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A computationally efficient hybrid Green’s function �GF� technique is developed for multiscale modeling of
point defects in a trilayer lattice system that links seamlessly the length scales from lattice �subnanometers� to
continuum �bulk�. The model accounts for the discrete structure of the lattice including nonlinear effects at the
atomistic level and full elastic anisotropy at the continuum level. The model is applied to calculate the discrete
core structure of point defects �vacancies and substitutional impurities� in Si-Ge�001� quantum wells �QWs�
that are of contemporary technological interest. Numerical results are presented for the short range and long
range lattice distortions and strains in the lattice caused by the defects and their formation energy and Kanzaki
forces that are basic characteristics of the defects. The continuum and the lattice GFs of the material system are
used to link the different length scales, which enables us to model the point defects and extended defects such
as the quantum well in a unified formalism. Nonlinear effects in the core of the point defects are taken into
account by using an iterative scheme. The Tersoff potential is used to set up the lattice structure, compute the
unrelaxed forces and force constants in the lattice, and derive the elastic constants required for the continuum
GF. It is found that the overall elastic properties of the material and the properties of defects vary considerably
when the material is strained from the bulk to the QW state. This change in the defect properties is very
significant and can provide a characteristic signature of the defect. For example, in the case of a single vacancy
in Ge, the strain reverses the sign of the relaxation volume. It is also found that the defect properties, such as
the defect core structures, change abruptly across a Ge/Si interface. The transition occurs over a region
extending from two to four lattice constants, depending upon the defect species.
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I. INTRODUCTION

We describe a hybrid Green’s function method for multi-
scale modeling of point defects such as vacancies and sub-
stitutional impurity atoms in a semiconductor lattice contain-
ing a quantum well �QW�. We apply our model to calculate
the core structure of the point defects in the presence of a
QW and their strain fields. We also calculate the changes in
the interplanar spacing, the lattice constant, and the effective
elastic constants of the material caused by the defects. These
results should be useful in the design of devices and for
study of their mechanical properties. Knowledge of the core
structure of defects is also needed for calculation of elec-
tronic wave functions in order to model the electronic struc-
ture of the defect. In addition, we calculate the Kanzaki
force1 and the formation energy of the defects. These are
important parameters for characterization of the defects and
can be related to measurable quantities such as relaxation
volume, surface stress, and defect diffusion coefficient.2 Our
model includes the nonlinear effects in the core and fully
accounts for the elastic anisotropy.

Currently there is a strong technological interest in QWs
because of their potential application in the next generation
of electronic and photonic devices. In general, point defects
are of great importance in the engineering design of elec-
tronic materials and devices.3,4 Point defects are lattice de-
fects and affect mechanical as well as electronic characteris-
tics of devices. They may be desirable or undesirable. For
example, point defects are introduced deliberately into lat-
tices to design tailor-made materials with specific properties.
They may also emerge naturally when the material is in ser-

vice. They may act as carrier traps or recombination centers,
undermining the performance of the devices. They may coa-
lesce to form major defects such as impurity clusters, cracks
and voids that are detrimental to the structural integrity of
devices.

The effect of point defects is even more significant in
nanostructured devices. This is because the range of interac-
tion between the point defects and extended defects such as
surfaces and interfaces is comparable to the dimensions of
the device. The electronic and photonic properties of QWs
are particularly sensitive to the presence of point defects. A
mathematical model is needed to calculate the changes in the
mechanical and electronic properties of the material caused
by the presence of a QW and the point defects, and also to
identify the parameters that can be used to characterize and
simulate the defects. Hence it is important to develop robust
and reliable techniques for mathematical modeling of point
defects in the presence of a QW in a semiconductor.

A semiconductor containing a QW can be visualized as a
trilayer material system consisting of a thin layer of a semi-
conductor sandwiched between two layers of the host. The
thickness of a QW is of nanometer order but its lateral di-
mensions can be macroscopic. Hence it can be regarded as
an extended layer defect in the host semiconductor, in con-
trast to a point defect, which is a zero-dimensional micro-
scopic defect. It is therefore necessary to use a multiscale
formulation that can model a point defect as well as a QW in
the same formalism in a unified and consistent manner.

The properties of point defects in bulk materials can be
calculated by using the continuum model,5,6 which is reliable
only in the far field region. Near field properties or the core
structure of a defect in a homogeneous bulk material can be
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calculated from first principles or by using a lattice theory
based upon an empirical interatomic potential. However,
these approaches become computationally very difficult
when extended defects such as surfaces, interfaces, or QWs
are present in addition to point defects. This is because the
problem then involves multiple length scales ranging from
subnanometers �interatomic spacing� to nanometers and to
continuum �bulk�. This is, presumably, the reason why in
spite of a vast amount of literature on point defects in bulk
materials, no work has been reported on modeling of point
defects in QW systems.

Theoretically, first-principles calculations can provide ac-
curate results for the defect core structure.7,8 However, this
class of methods is computationally limited to very small
models because of the necessity to include a large number of
degrees of freedom in the electronic wave functions. Another
approach for modeling a point defect is the molecular dy-
namics �MD� simulation, in which the atoms are modeled as
pointlike particles in an empirical potential field.9,10 The mo-
lecular dynamics �MD� simulation can tackle a much larger
system than the first-principles calculations, but is limited
because of the necessity to use a small time step, whereas a
typical defect process involves much longer time scales.

