
The Computational Complexity of Enforceability Validation for Generic Access
Control Rules

Vincent C. Hu, D. Richard Kuhn, and David F. Ferraiolo
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8930, USA

Email: {vhu, kuhn, dferraiolo}@nist.gov,

Abstract

In computer security, many researches have
tackled on the possibility of a unified model of access
control, which could enforce any access control
policies within a single unified system. One issue that
must be considered is the efficiency of such systems,
i.e., what is the computational complexity for the
enforceability validation of access control rules of a
system that is capable of implementing any access
control policy? We investigate this question by
arguing that two fundamental requirements exist for
any such system: satisfiability of access rules and
ensuring absence of deadlock among rules. We then
show that both of these problems are NP-Complete
by using some basic computational theorems applied
to the components of the generic access control
process.

1. Introduction

Access control policies can be as diverse as
applications, and are heavily dependent on the needs
of a particular environment. Some research has
focused on a unified model or mechanism of access
control, which could enforce any access control
policies within a single unified system. As the
modern theme in access control research is the
separation of mechanism from policy, many
researchers have provided elegant solutions for
encompassing various access control models and
policies in a unifying formalism. These works apply
one of two approaches: The first is to provide
configurable policy attributes and/or configurable
enforcement mechanisms [1, 2, 3, 4]. The second is
to provide policy (authentication) management
systems or language to configure the authorization
database [5, 6]. Thus, it is natural to speculate how
efficient is a system that can enforce any arbitrary
access control policy.

Endeavors have established in the computability
analysis of access control systems such as: 1, finding
the complexity of safety either through the use of

limited access control model or the verification via
constraints [10], and has shown that the safety of
access control is undecidable [11]. 2, developing of
flexible and efficient models for access control rule
generalization [12, 13]. In our paper, we are not
proposing another similar works as above, instead,
we analyzed the rudimentary access control rule
enforceability validation processes that is inevitable
for a system that can implement any arbitrary access
control policy no matter which access control
mechanism is applied.

Although not every access control policy can be
specified by an access control model (for example,
Rule Based AC), a certain AC mechanism such as
Access Control List (ACL), Access Control Matrix
(ACM) are required in order to implement the policy.
Therefore, to demonstrate the generic, therefore
universal without being restricted to any specific
model or mechanism, we surpass any known
models/mechanism and worked from the elementary
components that any access control policy is built
upon, and for algorithms embedded in any access
control mechanism operated with. These basic
components are subjects, operations, and objects.

Our goal is to determine the computational
complexity for a completely general access control
system. Therefore, the question can be rephrased as:
what is the computational complexity of the
enforceability validation of a mechanism that is
capable of implementing any access control policy?
We investigate this question by arguing that two
fundamental requirements for the enforceability
validation of access control policy exist for any such
system: satisfiability of access rules and ensuring
absence of deadlock among rules. That is, we argue
that these functions are necessary, although possibly
not sufficient, for any access control policy. We then
show that both of validation problems are NP
Complete.

The following proof outline summarize our
computational complexity argument for the rest of
the paper:

1. To implement an access control policy, a
mechanism must incorporate rules that are
evaluated in each system state.

2. If the mechanism is capable of
implementing an arbitrary policy, it must be
capable of incorporating an arbitrary set of
rules.

3. All rules must be satisfiable, i.e. satisfying
truth assignments of Boolean expression

4. No rule may be dependent on itself, i.e.,
deadlock or circular dependency is
prohibited.

5. The problem of checking for satisfiability is
NP-Complete.

6. The problem of checking for deadlock is
represented by the AND-OR graph decision
problem, which is also NP-Complete.

7. Consequently, the complexity for
enforceability validation of a mechanism
capable of implementing any conceivable
access control policy is NP-Complete.

2. Authorization process

In access control, a privilege assignment refers
to the association of a privilege to a subject, denoted
by the triple <subject, operation, object>, indicating
that the subject is permitted to perform the operation
on the object. A subject refers to an active entity that
typically includes users and system processes. An
operation refers to a specific action applied to an
object, such as read and write, and an object is a
passive entity, such as files and printers, that require
protection.

