
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2006; 16:215–266
Published online 12 January 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr.340

Integration testing of
object-oriented components
using finite state machines

Leonard Gallagher1, Jeff Offutt2,∗,† and Anthony Cincotta1

1Information Technology Laboratory, National Institute of Standards and Technology,
Gaithersburg, MD 20899-8970, U.S.A.
2Information and Software Engineering Department, George Mason University,
Fairfax, VA 22032-4444, U.S.A.

SUMMARY

In object-oriented terms, one of the goals of integration testing is to ensure that messages from objects
in one class or component are sent and received in the proper order and have the intended effect on
the state of the objects that receive the messages. This research extends an existing single-class testing
technique to integration testing of multiple classes. The single-class technique models the behaviour of a
single class as a finite state machine, transforms the representation into a data flow graph that explicitly
identifies the definitions and uses of each state variable of the class, and then applies conventional data
flow testing to produce test case specifications that can be used to test the class. This paper extends
those ideas to inter-class testing by developing flow graphs, finding paths between pairs of definitions
and uses, detecting some infeasible paths and automatically generating tests for an arbitrary number of
classes and components. It introduces flexible representations for message sending and receiving among
objects and allows concurrency among any or all classes and components. Data flow graphs are stored
in a relational database and database queries are used to gather def-use information. This approach is
conceptually simple, mathematically precise, quite powerful and general enough to be used for traditional
data flow analysis. This testing approach relies on finite state machines, database modelling and processing
techniques and algorithms for analysis and traversal of directed graphs. The paper presents empirical
results of the approach applied to an automotive system. This work was prepared by U.S. Government
employees as part of their official duties and is, therefore, a work of the U.S. Government and not subject
to copyright. Published in 2006 by John Wiley & Sons, Ltd.

KEY WORDS: software integration testing; data flow testing; data modelling; finite state machines; object-
oriented

∗Correspondence to: Jeff Offutt, Information and Software Engineering Department, George Mason University, Fairfax,
VA 22032-4444, U.S.A.
†E-mail: offutt@ise.gmu.edu

Contract/grant sponsor: U.S. National Science Foundation; contract/grant number: CCR-98-04111

This article is a U.S. Government work and is in the public domain in the U.S.A.
Received 7 March 2001

Accepted 18 August 2005

216 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

1. INTRODUCTION

Testing of object-oriented software is complicated by the fact that software being tested is often
constructed from a combination of previously written, off-the-shelf components with some new
components developed to satisfy new requirements. The previously written components are often
‘sealed’ so that source code is not available, yet objects in the new components will interoperate
via messages with objects in the existing components. Software conformance testing is the act of
determining whether or not a software product conforms to a functional specification, where the
functional specification is a set of rules that the product must satisfy. One goal of this paper is to
provide conformance-testing techniques for the integration of new product components into a complete
software system.

Each component is assumed to be object-oriented, that is, it is implemented with objects that have
state and behaviour. In this paper, a class is the basic unit of semantic abstraction, a component is
a closely related collection of classes and a system is a collection of components designed to solve a
problem. Each component is assumed to be a separate executable entity, thereby allowing asynchronous
behaviour. An object is an instance of a class. Each object has state and behaviour, where state is
determined by the values of variables defined in the class and behaviour is determined by methods
(functions or procedures) defined in the class that operate on one or more objects to read and modify
their state variables. The behaviour of an object when acted upon by a method can be modelled as the
effect the method has on the variables of that object (the state), together with the messages it sends to
other objects. Variables declared by the class that have one instance for each object are called instance
variables and variables that are shared among all objects of the class (static in Java) are class variables.
The results in this paper are independent of programming language and this paper uses a mix of Java
and C++ terminology.

If a finite state machine represents the states and transitions of a class, then the behaviour of an
object can be captured as a set of transition rules for each method. Thus finite state machines are
often used for class specifications in object-oriented analysis and design [1–4]. The behaviour of a
component is specified by the behaviour of its constituent classes. The public interface to a component
is a list of public classes, which are accessed through the public methods in those classes. A state
transition specification for a class is the set of state transition rules for each method of the class.
The state of an object is determined by the values of its instance and class variables, which are
collectively called state variables. Given a state transition specification for each class in a software
system, the goal of this research is to construct test specifications that are used to construct an
executable test suite to determine if an implementation of a software system conforms to its functional
specification.

This paper uses definitions from Booch [5] and Rumbaugh et al. [6] to characterize an object as
something that has state, behaviour and identity. Also, an object’s class is characterized in terms of the
states, events and transitions of a finite state machine. A graph model of the software is used as a basis
for generating test specifications. Hong et al. [7] developed a class-level flow graph to represent control
and data flow within a single class. This research uses their ideas as a basis for integration testing of
multiple interacting classes. The state transition specification is stored in a database, which is then
used as a basis for creating a component flow graph, which includes control and data flow information.
The methodology described here defines test criteria on this graph and generates test specifications to
satisfy the criteria.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 217

The paper describes a process that begins with state transition specifications for each class in an
object-oriented software system, defines the transitions that are relevant to a specific component of that
system and then translates the relevant transitions into a component flow graph with nodes and edges
labelled for control and variable definitions and uses. Test criteria are defined on this graph and sets
of paths are selected that constitute test specifications to satisfy the criteria. Executable tests are then
constructed from the test specifications.

The use of a database to store definition/use information makes it convenient to provide additional
information to the tester. In traditional data flow testing [8], the tester is provided with pairs of
definitions and uses of variables (def-use pairs) and the tester attempts to find tests to cover those
DU-pairs by supplying tests through an instrumented program. These tests are sometimes random,
arbitrary, automatically generated or generated by humans with well-defined goals. Traditional data
flow testing works for individual functions because the number of possible tests is fairly small but is
likely to run into trouble during inter-class testing because the number of possible tests is much larger.
Thus it is necessary to provide the tester with more information. The database representation helps
provide more information; instead of simply identifying def-use pairs, the tester is given full paths
between the definitions and uses (DU-paths). In traditional code-based data flow testing, storing the
complete path predicates for anything more than a tiny (20–50 lines of code) function is impractical
and this has been a factor in the lack of widespread adoption of the technique. Using the database
allows efficient management of these potentially large predicates.

The attributes and constraints of classes and methods are modelled as attributes and constraints of
tables in a relational database. In this manner, mathematical specifications over the class properties
can be translated to database operations. Sections 3–6 describe the process of representing state
transition specifications in a database, determining relevant transitions in the state machine, generating
a component flow graph and determining test specifications. Section 7 presents empirical results from
applying this technique to an automotive system that includes the cruise control, engine, brakes, gas,
throttle, ignition, transmission, wheels and displays.

2. BACKGROUND

Much of testing has been based on data and control flow through programs [8,9]. In such testing, graphs
are defined in which nodes are formed from basic blocks, which are maximal sequences of straight-
line statements with the property that if the first statement is executed, then all the statements will be
executed. In a control flow graph, edges are formed from the branching statements of the program.
A definition (def) of a memory location x is a node in which x is given a value and a use is a node in
which that value is accessed, either through the same name or a different name via aliasing. An edge
is formed from nodes in which a memory location is defined to nodes in which the memory location is
used and there is a def-clear control subpath from the def to the use. A def-clear subpath for a location
x is a control subpath that does not contain a definition of x. A DU-pair is a definition and a use of the
same location such that there is a def-clear subpath from the def to the use. A DU-path is a def-clear
subpath from a specific definition to a use.

Data flow testing criteria [8,10,11] require tests that execute from data definitions to data uses under
various conditions. Most research papers in data flow analysis have derived graphs directly from the
code, referred to as traditional data flow analysis here. This paper uses a form of data flow analysis

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

218 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

that is defined on finite state machines that are derived from the behaviour of classes; thus the data flow
might not be directly reflected in the implementation.

Harrold and Rothermel [12] describe an approach that applies traditional data-flow analysis to
classes. That approach emphasizes three levels of testing: (1) intra-method testing, in which tests are
constructed for individual methods; (2) inter-method testing, in which multiple methods within a class
are tested in concert; and (3) intra-class testing in which tests are constructed for a single class, usually
as sequences of calls to methods within the class. Integration testing attempts to test interactions among
different classes; thus this paper introduces the term inter-class testing, in which more than one class is
tested at the same time. To perform these analyses, Harrold and Rothermel represent a class as a Class
Control Flow Graph (CCFG), which contains information that can be used during testing.

