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Abstract 
 

In computer security, many researches have 
tackled on the possibility of a unified model of access 
control, which could enforce any access control 
policies within a single unified system. One issue that 
must be considered is the efficiency of such systems, 
i.e., what is the computational complexity for the 
enforceability validation of access control rules of a 
system that is capable of implementing any access 
control policy? We investigate this question by 
arguing that two fundamental requirements exist for 
any such system: satisfiability of access rules and 
ensuring absence of deadlock among rules.  We then 
show that both of these problems are NP-Complete 
by using some basic computational theorems applied 
to the components of the generic access control 
process.  
 
1. Introduction 
 

Access control policies can be as diverse as 
applications, and are heavily dependent on the needs 
of a particular environment. Some research has 
focused on a unified model or mechanism of access 
control, which could enforce any access control 
policies within a single unified system. As the 
modern theme in access control research is the 
separation of mechanism from policy, many 
researchers have provided elegant solutions for 
encompassing various access control models and 
policies in a unifying formalism. These works apply 
one of two approaches: The first is to provide 
configurable policy attributes and/or configurable 
enforcement mechanisms [1, 2, 3, 4]. The second is 
to provide policy (authentication) management 
systems or language to configure the authorization 
database [5, 6]. Thus, it is natural to speculate how 
efficient is a system that can enforce any arbitrary 
access control policy.  

Endeavors have established in the computability 
analysis of access control systems such as: 1, finding 
the complexity of safety either through the use of 

limited access control model or the verification via 
constraints [10], and has shown that the safety of 
access control is undecidable [11]. 2, developing of 
flexible and efficient models for access control rule 
generalization [12, 13]. In our paper, we are not 
proposing another similar works as above, instead, 
we analyzed the rudimentary access control rule 
enforceability validation processes that is inevitable 
for a system that can implement any arbitrary access 
control policy no matter which access control 
mechanism is applied.   

Although not every access control policy can be 
specified by an access control model (for example, 
Rule Based AC), a certain AC mechanism such as 
Access Control List (ACL), Access Control Matrix 
(ACM) are required in order to implement the policy. 
Therefore, to demonstrate the generic, therefore 
universal without being restricted to any specific 
model or mechanism, we surpass any known 
models/mechanism and worked from the elementary 
components that any access control policy is built 
upon, and for algorithms embedded in any access 
control mechanism operated with. These basic 
components are subjects, operations, and objects. 

Our goal is to determine the computational 
complexity for a completely general access control 
system.  Therefore, the question can be rephrased as: 
what is the computational complexity of the 
enforceability validation of a mechanism that is 
capable of implementing any access control policy? 
We investigate this question by arguing that two 
fundamental requirements for the enforceability 
validation of access control policy exist for any such 
system:  satisfiability of access rules and ensuring 
absence of deadlock among rules.  That is, we argue 
that these functions are necessary, although possibly 
not sufficient, for any access control policy. We then 
show that both of validation problems are NP 
Complete. 

The following proof outline summarize our 
computational complexity argument for the rest of 
the paper: 



  

1. To implement an access control policy, a 
mechanism must incorporate rules that are 
evaluated in each system state. 

2. If the mechanism is capable of 
implementing an arbitrary policy, it must be 
capable of incorporating an arbitrary set of 
rules. 

3. All rules must be satisfiable, i.e. satisfying 
truth assignments of Boolean expression 

4. No rule may be dependent on itself, i.e., 
deadlock or circular dependency is 
prohibited. 

5. The problem of checking for satisfiability is 
NP-Complete. 

6. The problem of checking for deadlock is 
represented by the AND-OR graph decision 
problem, which is also NP-Complete. 

7. Consequently, the complexity for 
enforceability validation of a mechanism 
capable of implementing any conceivable 
access control policy is NP-Complete. 

 
2. Authorization process 
 

In access control, a privilege assignment refers 
to the association of a privilege to a subject, denoted 
by the triple <subject, operation, object>, indicating 
that the subject is permitted to perform the operation 
on the object. A subject refers to an active entity that 
typically includes users and system processes. An 
operation refers to a specific action applied to an 
object, such as read and write, and an object is a 
passive entity, such as files and printers, that require 
protection. 

Abstractly, access control mechanisms apply a 
set of rules to system states for the purpose of 
allowing or denying a specified operation to an object 
by a subject. The rule set are composed according to 
the access control policy, such that the final process 
of any access control is the decision-making for a 
subject’s request to perform an operation on an 
object. To be universal, the operations must be 
arbitrary. Fig. 1 shows the relation mapping of an 
access control system from policy, model, and 
mechanism to the elementary algorithm. Note that 
not every policy can be described by a model (i.e. 
one policy can be modeled either by zero or one of 
the n known models as illustrated above of the arrows 
in the Figure1), however, every policy can be 
implemented by at least one of the n mechanisms, 
which can be implemented by an access control 
algorithm.  