Green’s function method is a powerful technique which is
applicable to continuum5,6 as well as lattice models.11 The
static properties of lattice defects can be efficiently modeled
by using the lattice statics Green’s function �LSGF�.12 The
LSGF is the zero frequency limit of the phonon Green’s
function.11 Hence the techniques developed for calculation of
the phonon Green’s functions,11 such as the Dyson equation,
can be used for the LSGF. In some papers,13,14 solution of the
Dyson equation has been avoided by an elegant use of flex-
ible boundary conditions, but it is not clear a priori how
much error is introduced by this approximation. In its origi-
nal form,12 the LSGF method is limited to localized simple
defects in otherwise perfect lattices within the harmonic ap-
proximation. Its multiscale version15 has been used to model
a point defect and a free surface. However, this method is not
applicable to systems where the point defect is close to the
surface and if the nonlinear effects are significant.

Recently, Yang and Tewary16 have developed a hybrid
multiscale LSGF method which is applicable even if the de-
fect is close to the surface. In this approach, the LSGF is
calculated numerically for a supercell of atoms under a half-
space CGF boundary condition. If the cell is open at the
surface, the force-free boundary condition is imposed on the
free-boundary atoms instead of the CGF boundary condition.
The technique links the multiple scales seamlessly by ex-
ploiting the asymptotic approach of LSGF to CGF12,15 at
large distances. This makes it possible to model the point
defects at different scales in a unified way by using appro-
priately dispersed forces, which forms the basis of our mul-
tiscale formulation in this paper.

To characterize the mechanical behavior of point defects,
two parameters are particularly useful: formation energy and
the Kanzaki force. Formation energy of a defect is a well-
known parameter. It is defined as the change in the energy of
the solid due to the introduction of the defect. It partially
determines the defect diffusion coefficient, and is required in
a phenomenological simulation of defect diffusion.2 The

Kanzaki force1 is an equivalent force �system� to the defect
to cause the same displacement field in a reference lattice as
the defect to cause in the defect lattice. It consists of two
terms: �a� a mechanical force, and �b� a force arising due to
the lattice relaxation. In the harmonic approximation, part �b�
is simply equal to the change in force constants times the
associated lattice distortion. Nonlinear effects can also be
included in the Kanzaki force. Although the Kanzaki force
was introduced about 50 years ago, it is only in the past few
years that its usefulness has been recognized15 for multiscale
modeling. It contains all the discrete lattice effects near the
defect and, as we show here, it provides a characteristic sig-
nature of the defect that can be used to characterize the de-
fect. Both of the above defect parameters, formation energy
and the Kanzaki force, can be extracted from the defect core
structure.

We also show another very useful property of the Kanzaki
force. It can be used to model a defect as an equivalent
“inclusion” in the continuum theory. In this approach a de-
fect is treated as an effective inclusion that causes no change
in the force constants, but exerts forces only on the atoms of
the reference lattice. The effects of the discrete core structure
of the defect and the change in the force constants are in-
cluded in the Kanzaki force. The Kanzaki force can be used
to define a series of force and force multipole tensors applied
at the defect center position. The moments of the force mul-
tipole tensors can be identified with the well-known eigen-
parameters used in the continuum model. This provides a
convenient basis for using the conventional continuum mod-
els of lattice defects,5,6 while still retaining the discrete lat-
tice effects in the core of the defect.

An important input to all the lattice calculations is the
interatomic potential. All atomistic defect calculations are
based upon minimizing the free enthalpy of the solid that
consists of an ionic part which gives the elastic contribution,
and an electronic part. These are, of course, coupled. When a
defect such as a vacancy is introduced in the lattice, the
relaxed configuration depends upon the charge states of the
defect.17 The same applies to extended defects such as a
quantum dot or a QW. A rigorous calculation of the relaxed
configuration would require an ab intio quantum mechanical
modeling of the coupled ion-electron system in the whole
lattice. Such calculations, as discussed earlier in this section,
are limited to very small model crystallites consisting of only
a few hundred atoms. At the other extreme is the continuum
model, in which the electron effects are totally neglected.
The continuum model reproduces the bulk mechanical char-
acteristics of the defect and has been extensively used for a
long time. It has the advantage of computational convenience
but obviously has a limited validity.

The intermediate approach is to use models in which the
effect of the electrons is included in an empirical and phe-
nomenological manner by using an effecting interatomic po-
tential. This approximation has been used in almost all
lattice-statics/lattice-dynamics/molecular-dynamics defect
calculations, including the present paper. See, for example,
the review paper by Stangl et al.18 and the monographs by
Harrison19 and Bimberg et al.20 for application of phenom-
enological potentials to semiconductors. Such model poten-
tials have been used in many atomistic calculations in Ge/Si
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and other semiconductors using molecular dynamics. See,
for example, the papers by Makeev and Madhukar,21 and
Swadener et al.,22 which also give other references.

As discussed by Harrison �Ref. 19, Chap. 9�, the inherent
assumptions in all these calculations are: �i� tight binding
approximation which allows us to treat atoms as separate
entities, �ii� adiabatic approximation which assumes that the
electrons respond adiabatically to the ionic displacements,
and �iii� the independent electron approximation. These as-
sumptions result into a separation of the crystal Hamiltonian
into a part that gives the relaxation energy of the lattice and
another part that gives the energy levels of the electrons. The
effect of the electrons on the relaxation energy of the defect
is included in an effective model potential. Such models23–25

give correct values for many observable parameters includ-
ing the energy of vacancies and other defects, which lends
credence to the validity of the model potential. The Tersoff
potential23 that we use in this paper belongs to this class of
models. Some other potentials are available in the
literature,18–20 which all have comparable advantages. We
have used the Tersoff potential because of its computational
convenience in dealing with group IV multi-component sys-
tems. It reproduces the correct energy of the defect and has
been widely used in defect calculations on covalent solids.