Most research in object-oriented testing has been at the intra-class level. This includes work by
Hong et al. [7], Parrish et al. [13], Turner and Robson [4], Doong and Frankl [14] and Chen et al. [15].
Intra-class testing strategies focus on one class at a time, so do not look for problems that exist in
the interfaces between classes or in inheritance and polymorphism among classes. In their TACCLE
methodology [16], Chen et al. define class semantics algebraically as axioms and construct test cases as
paths through a state-transition diagram with path selection based on attributely non-equivalent ground
terms. They extend this methodology to multiple classes by defining inter-class semantics in terms of
contracts. The contract notion increases complexity substantially and is difficult to re-use when other
components are added to the system.

Inter-class testing work has been done by Jin and Offutt [17], who defined coupling-based testing,
which requires tests to be found that cover code-level control and data couplings between methods in
different classes. Alexander and Offutt [18,19] have extended these ideas to cover couplings formed
from inheritance and polymorphism. Chen and Kao [1] describe an approach to testing object-oriented
programs called Object Flow Testing, in which testing is guided by data definitions and uses in pairs of
methods that are called by the same caller and in which testing should cover all possible type bindings
in the presence of polymorphism. Kung et al. [20] address object-oriented testing of inheritance,
aggregation and association relationships among multiple classes in C++ source code by automatically
generating an object-relation diagram and finding a test in order to minimize the effort to construct test
stubs.

Some related work has been done on the subject of testing Web software. Kung et al. [21,22] and Liu
et al. [23] have carried out some initial work in this area. They have developed a model to represent
Web sites as a graph and provide preliminary definitions for developing tests based on the graph in
terms of Web page traversals. They define intra-object testing, where test paths are selected for the
variables that have def-use chains within an object, inter-object testing, where test paths are selected
for variables that have def-use chains across objects and inter-client testing, where tests are derived
from a reachability graph related to the data interactions among clients.

This paper extends the intra-class data flow work by Hong et al. [7] to the inter-class level, thus
providing full integration level testing. This paper does not explicitly deal with inheritance and
polymorphism.

Following Rumbaugh et al. [6], the behaviour of a class is specified as a finite state machine in
terms of states and events. When an event is received, a transition occurs and the current state, a guard
and the event determine the next state. A state is represented by a categorization of values of the state
variables, i.e. by a predicate that evaluates to true. Note that state predicates are explicitly allowed to

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 219

overlap, that is, two states may share the same predicate. In this case, a target state is determined by all
of the properties of a transition, not just the predicate that defines the target state.

A transition is composed of a source state, a target state, an event, a guard and a sequence of actions.
Events are represented as calls to member functions of the class. A guard is a predicate that must be true
for the transition to be taken; guards are expressed in terms of predicates over state variables (possibly
from multiple classes) and input parameters to the event function. An action is an operation that is
performed when the transition occurs; actions are usually expressed as assignments to class member
variables, calls sent to other objects and values that are returned from the event method. A sequence of
actions is assumed to be a block of code in which all operations are executed if any one is executed.

Pre-conditions and post-conditions of methods in a class can be derived directly from the transitions.
The pre-condition is a combination of the predicates of the source state and the guard; the post-
condition is the predicate of the target state. Note that the post-condition derived from a transition
is not the strongest post-condition. If the tester desired, state definitions could be more refined, which
would allow stronger post-conditions. In turn, stronger post-conditions would yield larger graphs and
more tests, so this becomes a choice of granularity that results in a cost versus potential benefit
tradeoff. Although future experimentation may provide some guidance, it is likely that the wisdom
and experience of both system analysts and test engineers will be needed to make the best choice of
granularity.

A class state machine (CSM) for a single class is defined in Definition 1. This definition is from
Hong et al.’s paper [7], with the addition of the parameter set P , which will be needed for multiple
classes. The CSM is extended to a CSM for multiple classes in Section 2.2.

Definition 1. (CSM) A class state machine of a class C is a tuple (V, F, P, S, T), where the following
statements apply.

• V is a finite set of instance variables of C.
• F is a finite set of member functions of C.
• P is a finite set of parameters of member functions.
• S is a finite set of states, S = {s|s = (pred)} where pred is a predicate on the instance variables

in V .
• T is a finite set of transitions, T = {t|t = (source, target, fn, guard, action)} where:

◦ source, target ∈ S are the states before and after the transition;
◦ fn ∈ F is a member function that triggers t if the guard predicate evaluates to true;
◦ guard is a predicate on instance variables in V and parameters of member functions in F ;
◦ action is a sequence of computations on instance variables in V and parameters of member

functions in F .

2.1. Single-class example—Engine

As a simple example, consider a class Engine, which has states ON and OFF, instance variables speed
and keyOn and methods Start(sp) and Stop(). Each state is associated with values of the instance
variables as follows:

OFF: speed = 0 ∧ keyOn = false; ON: 0 ≤ speed ≤ 110 ∧ keyOn = true

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

220 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

OFF ON

t 1

t 7

t 2 t 3

t 4

t 8

t 9 t 5

t 6

S
 f

S
0

Figure 1. CSM for Engine.

In the Engine example, the transition from OFF to ON is triggered by the class member function
Start(). The guard for this transition should require the key to be in (keyOn = true) and the action
should specify that the speed is set (speed = sp). The sets of variables, member functions, states and
transitions are defined as follows:

S = {S0, Sf, ON, OFF}
V= {int speed, boolean keyOn}
F = {Engine (), ∼Engine (), setKeyOn (boolean in), Start (int sp), Stop (), setSpeed (int sp),

int getSpeed ()}
P = {setKeyOn: in, Start: sp, setSpeed: sp }
T = {ti|1 ≤ i ≤ 9}

t1 = (S0, OFF, Engine(), true, {speed = 0, keyOn = false})
t2 = (OFF, OFF, getSpeed(), true, {return speed})
t3 = (OFF, OFF, setKeyOn(in), true, {keyOn = in})
t4 = (OFF, ON, Start(sp), keyOn==true ∧ 0 ≤ sp ≤ 110, {speed = sp})
t5 = (OFF, Sf, ∼Engine(), true, { })
t6 = (ON, ON, getSpeed(), true, {return speed })
t7 = (ON, ON, setSpeed(sp), 0 ≤ sp ≤ 110, {speed = sp})
t8 = (ON, OFF, Stop(), true, {speed = 0})
t9 = (ON, Sf, ∼Engine(), true, { })

Engine() and ∼Engine() are the class constructors and destructors. The method setKeyOn(in) allows
the key to be inserted into the ignition and setSpeed(sp) and getSpeed() control the speed of the engine.
Start(sp) starts the engine running at speed sp and Stop() turns the engine off. The state transition
diagram for Engine is shown in Figure 1, with each transition represented as a labelled and directed arc
between two states.

In the class Engine, the engine is turned on (transition t4) by method Start(sp) and can only be turned
on if the key is in the ignition and the initial speed is between 0 and 110 (the guard keyOn==true
∧ 0 ≤ sp ≤ 110). If the guard is true, then the new speed is set to the parameter given to the Start()
method (the action speed = sp). The other transitions are similar to t4.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 221

Table I. Classes in CruiseControl components.

Component Classes

Acceleration GasUser, Throttle, Transmission, Wheel
Brakes BrakeUser, BrakeControl
Automobile CruiseUser, CruiseUnit
Engine Engine
InstrumentPanel Gauges
SystemControl AutoSystem, Ignition

2.2. Multi-class example—Automobile

Inter-class integration testing addresses interactions among multiple components, so the following
example modifies the Engine class from Section 2.1 and integrates it with other components. Each
message received by an object is interpreted as an event. Components can function as independent
processes, possibly running on different computers and possibly receiving concurrent messages from
many sources, so the sending object may not be certain of the recipient object’s state when the event is
processed.

The Automobile system consists of six core components: Acceleration; Brakes; CruiseControl;
Engine; InstrumentPanel; and SystemControl. This example tests how the CruiseControl component
integrates with the remainder of the system. The classes that make up the components are shown in
Table I.