Abstractly, access control mechanisms apply a
set of rules to system states for the purpose of
allowing or denying a specified operation to an object
by a subject. The rule set are composed according to
the access control policy, such that the final process
of any access control is the decision-making for a
subject’s request to perform an operation on an
object. To be universal, the operations must be
arbitrary. Fig. 1 shows the relation mapping of an
access control system from policy, model, and
mechanism to the elementary algorithm. Note that
not every policy can be described by a model (i.e.
one policy can be modeled either by zero or one of
the n known models as illustrated above of the arrows
in the Figure1), however, every policy can be
implemented by at least one of the n mechanisms,
which can be implemented by an access control
algorithm.

At an elementary level as in Figure 1 (Access
Control algorithm), an access control system consists
of the space of states and the space of rules. The
states space contains privilege assignments permitted

by the implemented policy. And for historical type of
access control policies, it is required to maintain the
past access states (already granted access history),
therefore, each state may be in a status of already
granted (+) or not-yet-granted (-). The status of a
state is changed from – sx to + sx when the privilege

of the state is granted as marked to be the past event,
and changed from + sx to – sx when the sx is required

to be reset. Each state is expressed by the relation
mapping a subject’s operations to access an object.
The rules space contains information about the
specified rules and/or constraints enforced by the
implemented policy; each rule is generically
expressed by the logic relations between security
attributes with two types: the dynamic, which is the
same as in the states space, we call them “dynamic”,
because they can be either already-granted (+) or not-
yet-granted (-), which is in contrast with the static
attributes such as specific time, locations and other
physical attributes related to security. The static
attributes are set according to the access control
policy or the access environment, such as requiring
that an object can only be read at a particular time
period at a certain location. As examples, Table 1
shows the states and rules mapping of a simple MLS
(Multilevel Security) policy with users and objects
secrecies ranked by High (h), Medium (m), and Low
(l), and any object access can only be accessed at the
certain time frame t1, the policy is modeled by the

Bell-LaPadule model [14]. Where read operation is
denoted as r and write operation is denoted as w.

Table 1. The states and rules mapping of a

MLS policy

states rules
s1=(h, r, h) No restriction

s2=(h, r, m) No restriction

s3=(h, r, l) t1

s4=(m, r, m) t1

Access
Control
policy

Access
Control
model

Access
Control

mechanism

Access
Control

algorithm

1:0~n 1:n 1:1

1:n
access
states

Access
Control

rules

n:n

Figure 1. The relation mapping of an access
control system from policy, model, mechanism

to the elementary algorithm.

s5=(m, r, l) No restriction

s6=(l, r, l) No restriction

s7=(h, w, h) t1

s8=(h, w, m) ¬ s1∧ t1

s9=(h, w, l) ¬(s1∧ s2) ∧ t1

s10=(m, w, l) ¬(s4∧ s5) ∧ t1

s11=(m, w, m) t1

s12=(l, w, l) No restriction

Table 2 shows the states and rules mapping of a

simple Chinese Wall policy [15] with only two users
(groups) a and b, and two Conflict Of Interest (COI)
classes x and y each contains objects x1, x2, and y1,

y2. For the simplicity, we use only one read operation

r.

Table 2. The states and rules mapping of a
Chinese Wall policy

states rules
s1=(a, r, x1) ¬ s2

s2=(a, r, x2) ¬ s1

s3=(a, r, y1) ¬ s4

s4=(a, r, y2) ¬ s3

s5=(b, r, x1) ¬ s6

s6=(b, r, x2) ¬ s5

s7=(b, r, y1) ¬ s8

s8=(b, r, y2) ¬ s7

Table 3 shows an example of a simple Work

Flow policy [16] that allows user c to read object z
only after user a has read object x, and user b has
written object y, and the access can only be granted
on the business location l1 or l2. User b can write

object y only after user a has read object x, and the
access can only be granted on the business location
l1.