In the present study, we apply our hybrid Green’s function
�GF� method16 to study point defects in Si-Ge quantum wells
�QWs�, a technologically important nanostructure.19 In Sec.
II, the GF method of lattice defects is summarized. Nonlinear
effects in the core of a defect are taken into account by using
an iterative process, similar to the scheme discussed in pre-
vious papers.26,27 In Sec. III, the reference system of Si-Ge
QWs is set up based upon the Tersoff potential of C, Si, and
Ge atoms.23 The Si and Ge lattices retain cubic anisotropy
�cubic symmetry with elastic anisotropy� when relaxed, but
develop tetragonal anisotropy when strained in their QW
states. Then the hybrid GF16 is calculated using the supercell
model under a corresponding CGF boundary condition.28,29

In Sec. IV, the core structures of following point defects
in Si-Ge QWs are calculated: single vacancy, substitutional
C atom, substitutional Si atom in the Ge lattice, and substi-
tutional Ge atom in the Si lattice. The Kanzaki force and the
formation energy of these defects are found to differ consid-
erably when the lattice is strained from the relaxed to the
QW state. Some components of the Kanzaki force dipole
tensor of a single vacancy in Ge matrix are found to switch
sign in this course. This is explained by the fact that the
atoms surrounding a vacancy are displaced outwards when
the lattice is relaxed, but inwards �in lateral directions� when
it is strained. This suggests a buckling-type bifurcation in the
defect core with the host lattice strain as the parameter. Fi-
nally, the defect properties are examined in the strained QW
structures. As expected, they vary sharply across a Si/Ge
interface. The transition occurs over a distance ranging from
two to four lattice constants, depending on the defect species.
Conclusions are presented in Sec. V.

II. GREEN’S FUNCTION METHOD FOR MODELING
LATTICE DEFECTS

Consider a generally heterogeneous reference lattice sys-
tem as schematically shown in Fig. 1�a�. It is relaxed and

may contain different species of atoms. The corresponding
configuration is indicated by XR, and a defect lattice system
is created by introducing point defects such as vacancies,
substitutional impurity atoms, and interstitials to the refer-
ence system. Our aim is to solve for the fully relaxed con-
figuration XF of the defect system, as shown in Fig. 1�c�. An
intermediate �partially relaxed� defect lattice, X, is intro-
duced, as shown in Fig. 1�b�. This is necessary in order to
take into account nonlinear effects in an iterative scheme.
The lattice theory11,12 is summarized below.

Within the theory of lattice statics, the equilibrium of a
defect system requires that the interatomic potential energy V
is minimized as given by

�V�x� = 0. �1�

One may expand the potential around the partially relaxed
configuration X of the defect system in Fig. 1�b� in the Tay-
lor series as

V�x� = V�X� + � �V

�xi
�a��

X

ui
�a� +

1

2
� �2V

�xi
�a��xj

�b��
X

ui
�a�uj

�b�

+ o�ui
�a�uj

�b�uk
�c�� , �2�

where the subscripts indicate components of a tensor, the
superscripts indicate the attachment to a certain atom, u is
the atomic displacement, defined by u=x−X, and repeated
subscripts �and superscripts� imply the conventional summa-
tion over their range. Approximating the potential up to the
quadratic term and substituting it into Eq. �1� yields

�ij
�ab�uj

�b� = f i
�a�, �3�

where the force f and force constants � are defined by

f i
�a� � − � �V

�xi
�a��

X

and �ij
�ab� � � �2V

�xi
�a��xj

�b��
X

. �4�

A solution for the atomic displacement field u of the de-
fect system measured from X can be obtained by inverting
the force-constant matrix � as

uj
�b� = ��ij

�ab��−1f i
�a�. �5�

Defining Lji
�ba����ij

�ab��−1, the above equation is rewritten as

FIG. 1. �a� Reference lattice XR; �b� partially relaxed defect
lattice X; �c� fully relaxed defect lattice XF. The solid circles rep-
resent atoms while the open ones represent the reference lattice
sites. The solid triangle represents an impurity atom or a vacancy. In
�b�, the dotted line defines a nominal nonlinear core in which the
atomic position is constantly updated in the iterative solution
process.
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uj
�b� = Lji

�ba�f i
�a�. �6�

Lji
�ba� is the ith displacement component of the a atom caused

by a unit point force applied along the jth direction on the b
atom, i.e., the defect LSGF of the partially relaxed defect
system X in Fig. 1�b�. Due to the reciprocal theorem, Lji

�ba�

=Lij
�ab�.
In order to find the defect LSGF Lji

�ba�, the force-constant
matrix � of the partially relaxed defect system is partitioned
as

�ij
�ab� = �ij

0�ab� − ��ij
�ab�, �7�

where �0 is the force-constant matrix of the reference sys-
tem XR in Fig. 1�a�, and �� is the difference in the force-
constant matrix between the reference system XR and the
partially relaxed defect system X. Inverting and rearranging
the matrices in Eq. �7� yields

Lji
�ba� = Lji

0�ba� + Ljk
�bc���kl

�cd�Lli
0�da�, �8a�

and, alternatively

Lji
�ba� = Lji

0�ba� + Ljk
0�bc���kl

�cd�Lli
�da�, �8b�

where L0�����−1� is the reference LSGF of the reference
system. Equation �8� is called the Dyson equation, which
relates the LSGFs of the defect and reference lattices through
the change in the force-constant matrix ��kl

�cd�. Given Lji
0�ba�,

Eq. �8� can be solved to derive the defect LSGF Lji
�ba� and

consequently the atomic displacement uj
�b�.