The Ignition, GasUser, BrakeUser, Transmission and CruiseUser classes have external interfaces
that are accessible to a human driver. The Gauges are all read-only for external users but these human
observations are not part of the automobile specification. The CruiseUser class has an On/Off switch,
as well as Cancel, Resume/Accel (RA) and Set/Decel (SD) buttons for CruiseControl. If the user holds
the RA or SD button down, the user mode is that button; when the button is released the user mode
returns to Neutral (NT). Environmental conditions such as wind and hills are simulated by an externally
controlled ExternalDrag variable. Users can use controls in the car to invoke 12 methods:

BrakeUser.IsActive (status) status ∈ {true, false}
BrakeUser.PedalPressure (press) 0 ≤ press ≤ 99
CruiseUser.Cancel()
CruiseUser.Mode (mode) mode ∈ {NT, SD, RA}
CruiseUser.Switch (status) status ∈ {On, Off }
Engine.ExternalDrag (drag) 0 ≤ drag ≤ 2
GasUser.PedalPosition (position) 0 ≤ position ≤ 99
Gauges.OilPressure (press) press ≥ 0
Gauges.WaterTemp (temp) temp ≥ 0
Ignition.Key(status) status ∈ {On, Off }
Ignition.StartEngine()
Transmission.Gear(gear) gear ∈ {N, R, 1, 2, 3, 4, 5}

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

222 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

 Brake

 User Engine

 Trans-

 mission

 Wheel

 Gauges

Ignition

 Gas

 User

Cruise

User

 Brake

 Control

 Auto

 System
 Cruise

 Unit

 Throttle

Figure 2. Class-to-class data flow.

All other methods are internal methods that can only be invoked by internal actions. Thus, all test
case inputs are sequences of calls to the above 12 methods. The CruiseUser class has a number of non-
feasible transitions; for example, the cruise control RA button cannot be pushed at the same time as the
SD button because their physical placement prohibits them from being depressed simultaneously.

Definition 1 is extended to define a combined CSM for multiple classes by merging the sets
V,F, P, S and T and adding a new set C of classes. The resulting tuple is (C, V, F, P, S, T). For the
automotive example, C is a set of 12 classes, V is a set of 58 variables consisting of the union of
all state variables from each class, F is a set of 106 methods consisting of the union of all member
functions from each class, P is a set of 44 parameters representing inputs of mutator functions, S is a
set of 44 states consisting of the union of all states from each class and T is a set of 263 transitions
consisting of the union of all transitions from each class. A database schema for representing these sets
and the relationships among them is defined in Section 3 and a partial table that lists relevant transitions
for the CruiseControl component of a combined CSM is given in Appendix A.

Figure 2 is a directed graph that shows an abstraction of the relevant communication paths among the
classes. Since the Gauges class is passive, the double-arrow between CruiseUnit and Gauges indicates
that methods in CruiseUnit can read from and write to state variables in Gauges. The Throttle class,
however, is active and can change the pedal position in GasUser as well as increase the gas supply
to the Engine. In order to simulate road conditions such as hills, the Engine class has an externally
controlled drag variable that changes Engine Revolutions per minute (Rpm) and thereby affects the
axel speed of the Wheel and ultimately the speedometer setting in Gauges. The Wheel sets the speed in
Gauges, so the loop from CruiseUnit through Throttle, Engine, Wheel and Gauges back to CruiseUnit
will be important in integration testing.

The automobile example uses some special syntax to distinguish a situation where an object sends
an asynchronous message to itself with the intent that the message is put on a queue to be acted
upon in a subsequent transition. This is used in several classes in lieu of a system clock to keep
processes from terminating. For example, in most of the cruise control transitions, the action of the

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 223

Component

flow

graph Identify

relevant

transitions

Def/Use

nodes &

edges

Candidate

test

paths

Identify

component

to test

DB

representation

of spec

Test Sequence

Generator
Executable

test

sequences

Figure 3. Flow of tool automation.

transition will set parameters for gas flow and throttle but before relinquishing control they will send
an asynchronous message back to the underlying object to check all of the gauges to see if further
action is required. This message will be put on a queue along with other explicit messages received
from other components and will be executed when it moves to the head of the queue. The cruise control
component could be in a different state when this message is finally handled. Different priorities for
handling these messages are not addressed.

2.3. Overview of methodology

The overall goal is to automate the process of developing integration tests from the behavioural
specifications of the various components. This process is illustrated at a high level in Figure 3. To begin,
a state/transition specification must exist for each class, with behaviour specified by a CSM as in
Definition 1. The CSM could have been produced during design, perhaps as UML diagrams [24], or
might be produced by the tester. The CSMs for the classes are combined to form the needed sets
according to a database schema (defined in Section 3). Particular attention is paid to associations
between the sets such as when a state or guard references a state variable from its own class or calls
a get function to reference a state variable from some other class. Each action of a transition is also
analysed to identify all calls to actor or mutator functions from other classes and the passing of state
variables as parameters of mutator functions. An actor function returns a value from a class and a
mutator function can change a value.

Once the software system is represented in the database schema (DB representation of spec in
Figure 3), the next step is to identify one or more individual components to test and to determine how
they integrate with other components (Identify component to test). Then, transitions into and out of the
components to test are identified (Identify relevant transitions). In the Automobile system, the focus is
on the CruiseControl component and its relevant transitions are the interactions with other classes in the

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

224 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

Automobile system. Since CruiseControl activity is cancelled whenever the brake is active or whenever
an emergency state is entered, this example safely ignores the complex BrakeControl behaviour dealing
with anti-lock brakes and all of the AutoSystem behaviour dealing with items such as air bags. Section 4
of the paper defines relevant transitions for a given component.

The next step is to model all potential finite state transitions as a directed graph (Component flow
graph). Section 5 begins with the relevant transitions and treats those transitions, together with all of
the states and guards associated with those transitions, as the nodes of a graph. All data and control
flow is modelled as directed edges between these nodes. Following the example of Hong et al. [7], the
process starts with directed edges from a source state node to the guard node or transition node of each
transition, from each guard node to its transition node and from each transition node to its target state
node. In addition, each call of an actor function results in directed edges from potential transitions of
the called object to states, guards or transitions of the calling object and each call of a mutator function
in the action of a transition results in edges from the calling transition to potential source states of
the called object. If a mutator function returns a value, then there are edges from potential called
transitions back to the calling transition. This process results in a component flow graph (formally
defined in Section 5).

The final step is to choose a testing criterion and to adapt it to the information stored in the database
and the component flow graph (Def/Use nodes & edges). The all-uses criterion is adapted by defining
defs and uses in terms of references to class variables (formally defined in Section 6). Each def takes
place at a transition node and each use takes place either at a transition node or at a state-to-guard, state-
to-transition or guard-to-transition edge. The procedure then looks for candidate test paths through the
component flow graph for each def-use pair. Much of the remaining effort described in Section 6 is to
construct candidate test paths that are potentially feasible and def-free. The goal is to find paths that
result in executable test cases for each def-use pair or to prove that such a path cannot exist. If none
of the candidate test paths result in an executable test case, then the new information learned from that
failure is added to the information base and the methodology is applied again to all untested pairs.

Section 7 describes the overall effect of this methodology on the Automobile example; in particular,
Section 7.2 describes a tool that automates most of the processes in Figure 3. For the Automobile
example, the tool analyses over 4300 def-use pairs, constructs candidate test paths for over 2000 pairs,
proves that nearly 1500 pairs are def-bound with no possible def-free path (infeasible) and constructs
an executable test sequence of 145 tests that cover about 50% of the DU-pairs. This research project
is actively pursuing the development of efficient executable test case development from candidate test
paths, partly relying on algorithms that were previously developed for specification-based testing [9].

3. REPRESENTING COMPONENT SPECIFICATIONS

A specification that defines the states and transitions for each class in a system must be available before
test development can begin. This specification will include names of classes, methods and variables.
Some of these methods will be invoked from an external interface; they will be the names that are used
in the test cases. The eventual test cases will be expressed in terms of these names. These names may or
may not be used by the programmers in the eventual implementation of the system but for the context
of this work it is assumed that the names are the same. If not, additional work will need to be done to
apply the resulting tests to the software; specifically, the test specifications will need to be translated

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 225

DefinedStates

ClassHasMethods

SourceState TargetState

ClassHasStateVariables

Method

ActionDefVar

0..*

0..*

ActionRefVar
0..*

0..*

StateRefVar

0..*

0..* StateRefActorFn

0..*

0..*

GuardRefActorFn

0..*

0..*

ActionRefActorFn
0..*

0..*

ActionRefMutatorFn 0..*

0..*

GuardRefVar
0..*

0..*

FnHasParameters

ActionRefParm0..*

0..*

ActionSetsParm

0..*

0..*

GuardRefParm
0..*

0..*

Function

+

+

+

+
+

+

funName

inputType

returnType

availability
effect

description

: identifier

: signature

: typeName

: enumeration
: enumeration

: string

Class

+
+
+
+
+

className
descriptiveName

componentName

systemName

description

: identifier
: string

: identifier

: identifier

: string

State

+
+

stateName

defnPredicate

: identifier

: predicate

Transition

+
+
+
+
+
+

sourceState
guard
method
targetState

isFeasible
action

: stateId
: predicate

: functionId

: stateId

: boolean

: programBlock

Variable
+
+
+
+
+

variableName
dataType
defaultValue
constraint
description

: identifier
: typeName
: literal
: predicate
: string

Parameter

+
+
+
+
+

position

parmName

type
direction

description

: integer

: identifier

: typeName
: enumeration

: string

Figure 4. Database schema as a UML class diagram.

to a form that can be used by the implementation. The mapping for this translation will need to be
supplied by the designers or programmers of the software.

