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Abstract— In this work we present a preliminary study for the  
determination of the uncertainty on the frequency in the time 
measurements [1, 2]. The first part of this paper is dedicated to 
the theoretical study of the frequency uncertainty applying the 
law of the propagation of uncertainty and the spectral analysis 
approach. In the second part the theoretical results are 
compared with simulated results. In the final part we use real 
clock data and time transfer data to verify the analytical results. 
An accompanying paper in this proceedings “Experimental 
Analysis of Frequency Transfer Uncertainty” by Thomas E. 
Parker and Gianna Panfilo presents an experimental analysis of 
frequency transfer uncertainty [3]. 

I. INTRODUCTION  
This paper presents theoretical results for estimating the 

uncertainty of a frequency measurement between remote 
standards [1, 2, 3]. Remote frequency standards are commonly 
compared using time links such as GPS common-view, GPS 
carrier phase and Two-Way Satellite Time and Frequency 
Transfer (TWSTFT). In these cases, an evaluation of the 
frequency uncertainty introduced by time difference 
measurements involved in the remote links is required. The 
same requirement applies to the calibration of the rate of TAI 
by a primary frequency standard, as the TAI calculation 
involves a network of time links. In particular, the uncertainty 
on the frequency comparison introduced by the time link is 
calculated in the typical cases of white phase noise, flicker 
phase noise and white frequency noise affecting the time 
difference data [4]. The main purpose of this work is to 
evaluate the autocorrelation functions for all types of noise 
considered. To obtain the frequency uncertainty we used two 
different methods: 

1. The first method is based on the law of uncertainty 
propagation [5], applied to the average frequency calculated 
in a time interval between two time difference 
measurements. In this case we obtain the autocorrelation 
functions by means the stochastic processes used to 
simulate the clock deviation [6, 7]. 

2. The second is based on the knowledge of the 
autocorrelation functions given by spectral analysis [8].  

By the firs t method we can calculate the uncertainty on the 
frequency comparison when link data are affected by white 
phase noise and white frequency noise; by the second method 
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we can also obtain the frequency uncertainty for flicker phase 
noise. All analytical results are compared with numerical 
simulations (Monte-Carlo method). Clock data from an 
HP5071 cesium standards (for white frequency noise) and 
time transfer data obtained by a double difference process, 
such as differencing the time series UTC(NIST)–UTC(PTB) 
obtained by GPS common-view with UTC(NIST)–UTC(PTB) 
obtained by TWSTFT (for white phase and flicker phase 
noises) are then used to test the analytical results. Results of 
this theoretical analysis show that the Allan deviation is not 
always an accurate estimator of frequency transfer uncertainty 
when time difference data are involved. 

II. DEFINITIONS 
The instantaneous output voltage [9, 10] of a precision 

oscillator can be expressed as 

( ) ( )( ) ( )( )tttVtV φπνε ++= 00 2sin  

where V0 is the nominal peak voltage amplitude, ε(t) is the 
deviation from the nominal amplitude, ν0 is the nominal 
frequency, and ( )tφ  is the phase deviation from the nominal 
phase 2πν0t. Frequency instability of a precision oscillator is 
defined in terms of the instantaneous, normalized frequency 
deviation, y(t), as follows: 

( ) ( ) ( )
00

0

2πν
φ

ν
νν ttty =

−
=  

where ν(t) is the instantaneous frequency (time derivative 
of the phase divided by 2π), and  

( ) ( )
dt

tdt φφ =  . 

Phase instability, defined in terms of the phase deviation 
( )tφ , can also be expressed in units of time, as  

( ) ( )
02πν

φ ttx = . 

With this definition, the instantaneous, normalized 
frequency deviation is 

( ) ( )
dt

tdxty = . 
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In particular we define the mean fractional frequency on 
the time interval τ as reported: 

( ) ( ) ( )
τ

τ−−= txtxty      (1) 

III. THEORETICAL ANALYSIS 
We want to obtain the uncertainty on (1) and to obtain it 

we apply two different methods, the first based on the law of 
the propagation of the uncertainty using the knowledge of the 
stochastic processes, the second based on the spectral analysis.  

A. Law of the prpagation uncertainty 
Considering the relation between the phase and the 

frequency (1) here reported it is possible to apply the law of 
the propagation uncertainty [5] on ( )ty , and we obtain: 

( )
( ) ( ) ( )( )

2
,

22
)(2 2

τ
ττ −− −+

= txtxtxtx
ty

uuu
u .        (2) 

To apply the relation (2) we have to know the variance and 
covariance terms reported. 

