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Abstract
A theory is presented for estimating the uncertainty of a frequency
comparison in the presence of distributed dead time or measurement interval
offset using an extension of the method of Douglas and Boulanger (1997
Proc. 11th European Frequency and Time Forum pp 345–9). The
uncertainties due to the distributed dead time and lumped dead time with
mixed power law noise type are calculated and compared. It is shown that
the use of distributed measurements of frequencies can greatly reduce the
uncertainty as compared with that of lumped measurements. When
a measurement interval offset is present, two different methods
are possible for the frequency estimation and uncertainty evaluation.
We compare and discuss the different results for the different
methods.

1. Introduction

Most laboratory built primary standards are operated as
frequency standards and not as continuously running clocks.
The operation of a primary frequency standard such as a
caesium fountain continuously for tens of days is a difficult
task. Thus the dead time or the measurement interval
offset generally cannot be avoided when we compare the
frequency of a primary frequency standard to that of a
spatially remote standard or to International Atomic Time
(TAI). This is also true for the same standard compared to
itself at different times. This comparison process generally
involves a stable but not necessarily accurate, secondary, or
transfer, frequency standard such as a hydrogen maser, a maser
ensemble or TAI. A primary frequency standard measures
the frequency of the transfer standard, and comparisons
to other standards with dead time or to itself with a
measurement interval offset depend on the stability of the
transfer standard. High precision frequency comparison,
therefore, needs accurate knowledge of the uncertainty
caused by the dead time and/or measurement interval
offset.
∗ US government work, not protected by US copyright.

Azoubib et al presented a method of comparing the
frequencies from several standards or the same standard at
different times with that of TAI [2]. They focused mainly on
the frequency comparison with measurement interval offset,
and each of the frequency measurements was assumed not to
have dead time in it or an unknown dead time. Douglas and
Boulanger performed a similar analysis for the dead time or
measurement interval offset and presented a simple method to
calculate the uncertainty due to a transfer process from one
time interval to another [1]. Before this work, they developed
a formalism to calculate the local oscillator’s contribution
to the uncertainty of a caesium fountain running in a quasi-
continuous fashion [3]. This method was used for the analysis
of time scale work [4] and the frequency transfer uncertainty
for the hydrogen maser calibrated with a caesium fountain
[5–7]. Examination of multiple calibration runs and a drifting
secondary frequency standard were also treated in these works.
Parker et al obtained an approximate solution that estimated
uncertainty in the presence of uniformly distributed dead
time [8].

In this paper, we present a simple method to extend the
previous study [1] of calculating the uncertainty due to any
form of dead time or measurement interval offset and compare
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the differences between the different configurations of dead
time or measurement interval offset.

2. Theory

Assume the live frequency measurements in an interval A are
performed at N different times with (N − 1) dead times in
between. We can calculate a weighted mean of the frequencies
using all the live measurements. If we want to compare the
measured and calculated frequency with that at another time
interval B (which may either contain all the live measurements
or has no overlap with them), the uncertainty caused by the
transfer process must also be calculated. The uncertainty U

can be expressed as the mean-square difference between these
two frequencies:

U 2 =
〈(

N∑
i=1

aiyi − yT

)2〉
, (1)

where yi and ai are the ith measured frequency and normalized
weight, respectively, in the interval A, and yT is the unknown
‘true’ frequency for an interval B. It can easily be shown that
equation (1) can be expanded into equation (2). We assume
that the signal is stationary and the interchange of the order
of the integration in calculating autocovariance gives the same
value. This step allows the results of [1] to be extended to the
case with the distributed live measurements:

U 2 =
N∑

i=1

ai〈(yi − yT)2〉 − 1

2

N∑
i,j=1

aiaj 〈(yi − yj )
2〉. (2)

As seen in equation (2), the uncertainty variance is
the weighted sum of variances of each live interval to
transfer to interval B, minus the weighted sum of covariance
terms of all possible combinations between the two live
measurements. The uncertainty can easily be calculated with
proper assignment of the weights ai and the analytical solutions
for the uncertainties 〈(yi − yT)2〉 and 〈(yi − yj )

2〉 found in
[1, 3–7]. The detailed assumptions such as the band limit of
the upper and lower frequency cut-off to get the analytical
solutions are also explained in the references. We can simply
use the same weights for all the live measurements, but
this will not produce the optimum frequency estimate with
the minimum uncertainty. Given any configuration of live
measurements, the weights ai to minimize the uncertainty can
be calculated by the Lagrangian multiplier method. We define
the function F by