Each class is used to derive a CSM as defined in Definition 1. Using the relational database
model [25–27], classes and sets associated with classes are represented as relational tables.

Figure 4 shows the UML class diagram [24] of a general schema definition for representing
combined class state machines. This schema allows representation of class state machines in a way that
is convenient to store, access and process the information. Without loss of generality, it is assumed that
all methods and procedures can be represented as functions. Each of the six UML classes in Figure 4
represents a table in the model as follows: (1) the Class table contains information about the classes that
have been defined for the system; (2) the Variable table defines instance variables for each class; (3) the
Function table identifies all of the methods that are associated with each class; (4) the Parameter table
identifies the input and output parameters for each function; (5) the State table contains information
about the states in the class state machine; and (6) the Transition table describes all transitions among
the states.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

226 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

Since variable, function and state names need be unique only within a class and parameter names
need be unique only within a function body, compound identifiers are used for each. For example,
(c, v) is a unique identifier for a variable v that is defined in class c. Similarly (c, f) and (c, s)

are compound identifiers for functions and states and (c, f, n) is a unique identifier for the nth
parameter of a function. In each case, the ordered tuple becomes the primary key of the underlying
table. In addition, c serves as a foreign key back to the class definition and fully represents the
one-to-many associations identified in the diagram by ClassHasStateVariables, ClassHasMethods,
FnHasParameters and Defined States. The associations SourceState and TargetState from Transition
to State represent referential integrity constraints on the sourceState and targetState attributes of the
Transition table. An additional constraint is that source and target states for a transition are always
from the same class. The Method association from Transition to Function represents a referential
integrity constraint on the method attribute of the Transition table. The remaining associations identify
many-to-many relationships among Transitions, States, Variables, Functions and Parameters derived
from syntactic analysis of guard and state predicates and transition actions. They are explained further
below.

A unique ClassId identifies each class in the Class table from Figure 4 and is the primary key
of that table. The className is a surrogate for ClassId and is used to reference the class in state
and guard predicates and in the actions of transitions. Similarly, variableName, funName, parmName
and stateName are surrogates for hidden identifiers for variables, functions, parameters and states,
respectively; each need be unique only within its class. Each class is owned by exactly one component,
identified by componentName but may be used by many components. In the syntax for predicates,
guards and actions, fully qualified names are used to disambiguate the references when necessary.

In the Function table, the availability attribute defines functions to be private (PRI), protected (PRO),
public (PUB), or external (EXT). Public functions may be invoked from other classes in the system,
whereas external functions are part of the external component interface and can be invoked by other
systems or users. External functions typically represent actions that are available to the human user or
for black-box testing purposes. The inputType values identify the number of input variables, as well as
their data types, so className, funName, inputType and returnType determine the complete signature
of a function. The effect attribute allows functions to be categorized as Get, Set, Constructor, Actor,
Mutator, etc. These are based on standard object-oriented concepts: a Get function is read-only and is
said to be an actor method on the object; a Set function can update state variables and is said to be a
mutator method. The following pays particular attention to classifying all methods as actor, mutator, or
mutator with return. In the Parameter table, both position and parmName uniquely identify a parameter
and one will determine the other. A parameter is used by name but is set by position. Each parameter
has a data type and a direction, i.e. In, Out or InOut.

In the State table, the defnPredicate is a Boolean predicate over the state variables. It may reference
an in-class variable by name only and may reference a variable in another class by invoking the
appropriate actor method, if it is available, to read the value of that variable. Only actor methods
can be called from a state’s definition predicate. Mutator and constructor methods may only be called
from an action that is part of a state transition.

In the Variable table, the dataType attribute identifies the data type of the variable, the defaultValue
attribute identifies all automatic value assignments upon creation of a new class instance and the
constraint attribute identifies a post-assignment requirement on every variable definition.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 227

For a class c and a transition t , the primary key of the Transition table is the pair (c, t), which
determines all of the other properties of a transition. Some transitions may be well defined in the model
but the implementation will not be able to execute them because of a rule or by physical or mechanical
impossibility. Such transitions are identified by the isFeasible attribute. These types of transitions can
be divided into three categories.

(1) Category one is an error handling transition. Consider an elevator example where a user is at
floor five. It is an error to push the button to go to floor five.

(2) Category two transitions are prevented by hardware; for example, hardware interlocks prevent
doors from opening when an elevator is between floors.

(3) Category three transitions represent logical and physical impossibilities; for example, it is not
possible to transition from the ‘not pushing button’ state to the ‘not pushing button’ state.

Transitions in category one will be tested as a natural result of the technique presented in this paper.
Transitions in category three do not need to be tested. Whether to test transitions in category two
depends on the goals of the testers. Since the situation is controlled by hardware, not software, any
testing that only involves the software (integration and subsystem testing) may be able to safely ignore
these transitions. At the system level, however, these transitions must be carefully tested.

The predicates on guards and states may reference variables and the actions of transitions may
reference and assign values to variables. Just as in traditional data flow analysis [8], predicates reference
a set of objects (use) and actions define a set of values (def). Of course, how to determine the defs and
uses depends on the semantics of the language used to express the predicates and transitions of the
class state machine. The implementation in this research uses a simple general language to describe
state machines, which allows the analysis to proceed in a fairly straightforward manner. Subsequent
plans are to expand this part of the prototype to include syntactic analysis of predicates and actions
specified in UML [24], Java [28] and other commonly used class definition languages.

Once this syntactic analysis is complete, the results can be captured in the UML diagram of Figure 4
as many-to-many associations among classes. In the database representation, each such association
will be a new base table as follows.

• The StateRefVar association between State and Variable is a table of tuples (c, s, v), where (c, s)

identifies a state and (c, v) identifies a variable in the same class as the state. The definition
predicate of the state references the variable. In the Engine example of Figure 1, the OFF state
references both speed and keyOn.

• The GuardRefVar, ActionDefVar and ActionRefVar associations between Transition and Variable
are each a table of tuples (c, t, v), where (c, t) identifies a transition and (c, v) identifies a
variable in the same class as that transition. In the first association, the guard of the transition
references the variable, in the second association the action of the transition defines the variable
and in the third association the action of the transition references the variable. Since each action
in a sequence of actions has a sequence number, an occurrence attribute, SeqNbr, is assigned
to each instance of the second and third associations. In the Engine example, the guard of t4
references keyOn, the action of t1 defines first speed and then keyOn and the actions of t2 and t6
both reference speed.

• The StateRefActorFn association between State and Function is a table of tuples (cs, s, cf, f),
where (cs, s) identifies a state and (cf, f) identifies an actor function. The definition predicate

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

228 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

of the state references the actor function. In the Automobile example, all of the states defined
for CruiseUnit reference the Cruise variable from the Gauges class of the InstrumentPanel
component to see if cruise control is On or Off (not visible in Appendix A).

• The GuardRefActorFn, ActionRefActorFn and ActionRefMutatorFn associations between
Transition and Variable are each a table of tuples (ct, t, cf, f), where (ct, t) identifies a transition
and (cf, f) identifies a function. In the first association the guard of the transition references an
actor function, in the second association the action of the transition references an actor function
and in the third association the action of the transition references a mutator function. As above, a
SeqNbr attribute is assigned to each instance of the second and third associations to identify the
position of that reference in the action sequence. The Guard and Action columns of Appendix A
show many instances of these types of references for the Automobile example.

• The GuardRefParm and ActionRefParm associations between Transition and Parameter are each
a table of tuples (c, t, n), where (c, t) identifies a transition whose guard or action references
(by name) a parameter of the function associated with that transition and n is the position of
that parameter in the signature of the function. In the Automobile guards shown in Appendix A,
nearly every guard of a transition derived from a mutator function that has a parameter references
that parameter by name. Moreover, the actions of all transitions derived from the Speed method
in the Gauges class and the Floor and GasPedal methods in the Throttle class reference the
incoming parameter by name. As above, an additional attribute in the ActionRefParm association,
called SeqNbr, captures the sequence number of that reference in the action sequence of the
transition.