Table 3. The states and rules mapping of a

Work Flow policy

states rules
s1=(a, r, x) No restriction

s2=(b, w, y) s1∧ l1

s3=(c, w, z) s1 ∧ s2∧(l1∨ l2)

In addition to the well-known access control

policies as the shown in Table 2, 3, and 4, other

(known and unknown) access control policies may
have different relation mapping of their states and
rules elements; Assume SR is the set of all states in

R. Most of the access control policies are in the case
of SR ⊂ S and SR = S, i.e. all or some states in S are

also in R, however, the cases of S ⊂ SR, SR ∩ S = ∅,

and SR ∩ S = C (where C is the set of common

states) represents some (or all) rules may contain
state(s) that are not in S, means that the mapping
states for those rules will never be granted until the
states in R that are not covered in S are included in S
in the future. Also, by different algorithm
implemented, other type of relations of states and
rules are possible, for example, instead of being the
allowable states, S contains restricted states such as a
popular implementation of Rule-Based Access
Control that S contains the prohibited privileges.
Further, The relation of the states and rules spaces
can be either a one-to-many mapping if a rule can be
shared by states or one-to-one, otherwise. The one-
to-many relation can be transformed to one-to-one
relation if allowing the rules to be duplicated in the
mapping. Note that the elements in rules are finite
with maximum number equal to the total number of
dynamic and static attributes.

Formally, any access control policy, PO, can be
described by the mapping of access control rules AC
= S → R, where S is the domain of all possible states
(i.e. privilege assignments) space, and R is the range
of all possible rules space. S = {s1... sn}, and si = (ui,

pi, oi) is any privilege assignment described by ui ∈

U, a set of all subjects, pi ∈ P, a set of all access

operations, and oi ∈ O, a set of all objects covered by

the policy PO. Thus, subject ui is allowed to access

object oi with the pi operation under the policy PO.

A rule ri ∈ R = {r1...rn} is a set of Boolean
expressions. Each ri is expressed by the variables in

the sets of dynamic attributes Si ⊂ S and a set of

static attributes A = {a1...an}, unlike Si, A only exists

in the rules space. The Boolean expression of ri is

arbitrarily connected by logic operators l ∈ L = {∧
(AND), ∨ (OR), ¬ (NOT)}. The states attribute si in

a rules are active only when the status of si is + in the

states, because obviously, a rule is realistic only
when the covered states are True. Thus, when si in

the states is changed from + to –, the same si in the

rules will be treated as “don’t care” or “null”, and the
Boolean operators associated with it will be ignored
in evaluating the Boolean result. This means si has

not yet authorized, and should not be a decision

factor of the authorization process. (e1) is an example
of a rule rx, which contains dynamic attributes s1,

and s2, and static attributes a1 and a2, rx will change

to (e2) if s2 has not yet happened (thus nulled) when

evaluated.
((s1 ∧ (¬s2)) ∨ a1) ∧ a2) (e1)

(s1 ∨ a1) ∧ a2) (e2)

In conclusion, the fundamental authorization
process of an access control system is first check if
the user’s access request is permitted under the
organization’s access control policy. The operation is
checking if the requested user, operation, and object
are presented in the states. Second, check what
rule(s) in the organization’s access control policy the
request is regulated by. And the authorization of the
access request is evaluating the Boolean result in the
rules match the request state.

3. Rule validation

Based on the generic access control process as
described in Section 2, any access control mechanism
according to the access control policy implemented
should be capable of (1) configuring the states; and
(2) checking the validation of rules to make sure the
rules are enforceable; Obviously, a rule is
enforceable only if the rule can generate a result of
grant or deny of an access request, and the
calculation of the result is within finite steps of
logical evaluation. Thus, the operation steps of
granting an access request will first search for a
matched state sx in S for the request, then verify the

rule rx mapped to the state sx, then evaluate the

decision, and update the status of sx from - to + (from

not-yet-granted to granted) if it was - before the
authorization. The configuration of states is either
straight privilege assignment such as ACL or ACM,
or the disseminated results of groups and roles
assignments for policies such as role based access
control (RBAC) [1]. Note that the states
dissemination is usually performed when the states is
initialized or rebuild, that is “off-line” of the
authorization process, so, does not affect the
efficiency of the “run-time” process (i.e. processing
the access request), and in general, the efficiency of
the access control mechanism. Hence, the
enforceability validation check of a rule involves two
functions: one is checking for satisfaction: if the rule
generates result in respond to the values of it’s state
parameters, and the other one is checking for
deadlocks: if the result generates within finite steps
of calculation. We define both properties as follow:

3.1. Satisfiability

We define a rule as unsatisfiable when its result
will never be True no matter what the variables’
truth-values of the rule are, i.e. the mapped state si

will never happen (be True) under the rule.
Since any rule rx has an unique truth value once

the truth values of its elementary constituents are
known, it is a well-formed Boolean expression over a
finite set of elements {S, A} and the set of logical
operations {∧ (AND), ∨ (OR), ¬ (NOT)}. And a
well-formed Boolean expression is not Satisfiable
when every possible instantiation of its variables
evaluates to False. Therefore, a rule is unsatisfiable
when the Boolean expression of the rule ri has no

True result by any assignments of its variables, for
example the rule

r1 = (s1 ∧ s2) ∨ (¬s3 ∧ s1 ∧ ¬ s2) ∧ ¬ s1 (e3)

will never be evaluated to be “true” no matter what
the truth assignments of s1, s2, and s3 are.

3.2. Deadlock

We define a rule rx as deadlocked when it has a

dependency on other rule(s), which eventually
depends back on rx itself such that the mapped state

sx will never happen because of the cyclic

referencing.
A Boolean function can be represented

efficiently using a data structure called an AND/OR
graph [17]; A rule rx as a Boolean function is

constructed to an AND/OR Graph by connecting all
the non-terminal (has dependency of other states)
sx’s in rx. The AND-OR Graph is an directed graph

G = (V, A), where V is the set of vertexes represented
by the sx’s in rx and A is the set of links represented

by the ∧ or ∨ logical relations between sx’s, with a

single vertex s0 ∈ V have in-degree 0, for each v ∈ V

having out-degree weight w(a) ∈ Z+ for each a ∈ A.
An sx is non-terminal when there is other rule in R
contains sx as its Boolean variable, i.e. there is a link

a from the non-terminal sx. G can introduce dummy

node such that each of the descendents of the dummy
node starts a sub-graph of Boolean rule that require to
be solved before it’s ancestor, for example, s2∧s3

need to be solved before the rule s1∨(s2∧s3)

represented by the dummy node sd. For checking the

deadlock validation, w(a) = 1 (see Section 4). Note
that we leave static attributes ax’s for the graph

construction, because there are no dependencies

between them. We also ignored the unary operator ¬,
since it does not invoke dependency between states.
For example, some rules in the following R.

s1 → r1 = s2 ∨ s3

s2 → r2 = s4 ∧ s5 ∧ s6

s3 → r3 = no restriction

s4 → r4 = s2

s5 → r5 = no restriction

s6 → r6 = l1 (e4)

can be converted to an AND-OR Graph as Figure 2
when s1 access request is made (r1 is evaluated).

The graph is construct by using the requested state
(s1) as the beginning note of the graph and links the

states in the rules until the terminal condition (no
restriction for access in this example) is met. Where
s3, s5, s6 are terminal nodes, and “∪” represent the

“∧” Boolean relation.

Figure 2. AND-OR Graph converted from (e4).

The satisfaction-check makes sure a rule is
satisfiable, which means a rule is evaluated to a result
according to its variables’ values at the give state
(instead of a fixed result no matter what the values of
it variables are). Even though an unsatisfiable
produces unchangeable result, we consider this check
necessary when a well-defined access control policy
implementation is required. The deadlocks-check
makes sure that a rule generates a result within a
finite number of evaluation steps; rules in deadlock
will cause infinite loops when the rule is evaluated.

4. Computational Complexity

Different from the states configuration, which
need to be set up before the access control system is
operational, the enforceability validation of rules is
usually performed at run-time when an access request
is processed, because rules may be valid (or invalid)
before an access request but invalid (or valid) when
the status of the states changes from + to – (or vice
versa), or other rules are modified/deleted at the time
when processing the next access request. For

example, when processing the sx access request, rule

rx may be invalid because it is unsatisfiable under the

current status of states, but might be satisfiable when
the status of the state sx is later changed from + to -

(therefore, removed from rx) in rx. As shown in (e3),

r1 is satisfiable when the status of s1 is changed from

+ to –, and therefore becomes “don’t care” in r1. Or,

a rule rx may be free from a deadlock when other

rule(s) is (are) later removed from R. As shown in
(e4), r1 are no longer in deadlock when r4 is

removed, or changed such that contains no non-
terminal states by the time when processing the next
s1 request. So, it is reasonable to compose a rule

without validation check, which will be performed at
run-time when an access request trigged the
authorization process.