F = U 2 + λ

(
N∑

i=1

ai − 1

)
. (3)

By using equation (2), the minimum of U 2 is reached
when

∂F

∂ai

= 〈(yi − yT)2〉 −
N∑

j=1

aj 〈(yi − yj )
2〉 + λ = 0, (4.1)

∂F

∂λ
=

N∑
i=1

ai − 1 = 0. (4.2)

Optimum weights for minimizing the uncertainty can
easily be calculated by solving the above (N + 1) linear
equations with (N + 1) variables. As is well known for
the specific case of white frequency modulation (FM) noise,
the solution shows that only the total measurement live time
matters, and the weight of each measurement is proportional
to the measurement interval, i.e. inversely proportional to the
Allan variance, as follows:

ai = τi

/ N∑
j=1

τj = (1/σ 2
y (τi))

/ N∑
j=1

(1/σ 2
y (τj )), (5)

where τi is the ith measurement interval. However, the
optimum weights do not exactly follow equation (5) when there
are other power law noise types.

3. Uncertainty with distributed dead time

To gain a better understanding of the practical effects of the
dead time, we use a reference time scale with a specific
mixed noise type used in [8] throughout this paper. The noise
characteristics, σy(τ ), of the reference time scale are assumed
to be defined in terms of the three basic noise types (white FM,
flicker FM and random-walk FM). Allan deviations of the three
noise types are 4 × 10−16τ−1/2 for white FM, 4 × 10−16 for
flicker FM and 1.3 × 10−16τ 1/2 for random-walk FM, where
τ is expressed in days. These noise levels are representative
of a small ensemble of active hydrogen masers. Here it is
assumed that the individual maser frequency drift parameters
are included in the ensemble algorithm, and therefore the
ensemble frequency has negligible drift. This is the case with
the NIST ensemble. Negligible drift is also present in the TAI.
If a single maser with drift is used as a reference it may be
necessary to symmetrize the dead time about the centre of the
measurement interval in order to minimize the effect of the
linear component of the drift.

First, to test the theory, we generated an ensemble of
1000 simulated time series data sets with the given mixed
noise type from above. We used a software (Stable 32) to
generate the data sets and the noise generation is known to be
based on the works by Kasdin and Walter [9] and Greenhall
[10]. We calculated two different frequencies for a given total
accumulated measurement time for each data set. One is an
estimated frequency obtained by averaging the frequencies of
live measurements and the other is the ‘true’ average frequency
found from the end points of the data set. We obtained
the variance by averaging the differences between the two
frequencies squared for all the simulated time series data sets.
We also calculated the theoretical values from equation (2)
and compared the simulated and theoretical variances. We
tested the uncertainties due to lumped and distributed dead
time. We assume that interval B is of 60 days and all the
measurements are performed within this interval B. All the
live time is at the beginning of interval B for the lumped dead
time case, and the live and dead times are 1 day, respectively,
and alternate from the beginning for the distributed dead time
case. A 3 day measurement example is shown in figure 1.
The same weights for all 1 day live measurements are used.
As shown in figure 2, the theoretical and ‘true’ results from
the simulated data are in good agreement, confirming that the
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t / Days

Figure 1. 3 day measurement example with lumped and distributed
dead time around the beginning.
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Figure 2. Frequency uncertainty due to dead time in a 60 day
evaluation interval (live measurements around the beginning).

analytical approach is correct. The slight discrepancy between
the analytical and ‘true’ results in figure 2 at low run time
values is most likely due to the difficulty in generating true
simulated flicker frequency noise. Also we should note that
the uncertainty due to distributed dead time is always smaller
than that due to the lumped case as estimated in [8]. We also
carried out similar comparisons for individual noise types and
found good agreement there as well.