• The ActionSetsParm association between Transition and Parameter is a table of tuples
(ct, t, cf, f, n), where (ct, t) identifies a transition whose action calls a function, identified by
(cf, f), from some other class and sets the nth parameter of that function to some non-constant
value, possibly the value of a state variable from yet another class c. For the Automobile example,
Appendix A shows actions in several transitions of CruiseUnit (e.g. t064, t050) that call the
Throttle.Floor() function and set the floor either to the TargetThrottle variable of CruiseUnit or
to a value derived from the value of the Position variable from the Throttle class. The floor
represents a temporary minimum throttle setting, which can be set by AutoSystem or by
CruiseUnit. This association also carries an additional attribute to capture the SeqNbr of the
set operation in the action sequence of the transition.

Each of the above tables satisfies appropriate referential integrity constraints to the corresponding
Transition, Variable, Function, Parameter or State tables.

Every state variable in a class definition is associated with two predefined methods, one to get its
value and one to set its value. An additional association VarAssocFn is defined between Variable and
Function to maintain the relationship between a state variable and the get function that reads its value.
This association is not visible in Figure 4 but it is represented by a table of tuples (c, v, f) where (c, v)

identifies the state variable and (c, f) identifies the function.
The ActionSetsParm association defined above identifies all transitions that: (1) call an external

function; and (2) set some parameter of that function to a non-constant value. It is particularly
important if the setting of a parameter involves a state variable either from the same class as the
calling transition or from some other class. Thus a new three-way association among transitions, state
variables and parameters is defined. This is denoted by ActionSetsParmUsingVar as a table of tuples

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 229

(ct, t, cf, f, n, cv, v) where (ct, t, cf, f, n) is a tuple in the ActionSetsParm association and (cv, v)

identifies a state variable that is referenced in the setting of that parameter. If the state variable is
from the same class as the transition, then ct = cv, and cf = cv if the state variable is from the same
class as the called function but in general (cv, v) could identify a variable in any class that is called by
the get function on that variable. Appendix A shows examples of the first and second alternatives; for
example, several transitions derived from CheckState() in CruiseUnit call the Position variable from
Throttle and pass it back to Throttle by setting Throttle’s floor variable.

An important consideration in this type of testing has to do with concurrent interactions of the
classes. Sometimes the action of a transition will make an asynchronous call to a method defined by
the same class: it does not wait for a reply before completing the transition and the call does not
return a value. Instead, the function call is put on an input queue for that class and considered later.
An additional association ActionRefLocalAsyn is defined between Transition and Function to represent
such calls. This association is not visible in Figure 4 but it is represented by a table of tuples (c, t, f)

where (c, t) identifies the transition and (c, f) represents the asynchronously called function. In the
Automobile example, many of the CruiseUnit and Wheel transitions seen in Appendix A have final
actions that put CheckState() on a queue to be executed by CruiseUnit or Wheel when they are not
busy with other requests.

Although this information is conveniently stored in database tables, it is helpful to consider the tables
as sets for most of the development of this work. This is done by a straightforward mapping. Every
table can be associated with a mathematical set, where the set is a set of sequences consisting only of
the primary key values of the table. In this sense, the sequence (c, f) is an element of the Function set if
and only if there exists a row in the Function table with primary key values (c, f). If X is such a table-
derived set, if w is a non-key column of the corresponding table T and if x ∈ X, then w(x) is defined
to be the value in column w of the row of table T identified by x. For example, in the ActionRefVar
association defined above, SeqNbr(c, v, t) identifies the value of the SeqNbr attribute of that instance.
This notational convenience is used freely in the following sections, with C, F, P, V, S and T, as the sets
derived from the tables Class, Function, Parameter, Variable, State and Transition.

4. CHOOSING RELEVANT STATE MACHINE TRANSITIONS

Given even a moderately large system, the number of transitions available over all class state machines
could be quite large. Developing tests over such a large scope would probably be prohibitively
expensive and would properly be considered system testing. This paper divides testing into pieces
by focusing on one component at a time and generating tests based on the integration interactions that
a test component has with other components.

As a testing model, this research assumes there is a test component M, whose interactions with
the rest of the system are being tested. This is typical when integrating a new component into a
complete or partial system. The methodology first determines which transitions from the overall system
specification are relevant to M , that is, into or out of M . Relevant transitions fall into two types.
In transitions represent actions or data that flow into M , transitions from other classes in the system
that can modify the value of a state variable in any of M’s classes. Out transitions flow out from M to
other classes, that is, transitions that can be invoked, directly or indirectly, from actions of transitions in

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

230 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

any of M’s classes. Transitions from classes in M are called Base transitions, since they are the starting
points for the process that finds the transitive closure of relevant transitions, explained below.

This static analysis process begins by putting all feasible Base transitions from any class in M into a
set R0. The iterative process starts with R0. At each step, assume that n steps of the process have been
completed, resulting in a set Rn of relevant transitions, each of which is labelled as In, Out or Base.
The same transition may appear in Rn as many as three times with different labels. To create the next
set of relevant transitions, Rn+1, first initialize Rn+1 to be Rn, and then insert newly labelled transitions
as indicated below. A mutator function that returns a usable value to the calling action results in both
In and Out labels for each of its transitions. The following rules control how new transitions are added
to the relevant collection.

• Let t be a feasible transition and let f be an actor or mutator with return function that is the
method associated with t . If the SourceState, Guard or Action of any transition in Rn calls f ,
then t is added to Rn+1 with an In label.

• Let t be a feasible transition and let f be a mutator or constructor function that is the method
associated with t . If the Action of any Base or Out labelled transition in Rn calls f , then t is
added to Rn+1 with an Out label.

• Let t be a feasible transition. Let t ′ be any transition in Rn labelled either as a Base transition
or as an Out transition. Let f ′ be an actor function that is the method associated with t ′. If the
SourceState, Guard or Action of t calls f ′, then t is added to Rn+1 with an Out label.

• Let t be a feasible transition. Let t ′ be any Base or In-labelled transition in Rn and let f ′ be a
mutator function that is the method associated with t ′. If the Action of t calls f ′, then t is added
to Rn+1 with an In label.

• Let t be a feasible transition and let f be a function that is the method associated with t . Let t ′
be a transition in Rn, from the same class as t , labelled either as a Base transition or as an Out
transition. If the Action of t ′ calls f asynchronously, then t is added to Rn+1 with an Out label.

• Let t be a feasible transition whose Action defines a state variable v. Let t ′ be any transition in
Rn from the same class as t , labelled as an In transition. If the method associated with t ′ is the
get method for the variable v or if the method associated with t ′ is an actor method and t ′ has a
Guard or Action that references v, then t is added to Rn+1 with an In label.

• Let t be a feasible transition. Let t ′ be any transition in Rn from the same class as t , labelled as
an Out transition. If the Action of t ′ defines a state variable v and if the method associated with
t is the get method for v or if the method associated with t is an actor method and t has a Guard
or Action that references v, then t is added to Rn+1 with an Out label.

Since there are only a finite number of transitions in the system, and since {Rn} is a monotonically
increasing sequence of sets, the process must terminate at some iteration with no new additions. At that
point, the transition labels are discarded and the remaining unlabelled transitions are defined to be the
set of transitions in the system that are relevant to M . These transitions will determine the component
flow graph when integrating M with the system. The set of relevant transitions that are determined by
this process is the same, no matter in which order the above rules are followed.

Definition 2. (Relevant transitions) Let M be any component of a software system. R(M) is the set
of all transitions from the software system that are determined to be relevant to M according to the
preceding iterative process.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 231

The initial collection of transitions in the Automobile example includes several transitions in the
BrakeControl class that deal with anti-lock brakes and many in the Gauges class that deal with gauges
on the instrument panel but that are unrelated to CruiseControl. The above procedure focuses only
on transitions relevant to CruiseControl and eliminates these unrelated transitions. Of the original
235 feasible transitions for Automobile, only 160 are relevant to CruiseControl by this definition.
Each relevant transition that has a non-trivial action is listed in Appendix A.

5. A DATA FLOW GRAPH MODEL OF STATE TRANSITIONS

The traditional testing literature [4,8,13,20,29] defines a data flow graph to be a graph representation of
a program’s control structure and the flow of data through that structure. A data flow graph is composed
of nodes, which represent statements or basic blocks, and edges, which represent flows of data between
basic blocks. If a variable X is given a value, or defined, in a node d , and that value can be used in
another node u, then there is a data flow dependency from d to u. The two nodes d and u form a def-use
pair for the variable X.