At an elementary level as in Figure 1 (Access 
Control algorithm), an access control system consists 
of the space of states and the space of rules. The 
states space contains privilege assignments permitted  

 
by the implemented policy. And for historical type of 
access control policies, it is required to maintain the 
past access states (already granted access history), 
therefore, each state may be in a status of already 
granted (+) or not-yet-granted (-). The status of a 
state is changed from – sx to + sx when the privilege 

of the state is granted as marked to be the past event, 
and changed from + sx to – sx when the sx is required 

to be reset. Each state is expressed by the relation 
mapping a subject’s operations to access an object. 
The rules space contains information about the 
specified rules and/or constraints enforced by the 
implemented policy; each rule is generically 
expressed by the logic relations between security 
attributes with two types: the dynamic, which is the 
same as in the states space, we call them “dynamic”, 
because they can be either already-granted (+) or not-
yet-granted (-), which is in contrast with the static 
attributes such as specific time, locations and other 
physical attributes related to security. The static 
attributes are set according to the access control 
policy or the access environment, such as requiring 
that an object can only be read at a particular time 
period at a certain location. As examples, Table 1 
shows the states and rules mapping of a simple MLS 
(Multilevel Security) policy with users and objects 
secrecies ranked by High (h), Medium (m), and Low 
(l), and any object access can only be accessed at the 
certain time frame t1, the policy is modeled by the 

Bell-LaPadule model [14]. Where read operation is 
denoted as r and write operation is denoted as w.  

 
Table 1. The states and rules mapping of a 

MLS policy 
 

states rules 
s1=(h, r, h) No restriction 

s2=(h, r, m) No restriction 

s3=(h, r, l) t1 

s4=( m, r, m) t1 
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Figure 1. The relation mapping of an access 
control system from policy, model, mechanism 

to the elementary algorithm. 



  

s5=( m, r, l) No restriction 

s6=(l, r, l) No restriction 

s7=(h, w, h) t1 

s8=( h, w, m) ¬ s1∧ t1 

s9=( h, w, l) ¬( s1∧ s2) ∧ t1 

s10=( m, w, l) ¬( s4∧ s5) ∧ t1 

s11=( m, w, m) t1 

s12=(l, w, l) No restriction 

 
Table 2 shows the states and rules mapping of a 

simple Chinese Wall policy [15] with only two users 
(groups) a and b, and two Conflict Of Interest (COI) 
classes x and y each contains objects x1, x2, and y1, 

y2. For the simplicity, we use only one read operation 

r.  
 

Table 2. The states and rules mapping of a 
Chinese Wall policy 

 
states rules 
s1=(a, r, x1) ¬ s2 

s2=(a, r, x2) ¬ s1 

s3=(a, r, y1) ¬ s4 

s4=(a, r, y2) ¬ s3 

s5=(b, r, x1) ¬ s6 

s6=(b, r, x2) ¬ s5 

s7=(b, r, y1) ¬ s8 

s8=(b, r, y2) ¬ s7 

 
Table 3 shows an example of a simple Work 

Flow policy [16] that allows user c to read object z 
only after user a has read object x, and user b has 
written object y, and the access can only be granted 
on the business location l1 or l2. User b can write 

object y only after user a has read object x, and the 
access can only be granted on the business location 
l1.  

 
Table 3. The states and rules mapping of a 

Work Flow policy 
 

states rules 
s1=(a, r, x) No restriction 

s2=(b, w, y) s1∧ l1 

s3=(c, w, z) s1 ∧ s2∧( l1∨ l2) 

 
In addition to the well-known access control 

policies as the shown in Table 2, 3, and 4, other 

(known and unknown) access control policies may 
have different relation mapping of their states and 
rules elements; Assume SR is the set of all states in 

R. Most of the access control policies are in the case 
of SR ⊂ S and SR = S, i.e. all or some states in S are 

also in R, however, the cases of S ⊂ SR, SR  ∩ S = ∅, 

and SR ∩ S = C (where C is the set of common 

states) represents some (or all) rules may contain 
state(s) that are not in S, means that the mapping 
states for those rules will never be granted until the 
states in R that are not covered in S are included in S 
in the future. Also, by different algorithm 
implemented, other type of relations of states and 
rules are possible, for example, instead of being the 
allowable states, S contains restricted states such as a 
popular implementation of Rule-Based Access 
Control that S contains the prohibited privileges. 
Further, The relation of the states and rules spaces 
can be either a one-to-many mapping if a rule can be 
shared by states or one-to-one, otherwise. The one-
to-many relation can be transformed to one-to-one 
relation if allowing the rules to be duplicated in the 
mapping. Note that the elements in rules are finite 
with maximum number equal to the total number of 
dynamic and static attributes. 