Multiplying by force f on both sides of Eq. �8b� and ap-
plying Eq. �6� results in

uj
�b� = Lji

0�ba�f i
�a� + Ljk

0�bc���kl
�cd�ul

�d�. �9�

This is also called the Dyson equation, for the partially re-
laxed defect lattice X with a specified force system. Given
L0, it may be solved for u within the defect space defined by
nontrivial ��. Then, u can be calculated for any atom.
Equation �9� may be rewritten as

uj
�b� = Lji

0�ba�Ki
�a�, �10�

with

Ki
�a� = f i

�a� + ��il
�ad�ul

�d�. �11�

The effective force K defined by Eq. �11� is called the Kan-
zaki force.1 It models the defect as an inclusion that intro-
duces no change in the interatomic force constants of the
reference system XR. This is analogous to the Mura termi-
nology of inclusion modeling a continuum defect as a vol-
ume of eigenstrain but introducing no changes in elastic con-
stants to the host material.5 Note that Eq. �10� is exactly
equivalent to Eq. �6�.

Recall that the above formulation stems from the trun-
cated Taylor series expansion of the interatomic potential at
the quadratic term in Eq. �2�. If the higher-order terms are
included in Eq. �2�, X of Fig. 1�b� plus u obtained from Eq.
�10� would not precisely lead to XF of Fig. 1�c�. In such a
case, an iterative process is necessary to accurately solve for
XF. The following iterative scheme is adopted in the present
study.

Based on the previous step, X is updated to X+u. With
the updated X, f and � are recalculated by Eq. �4� and in-
serted into Eq. �9�. Then, Eq. �9� is solved for u �measured
from the current X� within the defect space. Equation �10� is
then used to compute u at any atom. Repeating the process
until X+u converges leads to the fully relaxed configuration
XF, which is the final solution. It should be noted that the
above iteration scheme, namely, the classical Newton-
Raphson method, would converge only if the force-constant
matrix is positive definite in every iteration step. Since it
works well in our later simulations, no other nonlinear solv-
ers, such as a modified Newton-Raphson method used in a
previous anharmonic lattice GF study,30 are checked in this
study. One may refer to Refs. 31 and 32 among many other
textbooks for a detailed discussion of those nonlinear solu-
tion methods.

The fully relaxed configuration XF of a given defect is
well defined and unique. In contrast, the Kanzaki force sys-
tem K is nonunique. By the definition given in Eq. �11�, it is
distributed over a partially relaxed configuration X in the last
step of iteration. This X in turn depends on how the nonlin-
ear defect core is specified, and this specification may be
subjective. For the sake of computational efficiency, it is de-
sired only to update X of those atoms involved in appreciable
nonlinear deformation in the vicinity of a point defect. Since
nothing is clear about the nonlinear zone prior to solution, an
arbitrary defect core size would be specified, as shown sche-
matically by the dotted line in Fig. 1�b�. In the course of
iterative solution, the mechanical forces and displacements
measured on the basis of X are both expected to diminish
inside the nonlinear core. Thus, the Kanzaki force, as defined
in the last iteration step, would appear only around the
boundary of the nonlinear defect core. In our case of using
the Tersoff potential with interatomic interaction up to the
second-nearest neighbors, the number of shells of atoms on
which the Kanzaki force may appear is two, if no nonlinear
core is specified; three, if a nonlinear core size of one shell of
atoms is specified; and four, if a nonlinear core size of more
than one shell of atoms is specified. In any case, the Kanzaki
force system must appear on two shells of atoms immedi-
ately outside the nonlinear core. Although the Kanzaki force
system depends on how the nonlinear defect core is speci-
fied, the net force and multipole tensors derived from the
Kanzaki forces �defined below� must converge with the
�nominal� core size and be unique.

The net Kanzaki force �defined as the sum of individual
Kanzaki forces� is trivial if the defect is self-balanced. In this
case, the force dipole tensor is used to measure the defect
intensity, and may represent the defect as viewed at a large
distance. It is defined by

Mij = �Xi
�a� − Xi

�ave��Kj
�a�, �12�

where X�ave� is the average center position of the defect.
Meanwhile, the defect formation energy Vf is defined as the
difference in potential energy between the reference system
XR and the fully relaxed defect system XF,
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Vf = V�XF� − V�XR� . �13�

The above equation, which involves the entire lattice system,
is impractical for numerical evaluation. Instead, the forma-
tion energy Vf is evaluated by

Vf = V�X� + E − W − V�XR� , �14�

where X is required to be sufficiently close to XF, and V�XR�
and V�X� are the potential energies of the reference and par-
tially relaxed defect lattices XR and X. E is the harmonic
deformation energy and W is the work �i.e., relaxation en-
ergy�, given by

E =
1

2
�ij

�ab�ui
�a�uj

�b� and W = f i
�a�ui

�a�, �15�

where � and f are associated with X as defined in Eq. �4�,
and u=XF−X. To satisfy the above requirement of X being
sufficiently close to XF, it is taken to be the configuration at
the last step of the iterative solution as described before.
Since E is one half of W by virtue of Eq. �3�, the formation
energy is finally derived as

Vf = V�X� −
1

2
f i

�a�ui
�a� − V�XR� . �16�

Equation �16� is convenient and efficient for numerical
evaluation as compared to Eq. �13� because it involves only
the defect space rather than the entire lattice system.

In brief, an iterative LSGF method has been described in
this section to calculate the lattice distortion due to a defect
by solving the Dyson equation. The method accounts for the
nonlinear effects. The remaining problem is how to find the
reference LSGF, L0, used as the summation kernel in the
Dyson equation. If the reference system is a perfect �i.e.,
infinite and homogeneous� lattice, L0 can be efficiently ob-
tained by solving the lattice-statics problem of a very large
cell of atoms under a periodic or fixed boundary condition,
for instance, by the Fourier transform technique.12 It can take
advantage of the group symmetries, especially the full trans-
lational symmetry, of a perfect lattice. However, in the
present case of Si-Ge QWs, the reference system is hetero-
geneous, which lacks the full translational symmetry. Hence,
the above technique, which works well in the case of a per-
fect lattice, does not work here. This difficulty can be over-
come by applying the recently developed scheme of hybrid
GF,16 where the reference LSGF is obtained to a desired
degree of approximation by solving the lattice-statics prob-
lem of a cell of atoms subjected to a unit point force and
under a CGF boundary condition. If the LSGF quickly ap-
proaches the CGF, the cell size required for accurate evalu-
ation would be fairly small compared to that required in the
other techniques. The scheme of hybrid GF for Si-Ge QWs is
described in the next section.

