% 4+ D, 2

X x4 ox2dy? Y oyt
The interphase membrane behavior, given by the
first two rows in Eq. (4), is assumed to be linear
and generally anisotropic. The membrane stiff-
ness constants (E11, E1a, Ea, Eg) are related to
the elastic constants of the interphase material (as-
sumed to be homogeneous) by E = Ch, where &
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is the plate thickness, and C is the reduced form
of Cjjy in Eq. (1). The initial stress in all the in-
terphases is assumed to be null. The interphase
bending behavior is assumed to be of the Kirch-
hoff type and generally anisotropic. The flexural
rigidity components (D,, D,, H) are related to the
elastic constants and thickness of the interphase
by

3

_ Cuh . H= . D,
12 12 12

)

D,

The above formulation is applicable to a mate-
rial system of trivial interphase thickness but sig-
nificant interphase moduli compared to the layer
properties.

The multilayered solid shown in Fig. 1 is sub-
jected to a point force f applied at source point X.
The differential equilibrium equations within the
buffering material are given by

0;jj+ fio (x—X) =0, ©6)

where 8(x-X) is the Dirac delta function. Sub-
stituting Eq. (1) into Eq. (6) and realizing the
symmetry of the elastic stiffness matrix C yield

Cijiiur1j+ fi6 (x —X) =0. 7

The equilibrium condition of the interphase mate-
rial was previously given in Egs. (3) and (4).

A homogeneous boundary condition consisting of
either zero displacement or zero traction in each
component is applied upon the top and bottom
surfaces of the multilayered solid (except for the
case of zero normal traction components on both
surfaces, which would result in indefinite rigid-
body motion). In addition, the radiation condi-
tion is imposed, by which the displacement field
as well as the stress field diminishes at infinity.
The solution to Eq. (7), together with the interfa-
cial conditions and the surface and radiation con-
ditions, is the Green’s function of the material sys-
tem. The Green’s function can be directly applied
to solve defect problems within this system. It can
also be applied to develop a numerical boundary
element method to solve problems with only dis-
cretization upon areas where those conditions are
altered.

(C12 +Cge) 1 D.— Cph?

3 Green’s Function Solution

In this section, the general solution to Eq. (7)
is first derived for each homogeneous layer by
applying the generalized Stroh formalism (Ting,
1996). The Green’s function for multilayers with
interfacial rigidities is then derived by imposing
the surface boundary condition, the interfacial
conditions (Egs. (2) and (3)), and the remote ra-
diation condition.

To start with, the following two-dimensional
Fourier transform (y;, y,) is applied to the in-
plane coordinates (x, x;) of a field quantity, for
instance, u;, as

ﬁi()’la)’Zax3):/ / w; (x1,%2,%3) €Y dx dxy,
®)

where e stands for the exponential function, and i
in the exponent denotes v/ —1. Thus, in the trans-
form domain, the governing equation (7) becomes

Cisaitx 33 — 1 (Cioars + Ciska) Yalik 3 — CigrpY oy p ik
= —fie" S (x5 = X3). 9)

Solving this ordinary differential equation in
terms of x3 with f being a unit force in the
Ith direction yields the general expression for
the transform-domain Green’s function in the ith
component, iij;, as

u,

bin! (R (e Bento o),

+ Ay (et w, ) (10)

v (x3) = ePoXe [ﬁfn(s) (x3)

where the subscript m indicates the quantities are
associated to the mth layer where the field point
x resides; @, is a function of y;,y, and X as well
as x3; ﬁfn(s), a seed solution, is a given function
of y;,y, and X as well as x3; and V,, and W,
are a pair of unknown functions to be determined
by the boundary and interfacial conditions. The
dummy arguments in these functions, which are
not relevant directly to the following imposition
of boundary and interfacial conditions, are omit-
ted for simplicity. In addition, the overbar denotes
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the complex conjugate, (1], 6) are the polar co-
ordinates related to (y;,y2) by y; = ncos6 and
y2 =1Nsin6, p and A as functions of 6 and C;j
are the eigenvalues and eigenvectors of the gener-
alized Stroh eigenproblem (Ting, 1996), and

<e—ipnx3> = diag [e—iplnx37e—ipznx37e—ip3nx3] .

an

Note that Eq. (10) satisfies the aforementioned
radiation condition as long as the special solution,
ﬁfn(s), satisfies it. It is also noted that a superscript
asterisk has been attached to the displacement to
dictate that it is the general/fundamental solution.
From the fundamental solution, the Green’s func-
tion due to a point force in an arbitrary direction
can be derived. One may refer to Ting (1996) for
definition of the characteristic equation and the
matrix A and derived matrices B and C in the fol-
lowing. These details are omitted here for the sake
of brevity.