The covariance term [6] for a random process X(t) is 
defined by: 

  
( ) ( )( )

( ) ( )( )( ) ( ) ( )( )( )( )2211

21))(),(( ,
21

tXEtXtXEtXE

tXtXCovu tXtX

−−=

==
      (3) 

but in literature often [7] it speaks about the 
autocorrelation function given by : 

             ( ) ( ) ( )( )2121, tXtXEttRX =       (4) 

where t1 and t2 are arbitrary sampling times and the 
functional E(·) is the expectation value.  

The functions (3) and (4) are identical for zero mean 
processes.  In the case considered in this work the processes 
are, effectively with zero mean so we consider indifferently 
both of them . The autocorrelation  function tells how well the 
process is correlated with itself at two different times. If the 
process is stationary the autocorrelation functions (4) depends 
only on the time difference τ=t2-t1. Thus, RX reduces to a 
function of just the time difference variable τ, that is, 

    ( ) ( ) ( )( )ττ −= tXtXERX          (5) 

where t1 is now denoted as just t and t2 is (t-τ). Stationarity 
assures us that the expectation is not dependent on t. For 
almost all stationary data, the average values computed over 
the ensemble at time t1 will equal the corresponding average 
values computed over time history record (Ergodic theorem). 

To know the variance and covariance terms we have to 
know the stochastic processes used to model the noises [11, 
12]. For this reason we can obtain the uncertainty on the 
frequency in the case of white phase noise and white 
frequency noise. To obtain the frequency uncertainty for the 
flicker phase noise we use the following method. 

B. Spectral Analysis 
The uncertainty on (1) can be expressed considering the 

link between autocorrelation functions and the spectral density 
function by the inverse Fourier transform [13, 14]. The 
uncertainty can be obtained using the expression (5): 

( )
( ) ( ) ( ) ( )( ) ( )
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where ( ) ( ) ( )ττ ααα RRI −= 0 . In this expression we use the 
functions Iα(τ) because is a less divergent function instead of 
Rα(τ). Also the expression of the Allan variance can be 
obtained using the functions Iα(τ): 

  ( ) ( ) ( )
2

0

00
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2 24
τ

τττσ αα II
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Normalizing the expression (6) of the uncertainty respect 
to the Allan Variance (7) we obtain the final relation for the 
uncertainty on the frequency: 
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Corresponding to different values of α we have different 
noises: for α=-2 the random walk frequency, for α=-1 the 
flicker frequency, for α=0 the white frequency, for α=1 the 
flicker phase and for α=2 the white phase. We consider only 
the case of the flicker phase noise but it’s possible to find the 
expression for Iα(τ) for all different noises in [8].  

IV. ANALYTICAL RESULTS 
Following the methods presented in the previous section 

we obtain the analytical expressions for the uncertainty on the 
frequency in the time transfer link for the white phase noise, 
white frequency noise and flicker phase noise expressed in 
terms of the Allan variance.  

A. White phase noise 
White phase noise can be model by the random numbers 

independent normally distributed X(t) ~ N(0,σ2) where σ2 is 
the variance of this process and the mean is equal to zero. The 
covariance in the case of the white phase noise is equal to zero 
and the relation between the Allan variance and σ2 is given by 

the following relation ( )
3

2
00

2
2 ττσ

σ y=  . 

In this case the uncertainty on the frequency, applying (2) 
is given by: 

( )
( )
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Considering ττ =0  we obtain:  ( ) ( )τσ 22

3
2

ytyu = , where 

( )tyu  is the standard deviation of the fractional frequency. 
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B. White frequency noise 
To model the white frequency on the phase we use the 

Brownian motion (or Wiener process). Here we report a 
briefly description of this process for more details can be seen 
[6, 11]. The Wiener process indicated by W(t) is defined as a 
Gaussian Markov process with independent increments 
whose basic parameters are the drift µ and the diffusion 
coefficient σ [6, 11]. Considering the definition of the Wiener 
process, given by the solution of stochastic differential 
equation: 

( )tdWdtdX t σµ += .          (10) 
the solution, considering W(0)=0 of (10) [12] can be written: 

( )tWtX t σµ +=         (11) 
at any instant the standard Wiener process is described by a 
Gaussian distribution: 

( )ttNX t
2,~ σµ . 

In particular we have that the variance of this process is 
Var(Xt)=σ2t and the covariance is Cov(Xt, Xs)=σ2 min(t,s). 
The diffusion coefficient σ2 is linked to Allan variance      
[16, 17] by the reported relation: ( ) 00

22 ττσσ y= . Therefore, 
considering the values for the variance and the covariance for 
the white frequency on the phase the uncertainty on the 
frequency applying (2) in the case of µ=0 is: 

( )
( ) ( ) ( )

τ
ττσ

τ
σ

τ
τστσσ 00

22

2

222
2 2 y

ty
tttu ==−−−+=       (12) 

In this case for τ0 = τ we have:  ( ) ( )τσ 22
ytyu = . 