III. HYBRID GREEN’S FUNCTION OF Si/Ge„001…
QUANTUM WELLS

A. Reference lattice setup and continuum properties

Si-Ge QWs are trilayer material systems consisting of a
thin layer of either Si or Ge sandwiched by two opposite

half-space substrates of the other, as schematically shown in
Fig. 2. The whole diamondlike lattice is assumed to be ori-
entated with the crystallographic axis �001� normal to the
interfaces. The thin layer is strained laterally to match the
lattice constant with the substrates. It is stretched if the mid-
layer is Si, and compressed if it is Ge because the lattice
constant of Si lattice is smaller than that of the Ge lattice.
The entire system is then relaxed. This nanostructure, with
layer thickness ranging from several to several tens of na-
nometers, has been extensively studied and is under techno-
logical development.19

By using the Tersoff empirical potential,23 the lattice con-
stants are found to be 5.4320 Å and 5.6567 Å in all three
base axes in the relaxed Si and Ge, respectively, which re-
main cubic. When Si is stretched to a lattice constant of
5.6567 Å in the lateral directions, its lattice constant in the
third direction is reduced to 5.1952 Å upon relaxation in the
same direction. Similarly, when Ge is compressed to a lattice
constant of 5.4320 Å in the lateral directions, its lattice con-
stant in the third direction is increased to 5.8145 Å upon
relaxation in the same direction. In both the cases the sym-
metry is reduced from cubic to tetragonal.

The above values of the lattice constants were obtained by
inspection of the variation of the potential energy with
atomic spacing in the third direction under the condition of
fixed lateral dimensions. They correspond to the states of
potential minimum under the constraints. Next, these mate-
rials are assembled to form desired QWs. The assembled
trilayer material systems are relaxed to obtain the correct
atomic spacing near the abrupt Si/Ge interface. This is car-
ried out with a sufficiently long column of atoms along the
layer-thickness direction, with a cross-section of one unit cell
by one unit cell, by utilizing the lateral periodicity of the
lattice.

The variation of relaxed atomic interplanar �sheet-to-
sheet� spacing for the Si/Ge/Si and the Ge/Si/Ge QWs is
given in Tables I and II, respectively. It is shown that the
atomic interplanar distance between interfacial Si and Ge
atoms is approximately equal to the average of atomic inter-
planar distance of these two planes of atoms remote from the
interfaces. Otherwise, it is altered only slightly near the in-
terfaces. Although the alteration is slight, it is necessary to
take it into account in order to establish a force-free refer-
ence lattice in equilibrium so that a defect introduced in the
lattice can be modeled accurately.

After finding the lattice constants, the elastic properties of
the relaxed and strained bulk Si and Ge matrices are exam-
ined. The stress in the crystals is defined by

FIG. 2. Schematic of a trilayer reference lattice of a Si/Ge/Si or
Ge/Si/Ge QW. Also shown is a unit cell of the diamond lattice
structure.
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�ij =
�V

��ij
, �17�

where �ij is the infinitesimal strain, defined by

�ij = 1
2 �ui,j + uj,i� . �18�

Equation �17� is convenient for evaluation of stress in a re-
laxed lattice that is subjected to no �body� force. We calcu-
late the “stress” at an atom using the following procedure:

To begin with, the lattice is relaxed and all the neighbor-
ing atoms directly interacting with the atom are identified.
Then, the neighboring atoms are perturbed by imposing a
displacement field according to a specified infinitesimal
strain �in the finite-difference form of Eq. �18��. Finally, the
potential energies are calculated at the central atom sur-
rounded by the relaxed and perturbed neighboring atoms,
respectively. The difference between the potential energies is
set equal to the product of the stress and the perturbing strain
tensors. Repeating the above process six times with different
perturbing strains, we obtain six such equations, which we
solve for the six components of the symmetric stress tensor.
For computational convenience, we can assume that at any
one time only one component of the perturbing strain is non-
zero. Since the stress is essentially a continuum parameter,
there is some subjectivity in defining the stress in a discrete
lattice model. Different definitions of stress have been
proposed33 for the discrete lattices. The numerical difference
between the values of the stress, calculated according to al-
ternative definitions, is small in the static case. Our method
of calculating the stress would lead to the exact continuum
result34 with appropriate symmetry in the continuum limit.

The elastic constants of a material element are defined by

Cijkl =
��ij

��kl
. �19�

Each constant is evaluated numerically by first drawing a
sufficiently large cell of atoms, for instance, a block of 20
�20�20 unit cells. A displacement field is then imposed on
the atoms according to the strain field specified above. The
system is relaxed while the boundary atoms are tightly held.
The physical cell boundary consists of two layers of atoms
due to the direct interaction of atoms up to the second nearest

neighbors in the Tersoff potential used. Finally, the stress at
the central atom is calculated as above. The change of stress
is set equal to the product of the elastic constants and per-
turbing strain, resulting in six independent equations. Re-
peating the above process six times with different perturbing
strains, we obtain 6�6 such equations which we solve for
all 6�6 components of the elastic stiffness matrix �in the
Voigt contracted notation35�. The elastic stiffness matrix
would preserve the full symmetry.