This research expands the traditional notion of data flows among statements in a program to
be defined among states, guards and transitions in finite state machines. A component flow graph
represents both the control and data flows for the state transitions of the classes of a component and
its relevant transitions from and to other classes in the software system. The definitions in this paper
extend those of Hong et al. [7] from the single-class case to the multiple-class case.

In a component flow graph, nodes and edges are derived from the relevant transitions of that
component. Each such transition has pre-determined associations with the states, guards, variables
and functions of other transitions, as defined in Section 3 and represented in Figure 4.

Definition 3. (Component flow graph) Let M be any component of a software system and let R(M)

be the set of all transitions in the system that are relevant to M . Then the component flow graph G of
M is a directed graph G = (N,E), where N is drawn from elements of the relevant transitions and E

represents potential flows of data between nodes in N .
Specifically, the nodes N in G are formed from the union of states, transitions and guards that appear

in the relevant transitions of M as follows:

N = Ns ∪ Nt ∪ Ng

where:

• Ns is the set of all states in the finite state machine that are a source state or target state of a
relevant transition;

• Nt is the set of all relevant transitions;
• Ng is the set of all guards in the finite state machine that are non-trivial guards of a relevant

transition.

The edges are derived from potential data flows among states, transitions and guards in the relevant
transitions. Some of the edges represent actions that call methods from other classes. Each edge that
results from a call to any external function is labelled with the sequence number of that call in the
action sequence of the transition. It helps to distinguish these labels as being on outgoing or incoming

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

232 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

edges, so the sequence number label for an edge that represents an outgoing call of a mutator function
is defined to be the OutSeq number and the sequence number label for an edge that represents an
incoming data flow from an actor function, or from a mutator function that returns a value, is defined to
be the InSeq number. All other edges will be left unlabelled. No edge carries more than one such label.
In some cases an edge label will disambiguate multiple edge instances. An edge is represented as an
ordered pair (n1, n2) or as an ordered triple (n1, L, n2), depending on whether a label L is required to
distinguish multiple edges from one node to another.

Nine types of edges are defined. Four come from the paper by Hong et al. [7] and are termed
‘intra-class’ edges because they are all defined within a single class. These intra-class edges are also
synchronous in the sense that in all messages that are sent, the caller waits for the callee to complete
before proceeding. To handle multiple classes, one new intra-class edge type and four new inter-class
edge types are introduced. The inter-class edges are potentially asynchronous because each component
is assumed to be a separate executable process. The new intra-class edge type that is introduced (Ects)

is also asynchronous, as explained below. The total set of edges E is defined as

E = Est ∪ Esg ∪ Egt ∪ Ets ∪ Egtg ∪ Ests ∪ Eits ∪ Eitt ∪ Ects

Hong’s four original intra-class edge types are as follows.

• State-Transition (Est) edges represent data flow from states to transitions. The transition has no
non-trivial guard (i.e. guard is true).

• State-Guard (Esg) edges represent data flow from states to guards. The state is the source state
of the transition that specifies the non-trivial guard.

• Guard-Transition (Egt) edges represent data flow from guards to transitions. The guard is non-
trivial and is specified by the transition.

• Transition-State (Ets) edges represent synchronous data flow from transitions to states. The state
is the target state of the transition.

There are four types of edges between classes, which are potentially asynchronous. These are more
complicated than intra-class edges. They are constructed when guards, states and transitions invoke
methods in other classes. The invoking guard (g), state (s) or transition (t) may be the source or the
target of the edge, depending on whether the data flow is into or out of that node.

• Guard-Transition-Guard (Egtg) edges represent inter-class data flow, triggered by a guard, which
flows from a transition in another class back to that guard. The predicate of the guard invokes
an actor function from the other class and data flows from transitions in that class back to the
guard. The GuardRefActorFn association determines these edges. The Automobile example has
34 instances of this type of edge.

• State-Transition-State (Ests) edges represent inter-class data flow, triggered by a state, which
flows from a transition in another class back to that state. The predicate of the state invokes
an actor function from the other class and data flows from transitions in that class back to the
state. The StateRefActorFn association determines these edges; the Automobile example has five
instances.

• Inter-class-Transition-State (Eits) edges represent inter-class data flow from a transition to a
state in a different class. The action of the transition invokes a mutator function from a different
class and data flows from the transition to a feasible source state of any transition in that class

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 233

that has the mutator function as its method. The target of the flow is the source state rather than
the other transition because it may be subject to the constraint of a guard and because it is not
known which state the other object might be in when the request is received. These outgoing
edges are labelled with an OutSeq number equal to the SeqNbr of the call of the mutator method
in the action sequence of the calling transition. These edges are also labelled with the function
name of the mutator function. The function label is used later in Section 6 as part of a constraint
on certain path segments. The ActionRefMutatorFn association determines these labelled edges;
the Automobile example has 174 instances.

• Inter-class-Transition-Transition (Eitt) edges represent inter-class data flow from a transition to
a transition in a different class. The target transition action invokes a method from another class
and data flows from all transitions in the class that are derived from the function back to the
target transition. These incoming edges are labelled with an InSeq number equal to the SeqNbr
of the method call in the action sequence of the calling transition. The ActionRefMutatorFn
and ActionRefActorFn associations determine these labelled edges; the Automobile example has
68 instances.

There is one new intra-class asynchronous edge type.

• Class-Transition-State (Ects) edges represent asynchronous intra-class data flow from transitions
to states. The transition calls a mutator function, asynchronously, in its own class. Note that
Ets edges are synchronous. Since the call is asynchronous, it is put on a queue and the class
may be in some other state when the function is executed. These outgoing edges are labelled
with an OutSeq number equal to the SeqNbr of the method call in the action sequence of
the transition. These edges are also labelled with the function name of the mutator function.
The ActionRefLocalAsyn association determines these labelled edges; the Automobile example
produces 80 instances.

A more formal specification of edge derivation is in Section 5 of an earlier technical report [30].
Transition nodes whose method has external availability determine the external interface to the system.
Input values can only be provided through this interface in black box testing. In the Automobile
example, the external methods listed in Section 2.2 produce all such externally invokable transitions.
Various combinations of external methods with different inputs will produce different paths through
the component flow graph. The goal is to find appropriate paths through the graph to ensure that all
aspects of the specification are thoroughly covered and then to choose input values for a sequence of
external methods to execute those paths. The paths through the graph are called test specifications and
the sequences of external methods with appropriate input values are called executable test cases.

6. GENERATING TEST REQUIREMENTS

A testing criterion is a rule that imposes requirements on a set of test cases. Test engineers measure
the extent to which a criterion is satisfied in terms of coverage: a test set achieves 100% coverage if it
completely satisfies the criterion. Coverage is measured in terms of the requirements that are imposed;
partial coverage is defined to be the percentage of requirements that are satisfied. Test requirements are
specific things that must be satisfied or covered; for example, the requirements for statement coverage
are individual statements that must be executed during testing.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

234 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

A number of different coverage criteria can be defined on data flow graphs, including all-defs,
all-uses and all-paths. These have been discussed and compared extensively in the literature [8,29].
This research follows the lead of other researchers and uses the all-defs and all-uses criteria
[10,31–36]. Although some scientists may question the value of all-defs, others believe it to be useful
and if all-uses is satisfied, all-defs comes for free anyway.

6.1. Definition-use pairs

The formal definitions of variable defs and uses for the component flow graph are in a technical
report [30] and given informally here. Finding def-use pairs for inter-class testing of object-oriented
components is somewhat more complicated than for intra-class testing. This complication is caused by
several factors, including the information hiding common in object-oriented classes (which makes it
difficult to identify defs and uses), the multiple edge types that are being considered and the concurrent
nature of the software. First, the various types of uses are defined. These include direct/indirect uses
and predicate/computation uses. These are used to define def-use pairs. This paper deviates somewhat
from traditional data flow testing papers by separating def-use pairs and DU-pairs. The purpose is to
emphasize the fact that this research finds def-clear paths from definitions to uses and then analyses
those paths to find input values that will execute the paths. A def-use pair that has a definition-clear
path from the definition to the use is called a DU-pair.

Defs and uses are defined in terms of the associations defined in the database schema of Figure 4.
Using the notation introduced in Section 3, let V be the set of all variables in the software system and
let the variables be defined by the Greek nu, ν = (c, v) ∈ V , where c identifies the class that declares
the variable, that is, c ∈ C.