Formally, any access control policy, PO, can be 
described by the mapping of access control rules AC 
= S → R, where S is the domain of all possible states 
(i.e. privilege assignments) space, and R is the range 
of all possible rules space. S = {s1... sn}, and si = (ui, 

pi, oi) is any privilege assignment described by ui ∈ 

U, a set of all subjects, pi ∈ P, a set of all access 

operations, and oi ∈ O, a set of all objects covered by 

the policy PO. Thus, subject ui is allowed to access 

object oi with the pi operation under the policy PO.  

A rule ri ∈ R = {r1...rn} is a set of Boolean 
expressions. Each ri is expressed by the variables in 

the sets of dynamic attributes Si ⊂ S and a set of 

static attributes A = {a1...an}, unlike Si, A only exists 

in the rules space. The Boolean expression of ri is 

arbitrarily connected by logic operators l ∈ L = {∧ 
(AND), ∨ (OR), ¬ (NOT)}. The states attribute si in 

a rules are active only when the status of si is + in the 

states, because obviously, a rule is realistic only 
when the covered states are True. Thus, when si in 

the states is changed from + to –, the same si in the 

rules will be treated as “don’t care” or “null”, and the 
Boolean operators associated with it will be ignored 
in evaluating the Boolean result. This means si has 

not yet authorized, and should not be a decision 



  

factor of the authorization process. (e1) is an example 
of a rule rx, which contains dynamic attributes s1, 

and s2, and static attributes a1 and a2, rx will change 

to (e2) if s2 has not yet happened (thus nulled) when 

evaluated. 
((s1 ∧ (¬s2)) ∨ a1) ∧ a2)             (e1)  

(s1 ∨ a1) ∧ a2)              (e2)  

In conclusion, the fundamental authorization 
process of an access control system is first check if 
the user’s access request is permitted under the 
organization’s access control policy. The operation is 
checking if the requested user, operation, and object 
are presented in the states. Second, check what 
rule(s) in the organization’s access control policy the 
request is regulated by. And the authorization of the 
access request is evaluating the Boolean result in the 
rules match the request state. 
 
3. Rule validation 
 

Based on the generic access control process as 
described in Section 2, any access control mechanism 
according to the access control policy implemented 
should be capable of (1) configuring the states; and 
(2) checking the validation of rules to make sure the 
rules are enforceable; Obviously, a rule is 
enforceable only if the rule can generate a result of 
grant or deny of an access request, and the 
calculation of the result is within finite steps of 
logical evaluation. Thus, the operation steps of 
granting an access request will first search for a 
matched state sx in S for the request, then verify the 

rule rx mapped to the state sx, then evaluate the 

decision, and update the status of sx from - to + (from 

not-yet-granted to granted) if it was - before the 
authorization. The configuration of states is either 
straight privilege assignment such as ACL or ACM, 
or the disseminated results of groups and roles 
assignments for policies such as role based access 
control (RBAC) [1]. Note that the states 
dissemination is usually performed when the states is 
initialized or rebuild, that is “off-line” of the 
authorization process, so, does not affect the 
efficiency of the “run-time” process (i.e. processing 
the access request), and in general, the efficiency of 
the access control mechanism. Hence, the 
enforceability validation check of a rule involves two 
functions: one is checking for satisfaction: if the rule 
generates result in respond to the values of it’s state 
parameters, and the other one is checking for 
deadlocks: if the result generates within finite steps 
of calculation. We define both properties as follow: 

 

3.1. Satisfiability 
 

We define a rule as unsatisfiable when its result 
will never be True no matter what the variables’ 
truth-values of the rule are, i.e. the mapped state si 

will never happen (be True) under the rule.  
Since any rule rx has an unique truth value once 

the truth values of its elementary constituents are 
known, it is a well-formed Boolean expression over a 
finite set of elements {S, A} and the set of logical 
operations {∧ (AND), ∨ (OR), ¬ (NOT)}. And a 
well-formed Boolean expression is not Satisfiable 
when every possible instantiation of its variables 
evaluates to False.  Therefore, a rule is unsatisfiable 
when the Boolean expression of the rule ri has no 

True result by any assignments of its variables, for 
example the rule 

r1 = (s1 ∧ s2) ∨ (¬s3 ∧ s1 ∧ ¬ s2) ∧ ¬ s1  (e3)  

will never be evaluated to be “true” no matter what 
the truth assignments of s1, s2, and s3 are. 