Since live measurements are usually centred in the middle
of the 30 day reporting interval for the evaluation of a primary
frequency standard, we compared the theoretically calculated
uncertainty due to lumped dead time centred at the 30 day
interval and the distributed case of each 1 day live time
distributed symmetrically with the same dead time from the
end and the in-between intervals along the reporting interval.
A 3 day measurement example is shown in figure 3. The results
are shown in figure 4. The dotted line is for the lumped case
and the solid line is for the distributed case with the weights
proportional to each separate live measurement interval. Since
all the live measurements have the same 1 day interval, the
solid line is the uncertainty with equal weights. The circle
points are for the distributed case with the weights optimized
to minimize the uncertainty. The difference between the
lumped and distributed cases is remarkable. The uncertainty
due to the distributed dead time can be less than one third
of that of the lumped case for a given total accumulated run
time. In other words, for example, we need over 25 days of
evaluation in the lumped case to have the uncertainty less

t / Days

Figure 3. 3 day measurement example with lumped and distributed
dead time around the centre.
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Figure 4. Fractional frequency uncertainty due to dead time in a
30 day evaluation interval (live measurements around the centre).

than 1.0 × 10−16. However, 15 days of distributed run time
is enough in the distributed case to reduce the uncertainty
below the 1.0 × 10−16 level. Figure 5 shows the optimum
weights for various total accumulated measurement times. As
can be seen more clearly for a relatively small number of
measurements, the measurements done at either end have the
larger weights and those at the centre show lower values. For
the total measurement time of 6 days, each of the two centre
measurements has a weight corresponding to 85% of that at
either edge. As for the uncertainty, the weight optimization
does not appreciably reduce the uncertainty for the considered
mixed noise type. The maximum difference between the two
distributed cases was 1.5 × 10−18. This means that weight
proportional to the interval is nearly optimum in practical
applications.

4. Uncertainty with measurement interval offset

We also investigated the effect of a measurement interval
offset on the uncertainty of frequency transfer. As shown in
figure 6, we assume that the frequency was measured during
the interval A and is compared with itself at another interval
B. Live measurements are distributed in the interval A in
the same way, as shown in figure 3. Intervals A and B are
assumed to have the same 30 day duration. The same specific
reference time scale used in the above section is also used for
this section. The uncertainty due to the frequency transfer to
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Figure 5. Normalized weights to minimize the uncertainty due to
dead time in a 30 day evaluation interval (live measurements around
the centre).

Figure 6. Measurement configuration of the frequency and the
uncertainty with measurement interval offset. Intervals A and B
have the same duration.

the later interval B with measurement interval offset can be
calculated in two different ways.

4.1. Method 1

Measurements done in the interval A can be used to estimate
frequencies for the whole interval A or B by use of
equation (1). Estimated frequencies are generally different
for intervals A and B since optimum weights obtained from
equations (4.1)–(4.2) are different for different target intervals.
A direct frequency estimate for the target interval B will be
considered in method 2 below. Usually we have a frequency
estimate and its uncertainty for the target interval A by use of
the measurements of yi with dead time calculated even before
the interval B arrives. If we want to know the uncertainty
in using this frequency estimate for the interval A to transfer
the frequency to the later interval B, we should consider the
uncertainty due to the measurement interval offset between
intervals A and B as well as the uncertainty due to dead time
within the interval A. It seems that this is the usual way of
the frequency transfer process. In this case, the uncertainty
varianceu1 can be expressed by use of equation (1) as follows:

u2
1 =

〈(
N∑

i=1

aAiyi − yB + yA − yA

)2〉
= u2

A + u2
O + uC,

(6.1)

u2
A =

〈(
N∑

i=1

aAiyi − yA

)2〉
, (6.2)

u2
O = 〈(yA − yB)2〉, (6.3)

uC = 2

〈(
N∑

i=1

aAiyi − yA)(yA − yB

)〉
, (6.4)
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Figure 7. The percentage of the correction term with respect to the
uncertainty u1 in equations (6.1)–(6.4).

where aAi is the weight optimized to estimate the frequency
in interval A and yA and yB are, respectively, the ‘true’
frequencies of intervals A and B. uA is the uncertainty to
estimate the ‘true’ frequency yA for the interval A due to
dead time, uO is the uncertainty to compare yA to yB due to
measurement interval offset and uC is the correlation term due
to the non-white noise of the reference time scale. aAi are
the weights that minimize uA in equation (6.2). As clearly seen
in equations (6.1)–(6.4), we should be careful when calculating

the total uncertainty, since the uncertainty is not just
√

u2
A + u2

O

but has a correlation term. Sub-processes of estimating the
frequency for an interval A and transferring it to the interval B
are referred to the same reference time scale. If the reference
time scale has non-white noise, an appropriate correction due
to the correlation should also be made.