C. Flicker phase noise 
To obtain the uncertainty on the frequency for the flicker 
phase noise we use the relation (8). For the flicker phase 
noise the function Iα(τ) is given by [8]: 

( ) ( )

( )
( ) ( )( )τωτωγ

π

π
τ
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ετ

nn
h
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=
−
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where the dependence on ωn is given by the divergence in 
infinity of the integral, the Cosine Integrals functions [18] 
which an standard expansion is reported: 

( ) ( ) ( )du
u

uxx
x

∫ −−+=
0

cos1lnintcos γ  and γ is the Euler’s 

constant equal to 0.57721... 
In this case the uncertainty on the frequency, considering the 
denominator defined by: 

( ) ( ) ( ) ( )000 2intcosintcos42lnln33 τωτωτωγ nnnden +−−+=
 
is: 
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in the case of ττ =0  this result is: 

( )
( ) ( )( ) ( )τστωτωγ 2002 intcosln2

y
nn

ty den
u −+=  

In this case the uncertainty on the frequency depends on ωn. 
The ωn parameter depends on the sampling rate and it is 
possible to evaluate its numerical value using the analytical 
expression for the Allan Variance in the case of flicker phase 
noise [8- 10]. 
 

V. SIMULATION RESULTS 
In this section we present a comparison between the results 

for the frequency uncertainty on the time transfer obtained 
with the simulation techniques and the analytical results 
presented in the previous section. We use two different 
methods to simulate the clock deviation behavior. The first is 
based on the use of the stochastic processes, the second on the 
use of the fractionally differences. Many details can be found 
in [12] and [19, 20]. 

The simulation starts on the phase data, after that the 
frequency data are obtained following (1) and the standard 
deviation on each time is calculated to obtain the uncertainty. 

We have considered the case t=τ, i.e. the length t of the 
time series is used to obtain the frequency value. 

A. White pahse noise 
Considering a time series affected by white phase noise 

with the Allan variance equal to ( ) dayy /107 15−∗=τσ  and τ in 
seconds we obtain the result shown in Figure 1. In this case a 
log-log plot is reported with τ in seconds. The red line shows 
the simulation results while the blue line the theoretical results 
obtained in (9). In this case we have N=500 simulations 
because the length of the simulation is equal to M=100000 so 
we had a computational problem with the matrix being too 
large. We can observe the good agreement between the 
simulations and the analytical results.  
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Figure 1.  The theoretical result (blue line) for the uncertainty on the 
frequency for the White phase noise is compared with the simulation results 

(red star) with ( ) daysy /107 15−∗=τσ . 
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B. White frequency noise 
Considering a time series affected by a white frequency 

noise with the Allan variance equal to ( ) dayy /104 16−∗=τσ  
and τ in seconds we obtain the result shown in Figure 2. In this 
case a log-log plot is reported with τ in seconds. The red line 
shows the simulation results while the blue line the theoretical 
results obtained in (12). In this case we have used N=500 
simulations because the length of the simulation is equal to 
M=100000 so we had a computational problem with the 
matrix being too large. We can observe the good agreement 
between the simulations and the analytical results. 
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Figure 2.  The theoretical results (blue line) for the uncertainty on the 
frequency for the White frequency noise is compared with the simulation 

results (red star) with ( ) daysy /104 16−∗=τσ    

C. Flicker phase noise 
Considering a time series affected by flicker phase noise 

with the Allan variance equal to ( ) dayy /105.7 15−∗=τσ  and τ 
in seconds we obtain the results reported in Figure 3. In this 
case the range of ωn parameter, given by the analytical 
relation of the Allan Variance in the case of flicker phase 
noise [8-10], is approximately from 3/τ0 to 4/τ0 where 
τ0=86400 s. In this case a log-log plot is reported with τ in 
seconds. The red line shows the simulation results while the 
blue line the theoretical results obtained in (14). Also in this 
case we can observe the good agreement between the 
simulations and the analytical results.  

106 10810-18

10-17

10-16

10-15

10-14

10-13

τ [s]

U
nc

er
ta

in
ty

 
Figure 3.  The theoretical results (blue line) for the uncertainty on the 

frequency for the flicker phase noise is compared with the simulation results 
(red line) with ( ) daysy /105.7 15−∗=τσ . 