Checking for satisfaction as we have defined it
is checking if every possible Boolean values of sxs

and axs in the rx evaluated to False. This evaluation

is a problem of Satisfiability of Boolean expression,
which is NP-Complete [18]. And in a worst case,
checking for satisfiability takes all the possible truth
assignments of all variables in S (i.e. Si = S) and A,

therefore requires 2|S|+|A| operations.
If each connection represents the reference from

one state (node) to another in an AND-OR graph,
then cycle exists when the number of connections
between nodes is equal or greater to the number of
nodes in a graph when traversing the graph form the
root to any of it’s terminal note. Therefore, checking
for deadlock of rx is equivalent to determining if all

the costs for the solutions of the AND-OR graph G
constructed from rx are at most k, where a cost is

assigned to a link (connection) between two nodes in
the graph. Since our purpose is to determine the
number of steps when traversing G, the cost is
represented by the nodes in G is fixed to 1 and k = |S|
-1. Thus a cycle therefore deadlock exists in G when
the cost accumulated exceeds the number of nodes in
G minus the root note. For example, in Fig. 5, one
solution for the determination of the cost to reach the
terminal notes from the root is (s1, s3) = 1, and the

other solution (s1, s2, s4, s5, s6) is extended to (s1,

s2, s4, s2, s5, s6) and further extended to (s1, s2, s4,

s2, s4, s5, s6) with accumulated cost equal to 6,

which exceeds |S| -1 = 5, the cost of this solution
indicates that there exists a deadlock in r1. According

to [19, 17], the AND-OR graph decision problem is
in the class of NP-Complete.

A rule rx may contain the number of elements

in S and A minus the mapping state in S: |S| + |A| - 1

s1

s2

s5 s4

s3

s6

1 1

1
1 1 1

variables in a worst case (maximum number of
variables), and |S|! expanding steps are required to
construct an equivalent AND-OR graph; note there is
no expansion required for the static attributes ax in A

as there is no dependency between them. The AND-
OR graph construction steps can be explained by the
fact that any switching functions of ∧, ∨, and ¬, rx

can be expanded into a canonical DNF (Disjunctive
Normal Form)[17] product of m+n-1 variables in S =
{s1... sm} and A ={a1... an} except the sx state that

the rx is mapped to. So, in maximum, a rule rx is

finally expanded into
k
i 1=∨ ci, where the ci is a

clause represented as
1

1
−+

=∧ nm
j lj, the lj is literal,

which is either a variable or its negation of sx or ax,

and k is equal to |A| plus all the possible combination
of S, i.e. the permutation of (|S| -1). In other words,
the final expanded rx may contain (|S| -1)! plus |A|

clauses after (|S| - 1)! number of expansion steps.
Adding the steps for each lj in each ci, the result is

|S|(|S| - 1)! = |S|! steps required to expand rx into an

equivalent AND-OR graph, because each Boolean
operation requires one step in adding note and link to
the AND-OR graph.

As summary, without considering the initial
construction of the states and rules (built according
to the access control policy), checking the
satisfiability require O(2|S|+|A|) computational steps,
and checking the deadlock condition, i.e. cyclic
reference require O(|S|!) computational steps in worst
case. And both functions are in the complexity of
NP-Complete.

As stated previously, 1, we are considering the
worst cast of enforceability validation of a generic
access control mechanism or algorithms, by generic,
we mean that mechanism or algorithms can be
implemented to cover all known and unknown access
control polices. 2, we also mentioned that to be truly
dynamic (allow access control policy to be changed
any time), the validation check has to be performed at
run-time, i.e. processed at the time when access
request needs to be authorized. 3, it is obvious that
states in the states space and rules in rules spaces are
interrelated when historical and workflow type of
polices are implemented. However, most of the
popular and practical access control
mechanism/algorithm in use are not geared for
meeting the above three requirements, therefore, are
not bond to the complexity of our discoveries.