The relaxed bulk Si and Ge are found to retain the cubic
anisotropy. The elastic constants in the Voigt contracted no-
tation are: C11=0.890, C12=0.471, C44=0.432 for Si, and
C11=0.865, C12=0.277, C44=0.417 for Ge in units of
eV/ �Å�3. When Si and Ge are strained in their QW states,
they develop tetragonal anisotropy. The corresponding elas-
tic constants in units of eV/ �Å�3 are given by C11=0.867,
C12=0.381, C13=0.404, C33=0.700, C44=0.387, C66=0.464
for Si, and by C11=0.899, C12=0.405, C13=0.368, C33
=0.981, C44=0.462, C66=0.337 for Ge. It should be noted
that in our previous work,16 the stress was evaluated by av-
eraging the forces transmitted through the boundary of a sub-
cell, and somewhat different elastic constants were obtained.
The above results of the relaxed bulk Si are in full agreement
with those previously reported in the literature.34

B. Hybrid lattice and continuum Green’s function

We now derive the hybrid GF by combining the LSGF
and the CGF. We apply a unit point force at an atom A in the
reference lattice system, as defined in Sec. II, along one of
the axes, for instance, the Ith axis. The response to the force
is termed the reference LSGF, which must be unique for the
reference system subjected to a remote radiation condition,
i.e., diminishing displacement at infinity. The system may
also be modeled as a trilayer continuum subjected to a unit
point force and subjected to the same remote radiation con-
dition. This response is termed the reference CGF. The above
two alternative models of the same physical system are
linked in the long-wavelength limit, which leads to well
known linear relations between the elastic constants and the
force constants.11,36,37

The force constants, a second-rank tensor, characterize the
interaction between two atoms. The elastic constants, a

TABLE I. Variation of interplanar atomic spacing with number of interplanar gaps counted about an
interface in a Si/Ge/Si QW.

Number of gaps
�elements�

−3
�Ge/Ge�

−2
�Ge/Ge�

−1
�Ge/Ge�

0 �Ge/Si
interface�

1
�Si/Si�

2
�Si/Si�

3
�Si/Si�

Spacing �Å� 1.4536 1.4533 1.4580 1.4074 1.3542 1.3583 1.3580

TABLE II. Variation of interplanar atomic spacing with number of interplanar gaps counted about an
interface in a Ge/Si/Ge QW.

Number of gaps
�elements�

−3
�Ge/Ge�

−2
�Ge/Ge�

−1
�Ge/Ge�

0 �Ge/Si
interface�

1
�Si/Si�

2
�Si/Si�

3
�Si/Si�

Spacing �Å� 1.4142 1.4139 1.4185 1.3616 1.2947 1.2990 1.2988
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fourth-rank tensor, characterize the local behavior of an in-
finitesimal volume element of the material �assuming local
elasticity�. It is well known that the LSGF asymptotically
approaches the CGF with increasing distance from the force.
Therefore, the LSGF may be replaced by the CGF at a suf-
ficiently distant field point. At smaller distances, the LSGF
may be calculated under a CGF boundary condition.

We then draw a supercell of atoms around the unit point
force. It may be heterogeneous, containing both Si and Ge
atoms, if the point force is located near an interface. Layers
of atoms that directly interact with any atom outside the
supercell are identified as boundary atoms. As mentioned
earlier, if the distance between the boundary atoms and the
point where the force is applied is sufficiently large, the
boundary atoms can be assigned a displacement as given28,29

by the corresponding trilayer CGF. This reduces the equilib-
rium equation �3� to the following:

�ij
�ab�uj

�b� = �Ii
�Aa�, �20�

with a� supercell minus the boundary atoms, and b� super-
cell. In Eq. �20� �Ii

�Aa� denotes the Dirac � function, which is
equal to one if a=A and i= I, and zero otherwise. After sub-
stituting the CGF for the displacement at the boundary at-
oms, Eq. �20� can be solved for the displacement of the in-
terior atoms. The solution offers an approximate evaluation
of the LSGF, namely, a hybrid GF. It is termed hybrid be-
cause it is a combination of the LSGF and CGF, and depends
on the size of the supercell.

For illustration, we examine the dependence of hybrid GF
on the supercell size in the case of Si/Ge/Si QW with well
thickness equal to ten lattice constants. This will also show
some of the characteristic features of the trilayer LSGF and
CGF. A point force of magnitude equal to one unit �eV/Å� is
applied at an interfacial Ge atom in the �001� direction, nor-
mal to the interfaces. The induced displacement is calculated
along a horizontal line in the �100� direction, passing through
the source atom. In the calculation of the CGF, we assume a

continuum interface of zero thickness at the middle plane
between the adjacent Si and Ge sheets. The elastic constants
across the interface are discontinuous.

The results with supercell sizes, L=10, 20, and 30 lattice
constants �in each direction�, are plotted in Fig. 3. It is seen
that the hybrid GF converges with increasing supercell size.
The converged hybrid GF, which is the true LSGF, is gener-
ally different from the CGF in the vicinity of the point force,
but approaches the CGF at greater distances from the point
force. This confirms the asymptotic approach of LSGF to
CGF, which is the basis for the present hybrid GF technique.

As we see in Fig. 3, the dominant component u3, which is
in the same direction as the point force, i.e., L33

�Ab�, becomes
equal to its continuum counterpart at a fairly small distance
from the point force, that is, at approximately one lattice
constant. The difference, of course, is huge close to the point
force because the LSGF is finite at zero separation but the
CGF is infinite. The other two components of LSGF reduce
to their continuum counterparts at a relatively large distance
from the point force. They represent some subtle features of
the lattice distortion in the diamondlike crystal, especially
near the abrupt interface. The value of u2 as predicted by the
lattice model is finite, whereas the continuum solution of u2
is zero. The continuum solution of u1 exhibits a near-singular
behavior. This is obviously an artifact of the continuum
model arising from the assumption of a discontinuous inter-
face of zero thickness.