VI. THE EXPERIMENTAL DATA 
In this part we compared the results about the uncertainty 

on the frequency obtained with real data (calculated from a 
standard deviation) with the theoretical results presented in 
Section 4 (from the Allan deviation). We consider three 
different data sets obtained from (1) a cesium clock with 
respect to UTC(NIST), (2) the TWSTFT-GPS CV double 
differences for the NIST-NPL and (3) similar NIST-PTB 
data. In the case of the cesium clock data it is  dominated by 
white frequency noise, in the case of time transfer data we 
have the contribution of the flicker phase and the white phase 
noises. 

 
A.  White frequency 

In this part we compare the results obtained using the 
cesium data with respect to UTC(NIST) time scale with the 
theoretical analysis obtained in (12). The data are reported in 
Figure 4 with the frequency offset removed.  
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Figure 4.  The HP5071-UTC(NIST) data for about 100 days. 
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We considered 100 days of data with the interval of 12 
minutes. The Allan variance of the data shows a clear white 
frequency noise with ( ) 1310*46.2 −=τσ y  for τ0 =12 minutes. 
We can compare the results with the theoretical results 
considered in (12). The stability analysis for of the HP5071-
UTC(NIST) is reported in Figure 5. 

 

 

Figure 5.  The stability analysis of the HP5071-UTC(NIST) 

Using these data we can obtain an experimental 
evaluation for the frequency uncertainty. The results are 
reported in Figure 6 considering each time series during 4 
hours. We can also choose a longer data set but the number of 
the data is too small. In this case the theoretical analysis 
agrees with the real data analysis. 
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Figure 6.  The uncertainty on the frequency obtained from the cesium clock 

data (red stars) and the theoretical results (blue line) are compared. 

 
B. White phase noise and flicker phase noise 

To estimate the uncertainty on the frequency with the 
flicker noise we have considered the TWSTFT-GPS CV 
double differences for the NIST-NPL and NIST-PTB data. In 
this case it is clear from the modified Allan Variance that the 

data are affected by the white phase noise until 1 day and the 
flicker phase noise after. The data related to NIST-NPL (blue 
line) and NIST-PTB (violet line) are reported in Figure 7.  

 

-25

-20

-15

-10

-5

0

5

10

15

53700 53750 53800 53850 53900 53950 54000 54050

MJD

N
an
os
ec
on
ds

NIST-NPL
NIST-PTB

 
Figure 7.  The data related to NIST-NPL (blue line) and NIST-PTB (violet 

line) TWSTFT-GPS CV are reported 

In Figure 8 we report the modified Allan variance related 
to the NIST-PTB data to show the different noise 
components.  

 
Figure 8.  The modified Allan variance for NIST-PTB TWSTFT-GPS CV 

data. 

To evaluate the uncertainty on the frequency we have to 
consider two components of the noise: the white phase noise 
with the Allan deviation equal to ( ) 13

, 10*7.3 −=τσ WPNy  for 
τ0 =7200 s and the presupposed flicker phase noise with the 
Allan deviation about equal to ( ) 13

, 10*2.1 −=τσ FPNy  for      
τ0 =7200 s. In this case the theoretical uncertainty is given by 
the combination of these two noises considered independently: 

( )
( ) ( )( ) ( ) ( )







 +
−+

= 0
2

,0
2

,2

2
02

3
2intcosln2 τστστωτωγ

τ
τ

WPNyFPNy
nn

ty den
u

 
where:

( ) ( ) ( ) ( )000 2intcosintcos42lnln33 τωτωτωγ nnnden +−−+= . 
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Considering the experimental data we obtain the 
uncertainty on the frequency and we compare the result with 
the theoretical expression reported here.  

In this case the range of ωn parameter, given by the 
analytical relation of the Allan Variance in the case of flicker 
phase noise [8-10], is approximately from 3/τ0 to 4/τ0 where 
τ0=7200 s. 

Figure 9 shows the uncertainty on the frequency obtained 
with the real data (red stars) related to the double differences 
NIST-PTB, the contribution of the flicker phase noise (blue 
line), the white phase noise (green line) separately, and both of 
them combined (black line). Figure 10 shows the same results 
but using the NIST-NPL data. 
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Figure 9.  The frequency uncertainty obtained from NIST-PTB data (red 
stars) and from the theoretical results for flicker phase noise (blue line), 
white phase noise (green line) and both of them (black line) are reported 
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Figure 10.  The frequency uncertainty obtained from the NIST-NPL data (red 

stars) and from the theoretical analyis for flicker phase noise (blue line), 
white phase noise (green line) and both of them (black line) are reported 
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