Definition 4. (Definitions and uses) Let M be any component of a software system, let R(M) be the
set of transitions that are relevant to M , and let G = (N,E) be the component flow graph of M .

• ν is defined at a transition-node nt ∈ Nt if the variable and the transition are from the same class
and if they satisfy the association (c, t, v) ∈ ActionDefVar. Each variable definition carries along
the SeqNbr attribute of the ActionDefVar association.

• ν is directly computation-used at a transition-node nt ∈ Nt if the variable and the transition are
from the same class and if they satisfy the association (c, t, v) ∈ ActionRefVar.

• ν is indirectly computation-used at a transition-node nt ∈ Nt if the variable is associated with
the get method f in its class c and if the transition and the function satisfy the association
(ct, t, c, f) ∈ ActionRefActorFn.

• ν is directly predicate-used at any state-transition-edge if the state satisfies the association
(c, s, v) ∈ StateRefVar.

• ν is indirectly predicate-used at any state-transition-edge if the variable is associated with the
get method f in its class c and if the state and that function satisfy the association (cs, s, c, f) ∈
StateRefActorFn.

• ν is directly predicate-used at any state-guard-edge if the state satisfies the association (c, s, v) ∈
StateRefVar.

• ν is indirectly predicate-used at any state-guard-edge if the variable is associated with the get
method f in its class c and if the state and the method satisfy the association (cs, s, c, f) ∈
StateRefActorFn.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 235

• ν is directly predicate-used at a guard-transition-edge if the transition satisfies (ct, t, c, v) ∈
GuardRefVar.

• ν is indirectly predicate-used at a guard-transition-edge if the variable is associated with the
get method f in its class c and if the transition and f satisfy the association (ct, t, c, f) ∈
GuardRefActorFn.

• ν is parameter computation-used at a transition-node nt ∈ Nt if the action of the transition
associated with nt, called (ct, t), references the nth parameter of the function associated with t

by name, that is, if (ct, t, n) ∈ ActionRefParm and if the variable is used to set the nth parameter
of some function, that is, if there exists a transition t1 whose action calls a function (cf, f)

such that (ct1, t1, cf, f, n, c, v) ∈ ActionSetsParmUsingVar and if that function is the function
associated with t , that is, if ct = cf and method(t) = f .

• ν is parameter predicate-used at a guard-transition-edge if the guard of the transition associated
with n, called (ct, t), references the nth parameter of the function associated with t by name,
that is, if (ct, t, n) ∈ GuardRefParm and if the variable is used to set the nth parameter of some
function, that is, if there exists a transition t1 whose action calls a function (cf, f) such that
(ct1, t1, cf, f, n, c, v) ∈ ActionSetsParmUsingVar and if that function is the function associated
with t , that is, if ct = cf and method(t) = f .

Each computation-use instance carries along the SeqNbr attribute of the association to identify the
position of that use in the action sequence of the transition. SeqNbr values are used later in rules that
constrain the creation of candidate test paths. Since guard and state predicates do not have sequence
numbers, predicate-use instances do not have such a value. These identifications of defs and uses in
a component flow graph are used to define def-use pairs in those graphs. The Automobile example
produces instances for each of these def-use categories, as listed in Section 7.1.

Definition 5. (Def-use pairs) Let M be any component of a software system, let R(M) be the set of
transitions that are relevant to M and let G = (N,E) be the component flow graph of M . The Greek
mu (µ) represents an edge or a node that is a use. An ordered pair (nt, µ) is said to be a def-use pair
for ν if ν is defined at the transition-node nt and if µ is either a node or an edge in G where ν is directly
or indirectly used‡.

Some variables have no def-use pairs. For example class constants may be defined when an object is
created and never redefined in any relevant transition; others may be defined in a relevant transition as
a non-relevant side effect but never used in any other relevant transition. All such variables are ignored
in the following sections.

Transition nodes can both define and use a variable and which occurs first can affect later references
to the variable. If a variable is used first, then defined, the definition from the node is relevant to
definitions or uses of the variable in subsequent nodes. These cases are distinguished as follows.

Definition 6. (Internal def-use pairs) Let ν be a variable that is both defined and used at one or more
transition nodes nt ∈ Nt. The set of nodes where ν is defined first and then used is called DFTU(ν) and

‡Remember that a def-use pair is distinct from a DU-pair; the def-use pair may not have a def-clear path from the def to the use.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

236 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

the set of all nodes where ν is used first and then defined is called UFTD(ν) . Both sets DFTU(ν) and
UFTD(ν) can be determined by a syntactic analysis of the action associated with the transition node nt.

The sets DFTU(ν) and UFTD(ν) are not necessarily mutually exclusive. A transition may have a use
for a variable, then a definition, then another use (e.g. ‘x := x + 1; y := f(x)’).

6.2. Data flow path coverage

A major goal of this research is to automate the generation of test data as much as possible. Most
research in data flow testing focuses on recognising whether a set of tests cover def-use pairs as opposed
to finding paths in the graphs that will allow def-use pairs to be covered. This project attempts to find
paths in the following way. The algorithm looks for paths in the component flow graph that lead from
the definition of a variable to a use. Consider triples (ν, nt, µ) where ν is a variable, nt is a transition
node that defines ν and µ is a node or edge where ν is used. The nodes nt and use item µ form a
DU-pair if a path exists in the component flow graph leading from nt to µ, if the path is free of loops,
if there are no defs to ν by another transition node in the path and if the path is potentially feasible for
testing. The definitions in this section clarify these criteria as applied to testing of class components
and lead to a rigorous definition of test specifications derived from a component flow graph.

Definition 7. (Path) Let G = (N,E) be a directed graph with labelled edges. A path p in G of
length k ≥ 1 is a sequence of nodes and labels n1L1n2 . . . Lk−1nk such that (ni , Li, ni+1) ∈ E for
1 ≤ i ≤ k − 1. If p is a path, then the head of p, denoted by H(p), is the first element of the
sequence, the tail of p, denoted by T (p) is the last element of the sequence and the length of p,
denoted by Len(p), is the number of nodes in the sequence. If p and q are two paths, and if L is a label
such that (T (p), L,H(q)) ∈ E, then the concatenation of the two sequences, p : q , is a path with
Len(p : q) = Len(p) + Len(q). If p is a path and n is a node in the sequence that determines p, then
n is said to be an element of p, denoted by n ∈ p. If p is a path, then InSeq(p) or OutSeq(p) denotes
the label of its first or last edge. The context makes clear which is intended.

Only feasible paths through a component flow graph can be used, so special attention is paid to
path segments in the graph that flow from a transition node nt1 to a state node ns and then from that
state node to a guard node ng or to another transition node nt2. If the edge from nt1 to ns is the result
of a call to a mutator function f , then the edge from ns to ng, or from ns to nt2, must satisfy some
additional feasibility restrictions. In particular, the edge from ns to ng or nt2 must be from a transition
whose function is identical to f and the guard predicate of any ng must be compatible with the exit
conditions from node nt1 or with the values of any parameters passed with f . The rules below address
the function constraint. The guard constraint is more difficult to address because of exit conditions and
dynamic values of passed parameters. To help address such guard constraints, a new association among
these types of nodes is defined. A triple of nodes (nt, ns, ng) is a mutator Transition-State-Guard (TSG)
path segment if the edge from nt to ns has a function label. A mutator TSG path segment is potentially
feasible if the edge from ns to ng is known to be compatible with the call of the mutator function. Let
MTSG denote the set of all node triples that are mutator TSG path segments and let FTSG be the subset
of MTSG consisting of TSG path segments that are potentially feasible. The Automobile example
produces 317 instances of MTSG, of which 85 are provably feasible and 100 are provably not feasible,
leaving 132 where a simple analysis cannot determine feasibility or non-feasibility. Appendix A shows
the easy situations where a parameter is set to a literal in an action of a transition and the guards of some

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 237

of the transitions associated with the called function test that literal directly. The set FTSG contains all
but the provably non-feasible triples (217 instances in the Automobile example).

Definition 8. (DU-path and DU-pair) Let G = (N,E) be a component flow graph in a software
system. Let ν be any variable, let nt be a transition node that defines ν and let µ be a node or an
edge where ν is used. A path p in G is said to be a DU-path from nt to µ for ν if p = nt : q : µ, where
q is a path in G such that no node of q is a definition node for ν and every MTSG path segment in p is
potentially feasible. The pair (nt, µ) is said to be a DU-pair for ν if such a path p exists. Edge labels
for p are implicit.