Note that, although the components u1 and u2 approach
the CGF at a relatively large distance from the force, they are
a few orders of magnitude smaller than the dominant com-

FIG. 3. Variation of displacement components along the �100�
direction with distance to a unit point force applied in the �001�
direction, normal to the interface. The line of data acquisition
passes through the atom where the point force is applied.

FIG. 4. Percentage variation of �a� Kanzaki force dipole tensor
�M11=M22=M33� and �b� formation energy Vf obtained with vari-
ous nonlinear core sizes relative to the results obtained with the
largest nonlinear core size of eight shells of neighboring atoms for
vacancy, C substitution and Ge substitution in the relaxed bulk Si
matrix.

FIG. 5. Percentage variation of �a� Kanzaki force dipole tensor
�M11=M22=M33� and �b� formation energy obtained with various
nonlinear core sizes relative to the results obtained with the largest
nonlinear core size of eight shells of neighboring atoms for vacancy,
C substitution and Ge substitution in the relaxed bulk Ge matrix.

MULTISCALE MODELING OF POINT DEFECTS IN Si-… PHYSICAL REVIEW B 75, 144103 �2007�

144103-7



ponent u3. If the point force is away from the interface, for
instance, in the middle of the layer, the components u1 and u2
are even smaller compared with the dominant component u3.
Therefore, a fairly small supercell can be used for efficient
and accurate evaluation of the LSGF, which in turn facilitates
an efficient and accurate solution to Eqs. �8� and �9� for
modeling of the point defects.

IV. ANALYSIS OF THE POINT DEFECTS

In this section, the above GF method is applied to obtain
the nonlinear core structure of various point defects in Si-Ge
QWs. Point defects that we consider are: single vacancy,
substitutional C atom, substitutional Si atom in the Ge lat-
tice, and substitutional Ge atom in the Si lattice. We show
that our hybrid GF technique, combining LSGF and CGF
through their asymptotic relationship, facilitates an efficient
and accurate solution of the complicated problem of a
trilayer system containing point and extended defects at mul-
tiple length scales.

As discussed earlier, the nonlinear core size of a point
defect needs to be specified prior to solution. Thus, it is
necessary to first examine how the defect parameters would
vary with different core sizes. We calculate the Kanzaki force
dipole tensor M and the formation energy Vf for different
core sizes for the aforementioned point defects in the relaxed
homogeneous Si and Ge lattices. These parameters charac-
terize the defect. The nonlinear core plus two more outer
shells of atoms define the �nominal� defect space, which in
turn determines the required computational effort.

In the relaxed Si and Ge matrices, the Kanzaki force di-
pole tensor of a defect is found to be hydrostatic with diag-
onal components M11=M22=M33 and off-diagonal compo-
nents equal to zero. Figures 4 and 5 show the variation of the

percentage differences in M11 and Vf with the core sizes. The
percentage differences are defined relative to the correspond-
ing value for the maximum nonlinear core size considered
here, which is eight shells of atoms. We see from Figs. 4 and
5 that the solutions converge with increasing nonlinear core
size �artificially assigned�. The nonlinear effect is significant
in the core of substituted C, but relatively insignificant in the
cores of other point defects. It should be noted that when a Si
or a Ge atom is replaced by a C atom with surrounding
atoms held in place, the bonding state between C and neigh-
boring Si or Ge atoms falls on the downside along the force-
bonding length curve, where the tangent stiffness is negative.
This leads to an unstable solution where the Newton-
Raphson iterative method fails. In this case, it is necessary to
manually move the surrounding Si/Ge atoms close enough
to the C atom so that the bonding state is on the upside of the
force-bonding length curve. Then, the solution as outlined
before can lead to the fully relaxed configuration XF.

Having verified the convergence of the Kanzaki force di-
pole tensor and formation energy of the aforementioned
point defects, we now examine the values of these param-
eters in the strained as well as relaxed homogeneous Si and
Ge lattices. The strained Si and Ge correspond to their QW
states with lattice constants given in the previous section. In
our simulations, a nonlinear core up to the fifth shell from
the point defect is used, which is sufficiently large for accu-
rate evaluation as shown in Figs. 4 and 5. The supercell size
for calculating the hybrid GF is 20�20�20 unit cells. The
difference in results compared to the case with the cell size
of 10�10�10 unit cells is within 1%. The results are pre-
sented in Tables III and IV.

We see from Tables III and IV that, when the lattices are
strained, the Kanzaki force dipole tensor is no longer hydro-
static, as in the case of relaxed lattices. The diagonal com-
ponents M11 �=M22� and M33 become different, while the

TABLE III. Kanzaki force dipole tensor and formation energy of point defects in the relaxed and strained
Si matrices. The strained case corresponds to the QW state.

Vacancy C substitution Ge substitution

Uns. mtrx. Str. mtrx. Uns. mtrx Str. mtrx Uns. mtrx Str. mtrx

M11 �eV� 5.37 8.22 −16.2 −15.3 1.45 1.32

M22 �eV� 5.37 8.22 −16.2 −15.3 1.45 1.32

M33 �eV� 5.37 5.31 −16.2 −13.7 1.45 1.52

Vf �eV� 3.70 3.41 −1.63 −1.03 0.806 0.761

TABLE IV. Kanzaki force dipole tensor and formation energy of point defects in the relaxed and strained
Ge matrices. The strained case corresponds to the QW state.