 
3.2. Deadlock 
 

We define a rule rx as deadlocked when it has a 

dependency on other rule(s), which eventually 
depends back on rx itself such that the mapped state 

sx will never happen because of the cyclic 

referencing. 
A Boolean function can be represented 

efficiently using a data structure called an AND/OR 
graph [17]; A rule rx as a Boolean function is 

constructed to an AND/OR Graph by connecting all 
the non-terminal (has dependency of other states) 
sx’s in rx. The AND-OR Graph is an directed graph 

G = (V, A), where V is the set of vertexes represented 
by the sx’s in rx and A is the set of links represented 

by the ∧ or ∨ logical relations between sx’s, with a 

single vertex s0 ∈ V have in-degree 0, for each v ∈ V 

having out-degree weight w(a) ∈ Z+ for each a ∈ A. 
An sx is non-terminal when there is other rule in R 
contains sx as its Boolean variable, i.e. there is a link 

a from the non-terminal sx. G can introduce dummy 

node such that each of the descendents of the dummy 
node starts a sub-graph of Boolean rule that require to 
be solved before it’s ancestor, for example, s2∧s3 

need to be solved before the rule s1∨(s2∧s3) 

represented by the dummy node sd. For checking the 

deadlock validation, w(a) = 1 (see Section 4). Note 
that we leave static attributes ax’s for the graph 

construction, because there are no dependencies 



  

between them. We also ignored the unary operator ¬, 
since it does not invoke dependency between states.  
For example, some rules in the following R. 

s1 → r1 = s2 ∨  s3    

s2 → r2 = s4 ∧ s5 ∧ s6 

s3 → r3 = no restriction 

s4 → r4 = s2     

s5 → r5 = no restriction   

s6 → r6 = l1                              (e4) 

can be converted to an AND-OR Graph as Figure 2 
when s1 access request is made ( r1 is evaluated). 

The graph is construct by using the requested state 
(s1) as the beginning note of the graph and links the 

states in the rules until the terminal condition (no 
restriction for access in this example) is met. Where 
s3, s5, s6 are terminal nodes, and “∪” represent the 

“∧” Boolean relation.  

 
Figure 2. AND-OR Graph converted from (e4). 
 

The satisfaction-check makes sure a rule is 
satisfiable, which means a rule is evaluated to a result 
according to its variables’ values at the give state 
(instead of a fixed result no matter what the values of 
it variables are). Even though an unsatisfiable 
produces unchangeable result, we consider this check 
necessary when a well-defined access control policy 
implementation is required. The deadlocks-check 
makes sure that a rule generates a result within a 
finite number of evaluation steps; rules in deadlock 
will cause infinite loops when the rule is evaluated.  
 
4. Computational Complexity  
 

Different from the states configuration, which 
need to be set up before the access control system is 
operational, the enforceability validation of rules is 
usually performed at run-time when an access request 
is processed, because rules may be valid (or invalid) 
before an access request but invalid (or valid) when 
the status of the states changes from + to – (or vice 
versa), or other rules are modified/deleted at the time 
when processing the next access request. For 

example, when processing the sx access request, rule 

rx may be invalid because it is unsatisfiable under the 

current status of states, but might be satisfiable when 
the status of the state sx is later changed from + to - 

(therefore, removed from rx) in rx. As shown in (e3), 

r1 is satisfiable when the status of s1 is changed from 

+ to –, and therefore becomes “don’t care” in r1. Or, 

a rule rx may be free from a deadlock when other 

rule(s) is (are) later removed from R. As shown in 
(e4), r1 are no longer in deadlock when r4 is 

removed, or changed such that contains no non-
terminal states by the time when processing the next 
s1 request. So, it is reasonable to compose a rule 

without validation check, which will be performed at 
run-time when an access request trigged the 
authorization process. 