5. Conclusion

Diversity and flexibility of access control is
becoming essential with the growth of global and
distributed computing environments such as the
Internet and Grid computing networks. Many
research efforts have focused on the solution for the
mechanisms of access control policy composition and
combination, but have not studied the issue of
efficiency such as lower complexity bounds in their
efforts. In this paper we have shown that the problem
of enforcing an arbitrary access control policy,
regardless of the kind of mechanism, is NP-
Complete, The computational complexity is critical if
the access control policy is historical or workflow
related, however, for most of the popular and
practical access control systems today are not related
to historical or workflow types of policies, therefore
does not require enforceability validation of the rules
at run-time, so the invalid check can be preformed
“off-line” of the authentication process. Further, the
enforceability validation only required when creating
or changing a state or rule and they occurs less
frequently than a users’ access request, if the
validation has been done before.

6. References

[1], Ferraiolo D. F., Cugini J. A., and Kuhn D. R., “Role-
Based Access Control (RBAC): Features and Motivations”,
Proc. for the 11th Annual Conference on Computer Security
Applications. IEEE Computer Society Press, Los Alamitos,
241-248, 1995.
[2], Hu, V., Frincke, D., Ferraiolo, D., “The Policy
Machine For Security Policy Management”, Proceeding
ICCS conference, San Francisco, 2001.
[3], Hu, V., “The Policy Machine For Universal Access
Control”, Dissertation, Computer Science Department,
University of Idaho, Idaho, 2002.
[4], Spencer R., Smalley S., Loscocco P., Hibler M.,
Andersen D., and Lepreau J., "The Flask Security
Architecture: System Support for Diverse Security
Policies", http://www.cs.utah.edu/fluz/flask, 1999.
[5], Jajodia S., Sammarati P., Subrahmanian V. S., and
Bertino E., "A unified Frame work for Enforcing Multiple
Access Control Policies", Proc. ACM SIGMOD Conf. On
Management of Data, Tucson, AZ, 1997.
[6], Hale J., Galiasso P., Papa M., and Shenoi S., "Security
Policy Coordination for Heterogeneous Information
Systems", Proc. 15th Annual Computer Security
Applications Conference, Applied Computer Security
Associates. Phoenix, AZ, December 1999.
[10], Jaeger T., Tidswell J., “Practical Satety in Flexible
Access Control Models”, ACM Transactions on
Information and System Security, Vol. 4, No. 2, Page 158-
190, May 2001.
[11], Harriosn M. A., Ruzzo W. L., and Ullman J. D.,
“Protection in Operating Systems”, Communications of the
ACM, Volume 19, 1976.
[12], Bertino E., Catanis B., Ferrari E., Perlasca P., “A
Logical Framework for Reasoning about Access Control

Models”, ACM Transitions on Information and System
Security, Vol. 6, No. 1, Page 71-127, February 2003.
[13], Bonatti P., Vimercati S. D. C. D., Samarati P., “An
Algera for Composing Access Control Policies”, ACM
Transitions on Information and System Security, Vol. 5, No.
1, Page 1-35 , February 2002.
[14], Bell D. E., Lapadula L. J., “Secure Computer
Systems: Mathematical Foundations and Model”, M74-244,
MITRE Corp., Bedford, Mass., 1973.
[15], Brewer D., Nash M., “The Chinese Wall Security
Policy”, Proc IEEE Symp Security & Privacy, IEEE Comp
Soc Press, page 206-214, 1989.
[16] Clark D. D., and Wilson D. R., "A Comparison of
Commercial and Military Security Policies," Proc. of the
1987 IEEE Symposium on Security and Privacy, page184-
194, Oakland, California, 1987.
[17], Horowitz, E., Sahni, S., “Fundamentals of Computer
Algorithms”, Computer Software Engineering Series,
Computer Science Press, INC, 530-532, 1978.
 [18], Cook, S. A.,“The complexity of theorem-proving
procedures, “ Proc. 3rd Ann. ACM Symp. On Theory of
Computing, Association for Computing Machinery, Page
151-158, New York, 1971.
[19], Garey, M. R., Johnson, D. S., “Computers and
Intractability – A guide to the Theory of NP-
Completeness”, W.H. FREEMAN AND COMPANY, New
York, 283, 1978.