By applying the constitutive law in Eq. (1),
the transform-domain in-plane stress components
§* = (6/11,6/12,6/>,) and out-of-plane stress
components t* = (6;,3, 6753, 8}53) can be derived
from the Green’s function @}, in Eq. (10) as

t, (x3) = eMeta [ffn(s) (x3)

m

(R (e ),

+B,, <e—iPm’7<X3—hm>> Wmﬂ . (12)

S5 (s2) = €% [53,7 ()
+ <5m <e‘lﬁm”("3_hm_')> Vi
Lc, <e—ipmn(x3—hm)>wm>} , (13)

where ©:*) and §:*) are derived from ;") in the
same way as t, and §}, from @i},, and matrix B and
C are derived from A and p. Note that the ma-
trix C here is different from the fourth-rank elastic

stiffness tensor C;jy; or its reduced matrix form.

The interfacial conditions, Eqs. (2) and (3), are
given in the transform domain as

i =@, | atx3 = hy,. (14)
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The corresponding interfacial traction discontinu-
ity condition is given by

(651 — 6 = F 0, at x3 = hyy, (15)

_ Enyl+Eeeys (Ern+Eee)yiy2
F=| (Exi+Ee)y1y2  Eo6yi +Eny}

0 0
0
0 (16)
Dy} +2Hy}y3 + Dyy5

Substituting Eqs. (10) and (12) in Egs. (14)
and (15) together with the boundary condition re-
sults in a system of 2M algebraic equations. This
system of equations can be solved to determine
the 2M unknown vectors V,, and W,,, (for m =
1,...,M) for all the layers, which are essentially
the solution to the Green’s function in the trans-
form domain (Yang and Pan, 2002; Yuan, Yang
and Yang, 2003).

Once the transform-domain solution is found, the
Green’s function in the physical domain can be
derived by the Fourier inverse transform. For in-
stance, the physical-domain Green’s function of
displacement can be expressed as

ui (x1,%2,X3) =

—1 - - 77 —iXgy
(27'[)2 /_m/_m”i()’la)’zax3)€ a)ady]dyz. (17)

Evaluation efficiency of the Green’s function
would depend strongly on the chosen seed so-
lution ﬁfn(s), as shown in the case of multilay-
ers without interfacial rigidities (Yang and Pan,
2002). The seed solution should be chosen such
that it takes a large part in the total function and
that its evaluation is more efficient than the evalu-
ation of the two-dimensional integral in Eq. (17).
In the present work, the following infinite-space
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. . . ~*(S
Green’s function is used for um(“‘):

i) (x3) =
in~'A (emPnia—X)) A (M_M)—l ’
x3 < X3
in_1X<e—lﬁn(x3—x3)>X—l (M_M)—" ,
x3 > X3
(18)
E*(‘”) (x3) _

__1 J—

§<e—zﬁn(x3—x3)>A (M_M)—1 , X3>X3 .
(19)

{B (e X)) A~ (M=M) ', x3<Xs

The physical-domain counterparts of Egs. (18)
and (19) can be analytically evaluated; see refs.
(Wang, 1997; Pan and Tonon, 2000; Yang, Pan
and Tewary, 2004). The inverse transform of the
remaining part due to the heterogeneity of the
material system, including the layer heterogene-
ity and the interphase heterogeneity, is carried
out numerically by a standard adaptive quadrature
scheme.

4 Numerical Results

In this section, the point force solution (i.e.,
Green’s function) is presented for a system of
a stack of parallel Si(001) films embedded in a
semi-infinite epoxy matrix. Alternatively, the ma-
terial system is viewed as multiple epoxy lay-
ers bonded/separated by parallel Si films. The
Young’s modulus and Poisson’s ratio of the
isotropic epoxy are 2.6 GPa and 0.35, respec-
tively. The elastic constants of the cubic Si films
are C]] = 165.8 GPa,C12 =639 GPa,C44 =79.6
GPa. Their moduli are a couple of orders in mag-
nitude different. The full elastic stiffness matri-
ces can be constructed based on these constants
as described in Ting (1996). The film spacing is
indicated by s, and the film thickness / is set to be
s/10. The films are modeled as plates (of trivial
thickness) and thus the previous formulation can
apply. In the following calculation, a system of 50
Si films is considered. The first Si film is buried
at a depth of s from the surface.

Such a material consisting of a compliant matrix
embedded with stiff but thin films has been a long-
standing difficulty/challenge to numerical model-
ing. The difficulty lies in that while the film re-
straining effect on in-plane deformation is signif-
icant due to the stiff moduli, its effect on out-
of-plane deflection may be small due to its cu-
bic power dependence on thickness compared to
the linear dependence in the former. The thin film
may bend fairly freely but be severely restrained
from in-plane deformation. An often adopted ap-
proach to such films as being unstretchable can
account for the in-plane restraining but not the
flexural bending effect.