Checking for satisfaction as we have defined it 
is checking if every possible Boolean values of sxs 

and axs in the rx evaluated to False. This evaluation 

is a problem of Satisfiability of Boolean expression, 
which is NP-Complete [18]. And in a worst case, 
checking for satisfiability takes all the possible truth 
assignments of all variables in S (i.e. Si = S) and A, 

therefore requires 2|S|+|A| operations.  
If each connection represents the reference from 

one state (node) to another in an AND-OR graph, 
then cycle exists when the number of connections 
between nodes is equal or greater to the number of 
nodes in a graph when traversing the graph form the 
root to any of it’s terminal note. Therefore, checking 
for deadlock of rx is equivalent to determining if all 

the costs for the solutions of the AND-OR graph G 
constructed from rx are at most k, where a cost is 

assigned to a link (connection) between two nodes in 
the graph. Since our purpose is to determine the 
number of steps when traversing G, the cost is 
represented by the nodes in G is fixed to 1 and k = |S| 
-1. Thus a cycle therefore deadlock exists in G when 
the cost accumulated exceeds the number of nodes in 
G minus the root note. For example, in Fig. 5, one 
solution for the determination of the cost to reach the 
terminal notes from the root is (s1, s3) = 1, and the 

other solution (s1, s2, s4, s5, s6) is extended to (s1, 

s2, s4, s2, s5, s6) and further extended to (s1, s2, s4, 

s2, s4, s5, s6) with accumulated cost equal to 6, 

which exceeds |S| -1 = 5, the cost of this solution 
indicates that there exists a deadlock in r1. According 

to [19, 17], the AND-OR graph decision problem is 
in the class of NP-Complete. 

A rule rx may contain the number of elements 

in S and A minus the mapping state in S: |S| + |A| - 1 

s1 

s2 

s5 s4 

s3 

s6 

1 1 

1 
1 1 1 



  

variables in a worst case (maximum number of 
variables), and  |S|! expanding steps are required to 
construct an equivalent AND-OR graph; note there is 
no expansion required for the static attributes ax in A 

as there is no dependency between them. The AND-
OR graph construction steps can be explained by the 
fact that any switching functions of ∧, ∨, and ¬, rx 

can be expanded into a canonical DNF (Disjunctive 
Normal Form)[17] product of m+n-1 variables in S = 
{s1... sm} and A ={a1... an} except the sx state that 

the rx is mapped to. So, in maximum, a rule rx is 

finally expanded into 
k
i 1=∨ ci, where the ci is a 

clause represented as 
1

1
−+

=∧ nm
j  lj, the lj is literal, 

which is either a variable or its negation of sx or ax, 

and k is equal to |A| plus all the possible combination 
of S, i.e. the permutation of (|S| -1). In other words, 
the final expanded rx may contain  (|S| -1)! plus |A| 

clauses after (|S| - 1)! number of expansion steps. 
Adding the steps for each lj in each ci, the result is 

|S|(|S| - 1)! = |S|! steps required to expand rx into an 

equivalent AND-OR graph, because each Boolean 
operation requires one step in adding note and link to 
the AND-OR graph.  

As summary, without considering the initial 
construction of the states and rules (built according 
to the access control policy), checking the 
satisfiability require O(2|S|+|A|) computational steps, 
and checking the deadlock condition, i.e. cyclic 
reference require O(|S|!) computational steps in worst 
case. And both functions are in the complexity of 
NP-Complete. 

As stated previously, 1, we are considering the 
worst cast of enforceability validation of a generic 
access control mechanism or algorithms, by generic, 
we mean that mechanism or algorithms can be 
implemented to cover all known and unknown access 
control polices. 2, we also mentioned that to be truly 
dynamic (allow access control policy to be changed 
any time), the validation check has to be performed at 
run-time, i.e. processed at the time when access 
request needs to be authorized. 3, it is obvious that 
states in the states space and rules in rules spaces are 
interrelated when historical and workflow type of 
polices are implemented. However, most of the 
popular and practical access control 
mechanism/algorithm in use are not geared for 
meeting the above three requirements, therefore, are 
not bond to the complexity of our discoveries.  
 
5. Conclusion 
 

Diversity and flexibility of access control is 
becoming essential with the growth of global and 
distributed computing environments such as the 
Internet and Grid computing networks. Many 
research efforts have focused on the solution for the 
mechanisms of access control policy composition and 
combination, but have not studied the issue of 
efficiency such as lower complexity bounds in their 
efforts. In this paper we have shown that the problem 
of enforcing an arbitrary access control policy, 
regardless of the kind of mechanism, is NP-
Complete, The computational complexity is critical if 
the access control policy is historical or workflow 
related, however, for most of the popular and 
practical access control systems today are not related 
to historical or workflow types of policies, therefore 
does not require enforceability validation of the rules 
at run-time, so the invalid check can be preformed 
“off-line” of the authentication process. Further, the 
enforceability validation only required when creating 
or changing a state or rule and they occurs less 
frequently than a users’ access request, if the 
validation has been done before. 
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