4.2. Method 2

As already noted in method 1, we can calculate a new weighted
average of all the frequency measurements done in interval A
by going directly to an estimate of the ‘true’ frequency for the
interval B. We use equation (1) but with the interval B now
lying outside the interval including all the real measurements.
If we call the optimum weights for this case aBi , then the
aBi come from minimizing directly the total uncertainty in
equation (6.1). Since the weights aAi and aBi are generally
different, the frequency estimates and the total uncertainties
also have different values.

First, we investigate the effect of the correlation term of
method 1 in equations (6.1)–(6.4). Twenty days of lumped
live measurements are performed at three different times for
the beginning, middle and ending of the interval A. For each
case, we calculate the difference between the ‘true’ total
uncertainty u1 and the incorrectly assumed total uncertainty√

u2
A + u2

O, divided by u1. This can be called the ‘relative
uncertainty error’ and is shown in figure 7. Use of the estimated
frequency in interval A to compare it in interval B with the

simple uncertainty of
√

u2
A + u2

O can produce errors as large
as 10% of the correct uncertainty that are biased low or high
depending upon when the measurement is performed. The
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Figure 8. The uncertainties obtained by two different methods.
Total accumulated run time is 20 days with 1 day consecutive
measurements distributed as shown in figure 3.

maximum difference between the beginning and the ending
measurement case is more than 20% of the correct uncertainty
and corresponds to 2.5 × 10−16 in magnitude for the assumed
time scale noise. The relative uncertainty error becomes larger
as the offset becomes smaller. Generally, the error depends on
the total accumulated time, position and distribution of the live
measurements in interval A and is due mostly to the random-
walk FM noise. If the reference time scale has a large random-
walk FM noise level, the error cannot be neglected. This result
shows that detailed information may be necessary to compare
frequencies with the correct uncertainty in the presence of
dead time. In [2], each calibration was assumed to have no
dead time in it. If the calibration were done with dead time,
the uncertainty would have a contributing term other than
the reported dead time uncertainty uA and the measurement
interval offset uncertainty uO. This may lead to different
weights for the presumably same calibrations but they may
actually have different configurations of dead time in them.

Figure 8 shows the uncertainty obtained by the above two
different methods. The total accumulated run time is 20 days
with 1 day live measurements distributed in the same way
as shown in figure 3. Also shown is the difference between
the two uncertainties. Method 1 first calculates the optimum
frequency estimate for an interval A and uses it for another
interval B with measurement interval offset. As shown in
figure 8, when the estimated frequency for an interval A is used
for an interval B, the uncertainty is always larger than that when
a frequency estimate is calculated for the interval B directly.
In other words, method 1 is optimum for a frequency estimate
for interval A but not for another interval B. Generally, the
frequencies are different for the different methods since the
weights are different. Different optimum weights for the two
different methods are shown in figure 9 when the measurement
interval offset is 200 days. Since method 1 uses optimum
weights for the interval A, the weights for all 20 separate
measurements are almost the same, as already shown in
figure 5. However, the optimum weights for method 2 have a
different behaviour. The measurement closest to interval B has
the largest weight. The first measurement, which is furthest
away from the target interval B, also has a relatively large
weight compared with the measurements done around the
centre. This behaviour is due largely to the random-walk FM
noise of the reference time scale.
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Figure 9. The optimum weights obtained by two different methods
when the measurement interval offset is 200 days.

5. Conclusion

We have developed a simple method to calculate the
uncertainty of a frequency comparison in the presence of
arbitrary configurations of dead time and measurement interval
offset. The results show that given a real mixed noise type
model, the uncertainty due to dead time for a given total
accumulated run time can be reduced to less than one third with
distributed measurements of frequencies compared with the
lumped measurement. In other words, 15 days of distributed
run time is enough to reduce the uncertainty below 1.0×10−16

compared with 25 days needed for the lumped case.
We also investigated the effect on the frequency transfer

uncertainty of a measurement interval offset. There are two
different methods to estimate the frequency for the target
interval with measurement interval offset. Use of the ‘old’
estimated frequency always has a higher uncertainty than
that found by estimating the ‘new’ frequency with the ‘old’
individual measurements. We also demonstrated that the
uncertainty of using a two-step estimating process, where the
frequency for an ‘old’ interval is estimated and then transferred
to the ‘new’ interval, is not as simple as taking the square root
of the sum of the two uncertainties squared. For the considered
reference time scale, the correction terms due to correlations
can be more than 10% of the true values. The maximum
difference between the beginning and the ending measurement
case is more than 20% of the correct uncertainty.
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