Before moving on to the discussion of the numer-
ical results, it may be worth mentioning that the
elastic constants C;; of the isotropic epoxy is arti-
ficially skewed a little from the full isotropy. This
is necessarily done in order to apply the previous
formulation of generally anisotropic elasticity to
this case of isotropy. Otherwise, special treatment
would be needed for this degenerated case (Ting,
1996), which is not attempted in the present work.
It was checked that the extent of anisotropy intro-
duced affects little the numerical results.

For the purpose of demonstration, a point force of
one unit of Egs?, where Eg = 1 GPa, is applied on
the otherwise traction-free top surface at (x;=0,
xp=0, x3=0). The force is directed along either x|
or x3 axis. The resulting displacement and stress
are evaluated along a line (x;, x,=0, x3=s) on both
sides of the first interphase. The numerical results
(of nonzero components) are plotted in Figs. 2-5.
The solutions in the absence of films are included
for comparison. Figures 2 and 3 are for the case
of a point force being applied along the x; axis.
Figures 4 and 5 are for the case of a point force
being applied along the x3 axis.

From Figs. 2 and 4, it can be seen that the dis-
placement is identical across the interphase plate,
which is consistent with the interfacial displace-
ment continuity condition (Eq. (2)) imposed in
the formulation in Sec. 2. Meanwhile, from Figs.
3 and 5, it can be seen that all the stress com-
ponents are discontinuous across the interfacial
plate, as a result of the imposed interphase mem-
brane and plate conditions (Eq. (3)). Recall that
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Figure 2: Variation of displacements along a line (x1, 0, s) due to a unit point force applied along the x; axis
at (0,0,0) on the top surface. The triangle symbol denotes a quantity on the near force side of an interface,
while the circular symbol denotes the quantity on the other side of the interface. The dashed line denotes
the solution in the absence of all films.
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Figure 3: Variation of stresses along a line (x1, 0, s) due to a unit point force applied along the x; axis at
(0,0,0) on the top surface. The triangle symbol denotes a quantity on the near force side of an interface,
while the circular symbol denotes the quantity on the other side of the interface. The dashed line denotes
the solution in the absence of all films.
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Figure 4: Variation of displacements along a line (x1, 0, s) due to a unit point force applied along the x3 axis
at (0,0,0) on the top surface. The triangle symbol denotes a quantity on the near force side of an interface,
while the circular symbol denotes the quantity on the other side of the interface. The dashed line denotes
the solution in the absence of all films.
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Figure 5: Variation of stresses along a line (x;, 0, #) due to a unit point force applied along the x3 axis at
(0,0,0) on the top surface. The triangle symbol denotes a quantity on the near force side of an interface,
while the circular symbol denotes the quantity on the other side of the interface. The dashed line denotes
the solution in the absence of all films.
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the Si film moduli are a couple of orders of magni-
tude greater than that of the epoxy. As can be seen
by comparing of (a) and (b) for the lateral and
normal displacement components, respectively, in
both Figs. 2 and 4, the presence of the films effec-
tively restrains the in-plane deformation. In con-
trast, its restraining effect against the out-of-plane
deformation is much less effective due to the rel-
atively small flexural rigidity of the Si-film which
is proportional to the third power of film thick-
ness. This result signifies the present approach
to a solid with embedded relatively stiff but thin
films, rather than assuming the films completely
rigid.

5 Conclusions

A Green’s function for a material system consist-
ing of a linear elastic matrix material with embed-
ded planar multilayers with interfacial membrane
and flexural rigidities has been derived by ap-
plying the generalized Stroh formalism and two-
dimensional Fourier transforms. The individ-
ual layers are modeled as generally anisotropic
and linearly elastic. The interphase material
is modeled as an anisotropic linear membrane
with Kirchhoff-type bending characterisitcs. The
Green’s function satisfies the interfacial displace-
ment continuity condition, the interfacial mem-
brane and bending equilibrium equations, and a
homogeneous boundary condition on the top and
bottom surfaces. It can be applied to accurately
model a stack of plates or thin films embedded in
a relatively soft matrix, and layered nanomaterials
with high interface-to-volume ratio. It can also be
applied to model graphite, where the individual
graphene sheets are treated as plates and the Van
der Waals interaction is treated as a buffering ma-
terial between the plates. In particular, the case
of a stack of parallel Si films in an epoxy ma-
trix is numerically examined. The high in-plane
membrane rigidity but finite flexural rigidity of
the films whose elastic constants are about two or-
ders of magnitude greater than that of the epoxy
matrix are accurately represented. The numeri-
cal results are consistent with the imposed condi-
tions, demonstrating the validity and efficiency of
the present formulation.
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