Vacancy C substitution Si substitution

Uns. mtrx. Str. mtrx. Uns. mtrx Str. mtrx Uns. mtrx Str. mtrx

M11 �eV� 2.64 −2.54 −15.4 −18.4 −1.33 −1.54

M22 �eV� 2.64 −2.54 −15.4 −18.4 −1.33 −1.54

M33 �eV� 2.64 2.02 −15.4 −15.8 −1.33 −1.24

Vf �eV� 3.60 3.59 −2.29 −3.22 −0.748 −0.829
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off-diagonal components remain zero. The magnitudes of all
these defect parameters change significantly when the lat-
tices are strained as in their QW states. In particular, the sign
of M11 �=M22� is switched in the core of a single vacancy in
the Ge lattice when it is strained from the bulk to the QW
state. Figures 6�a� and 6�b� show the lattice distortion in a
vertical plane containing a single vacancy at its center in the
relaxed and the strained cases, respectively. In the case of the
relaxed lattice, the atoms move outwards, that is, away from
the vacancy. In contrast, when the lattice is strained as in the
QW state, the atoms move laterally inwards but vertically
outwards. This behavior indicates a buckling-type bifurca-
tion phenomenon of deformation mode in the core of a single
vacancy with the strain in the Ge lattice as the parameter. A
more detailed study of this phenomenon is in progress.

As may be expected from Tables III and IV, the core
structure of a point defect changes abruptly near a Si/Ge
interface in Si-Ge QWs. The detailed variation of the Kan-
zaki force dipole tensor and formation energy with distance
from the lower interface is shown for a vacancy and substi-
tutional C in Si/Ge/Si and Ge/Si/Ge QWs in Figs. 7–10,
respectively. The interface is located at zero depth, and the
QW of either Si or Ge is on the positive side. Notice that the
Kanzaki force dipole tensor shows a relatively smooth tran-
sition across the interface, with its diagonal components
splitting when the defects move from the relaxed into the
strained lattice. The component M12 �=M21� becomes non-
zero, although small near the interface. The other off-
diagonal components remain equal to zero. The formation

energy of a substituted C makes a smooth transition in both
the Si/Ge/Si and Ge/Si/Ge QWs. In contrast, the formation
energy of a vacancy shows spikes and a large jump across
the interface. From these figures, it is clear that the transition
in the defect core structure extends over a distance ranging
from two to four lattice constants, depending on the defect
species. The plateaus in these figures are equal to the corre-
sponding defect parameters in the bulk matrices, as given in
Tables III and IV.

V. CONCLUSIONS

We have developed an efficient and accurate GF method
to model point defects in Si-Ge QWs. The model includes
nonlinear effects and accounts for the elastic anisotropy. The
trilayer LSGF and CGF, which give the response to a point
force in the reference solid at different length scales, are
combined seamlessly to solve the multiscale problem of
point and extended defects. The method is based on the
Dyson equation, which relates the defect and the reference
LSGF, and on the asymptotic approach of the reference
LSGF to the reference CGF at large distances from the point
force. Nonlinearity in the core region around a point defect is
taken into account by using an iterative scheme.

The Tersoff potential23 is used to model the heterogeneous
system with point defects that include a vacancy and substi-
tutional impurities. It is used to set up the reference lattice,
calculate the force constants in the lattice, and derive the
elastic constants of the bulk solids needed for calculating the
CGF. The hybrid GF is defined as the reference LSGF which
is obtained by solving the lattice-statics problem of a super-
cell of atoms subject to the CGF boundary condition. The
hybrid GF converges well with the size of the supercell. The
�converged� reference LSGF approaches the CGF at large

FIG. 8. Variation of �a� Kanzaki force dipole tensor and �b�
formation energy of a C substitution with distance from an interface
in the Si/Ge/Si QW.

FIG. 9. Variation of �a� Kanzaki force dipole tensor and �b�
formation energy of a vacancy with distance from an interface in
the Ge/Si/Ge QW.

FIG. 6. Lattice distortion around a single vacancy in the relaxed
�a� and strained �b� Ge matrices. The triangle indicates the vacancy.
The open circles indicate the original �reference� atomic position.
The solid circles indicate the final atomic position, with atomic
displacement about the reference position magnified by 50 times.
These atoms are in the same vertical plane of the vacancy.

FIG. 7. Variation of �a� Kanzaki force dipole tensor and �b�
formation energy of a vacancy with distance from an interface in
the Si/Ge/Si QW.
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distances from the point force, but they are generally differ-
ent in the vicinity of the point force. It is found that the
differences are significant only within a fairly small distance.
Hence the reference LSGF can be efficiently and accurately
evaluated, which provides an efficient and accurate solution
of the problem of multiscale modeling of point defects in
Si-Ge QWs.

After the lattice distortion is obtained by the GF method,
the Kanzaki force dipole tensor and formation energy of
various point defects are calculated. These quantities are re-
quired for stress and defect-diffusion analyzes in a phenom-
enological formulation. The calculated formation energy of a
single vacancy in relaxed bulk Si is consistent with that pre-

viously reported in the literature.34 The formation energy and
the Kanzaki force dipole tensor of various point defects in
strained as well as relaxed bulk Si and Ge lattices are also
calculated. It is found that these defect parameters are
changed significantly by the straining in the QW states. In
particular, there appears to be a buckling-type bifurcation of
deformation mode in the core region of a single vacancy in
Ge lattice, with the strain in the lattice as the parameter.
These defect parameters are also examined in Si/Ge/Si and
Ge/Si/Ge QWs, which gives detailed information about the
core structure of the point defects near an abrupt Si/Ge in-
terface. The transition of defect core structure across an in-
terface normally extends to about two to four lattice con-
stants, depending on the defect species. This study provides
the input parameters required for a continuum modeling of
point defects in the Si-Ge systems and also for a quantum
mechanical calculation of the electron wave functions that
requires the precise location of atoms near the defects. It is
hoped that this work will form the basis for further study of
point defects in nanostructure devices.
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