Definition 9. (Candidate test paths) Let G = (N,E) be a component flow graph in a software system.
Let VDU be a set of tuples (ν, nt, µ) where (nt, µ) is a def-use pair for ν and let P be a set of tuples
(ν, nt, µ, p) where (nt, µ) is a DU-pair for ν and p is a DU-path from nt to µ. The set of all such
paths p are the candidate test paths in G.

6.3. Finding all-uses candidate test paths

The all-uses testing criterion requires tests to execute at least one path from each definition to each
reachable use. If there is more than one path from a def to a use, the strict interpretation of all-uses
is that any path will satisfy the criterion. This research represents one of the few attempts to actively
find paths, and it turns out that the details of how the algorithm is constructed can represent different
choices in which path to use. An extreme choice would be to attempt every path. A choice that may
save effort would be to use a shortest path. This may result in less testing and suggests the alternative of
using a longest path. This may not be practical, so relaxing the choice to the longest findable path may
be reasonable. One of the keys to testing this kind of software is evaluating the relationships among
classes, which suggests the notion of finding a path that passes through another class, or a slightly
more restrictive version, finding a path that passes through another class in the test component. If such
a path cannot be found, it is necessary to relax to another choice, such as shortest path. These seven
ways to choose paths are summarised in a subsumption hierarchy in Figure 5.

It is also possible that some paths could be ‘better’ in some sense than others. For example, it might
be possible to incorporate a search procedure that uses some measurement function to choose from
among a set of potential paths. One measurement might be to require that all MTSG path segments be
known to be feasible instead of just known to be not infeasible, but that is a very difficult measurement
to determine or represent. The construction described below looks for a shortest path because it is more
convenient, thus saving computation expense.

It is easy to construct the set VDU of Definition 9, but the set P may not have any elements.
An iterative procedure is defined to construct the elements of P beginning with definitions for P1
and P2 below. It searches for candidate test paths using a breadth-first algorithm for finding paths
from one node to another in a directed graph, a modification of Dijkstra’s shortest-path algorithm that
starts at both beginning and end nodes and meets in the middle. It works breadth-first from definition
nodes and use nodes or edges, simultaneously forming two sets of partial paths. The def-partial paths
are paths whose head is the definition node for a state variable and whose tail is a candidate node for
connecting to a use of that variable. The use-partial paths are paths whose tail is a transition node where
a variable is computation-used or whose last two tail nodes determine an edge where the variable is
predicate-used and whose head is a candidate node for connecting to a definition of that state variable.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

238 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

Every path

Any path

A shortest
path

Another class Another class in the
test component

A longest
path

The longest
findable

path

Figure 5. Subsumption hierarchy of choices for finding candidate test paths.

Each step of the algorithm looks for an edge that links the tail of a def-partial path for a state variable
to the head of a use-partial path for that same variable. In addition, the algorithm ensures that all partial
paths are def-free by requiring that the new candidate node added as the tail of a def-partial path or
the head of a use-partial path does not define the variable. The algorithm enforces a rule that every
MTSG path segment be potentially feasible. The algorithm also enforces a rule that private functions
may only be called by methods within their own class and that protected functions may only be called
by methods within their own component (if Java is used, this corresponds to a Java package). Also, if
the action of a transition calls a private function within its own class, and if the next transition in the
candidate path is a transition derived from the private function, the algorithm requires that the target
state of the calling transition is the source state of the derived transition. A typical example of an action
calling a private function is the asynchronous call of CheckState() as the final action of many methods
in both CruiseUser and Wheel. Finally, both sets of partial paths are constructed to ensure that edges
entering or leaving a transition node occur in a feasible order for the action sequence of that transition.
These partial paths satisfy a set of rules involving SeqNbr, InSeq and OutSeq labels. They must be
constructed to help ensure the construction of DU-paths that result in feasible test cases.

The following rules must be followed in the construction of def-partial paths:

• the first edge from a definition node of a state variable toward a new candidate intermediate node
shall not be labelled with an OutSeq number that is less than the SeqNbr of that definition;

• if the incoming edge entering the tail of a def-partial path is labelled with an InSeq number equal
to x, then the outgoing edge toward a new candidate intermediate node shall not be labelled with
an OutSeq number less than x;

• if the tail of a def-partial path is a state node, and if the incoming edge to that tail has a function
label, then the outgoing edge to a new candidate intermediate transition or guard node shall be
derived from the same function;

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 239

• if the tail of a def-partial path is a state node, and if the incoming edge to that tail has a function
label, then the TSG path segment derived from the incoming transition node, the state node, and
any new candidate intermediate guard node must be a potentially feasible MTSG path segment;

• if the tail of a def-partial path is a state node, and if the incoming edge to that tail does not have a
function label, then any new candidate intermediate guard or transition node must not be derived
from a private function;

• if the tail of a def-partial path is a transition node, and if the edge to any new candidate
intermediate state node has a function label, then the class of the new state node must not be
equal to the class of the transition node or the state of the new state node must be equal to the
target state of the transition of the transition node.

The following rules must be satisfied in construction of use-partial paths:

• the first edge from a new candidate intermediate node toward a use node (or the lead node of a
use edge) for a state variable shall not be labelled with an InSeq number that is greater than the
SeqNbr of that use;

• if the outgoing edge from the head of a use-partial path is labelled with an OutSeq number equal
to x, then the incoming edge from a new candidate intermediate node shall not be labelled with
an InSeq number greater than x;

• if the head of a use-partial path is a state node (i.e. with an outgoing edge to some adjacent
guard or transition node) then any incoming edge from a new candidate intermediate node that
has a function label must identify a function that is the same as the function associated with the
adjacent guard or transition node;

• if the head of a use-partial path is a state node with an outgoing edge to some adjacent guard
node, then any incoming edge from a new candidate intermediate node that has a function label
must be from a transition node that forms a potentially feasible MTSG path segment with the
state node and its adjacent guard node;

• if the head of a use-partial path is a state node, and if the function label on the outgoing edge
from that state to its following guard or transition node identifies a private function, then any
incoming edge from a new candidate intermediate transition node must have a function label
that identifies the same private function;

• if the head of a use-partial path is a state node, and if the edge from any new candidate
intermediate transition node has a function label, then the class of the new transition node must
be not equal to the class of the state node or the state of the state node must be equal to the target
state of the transition of the new transition node.

In the following definitions, the Q2k+1 iterations expand the def-partial paths and the Q2k+2
iterations expand the use-partial paths. The iterative algorithm begins with P1 and P2, where P1
identifies DU-paths for ν from nt to itself if nt is a definition node and P2 identifies DU-paths for
ν along a transition-to-transition edge:

P1 = {(ν, nt, nt, nt) | (ν, nt, nt) ∈ VDU AND nt ∈ DFTU(ν)}
P2 = {(ν, nt, n, nt : n) | (ν, nt, n) ∈ VDU AND (nt, n) ∈ Eitt}

All paths in P1 are of length 1 and all paths in P2 are of length 2. In general, the sets Pi will identify
paths of length i or i ± 1. The definition of Pi for i ≥ 3 depends upon sets of partial paths, Qk ,

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

240 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

and unresolved def-use pairs, Xj , both defined iteratively below. Each element of Qk will be a tuple
(ν, nt, µ, h, g), where (ν, nt, µ) ∈ VDU, h is a path from a def node nt of ν to an intermediate node
and g is a path from some other intermediate node to a use item µ for ν. Each Xj will be a subset of
VDU, consisting of variable and def-use pairs that still do not have a connecting path. The algorithm
begins with:

X1 = VDU

Q1 = {(ν, nt, µ, nt, µ) | (ν, nt, µ) ∈ VDU}
X2 = VDU − {(ν, nt, nt) | (ν, nt, nt, nt) ∈ P1 AND nt /∈ UFTD(ν)}
Q2 = {(ν, nt, µ, nt, µ) | (ν, nt, µ) ∈ X2}

Given Qi, (i ≥ 2) the next step defines:

Pi+1 = {(ν, nt, µ, h : g) | (ν, nt, µ, h, g) ∈ Qi

AND e = (T (h),H(g)) ∈ E, or e = (T (h), L,H(g)) ∈ E for some edge label L,

AND InSeq(h) ≤ OutSeq(e) AND InSeq(e) ≤ OutSeq(g)

AND (¬∃Fn((Pre(T (h)), T (h))) OR Fn((Pre(T (h)), T (h))) = method(H(g)))

AND ((Pre(T (h)), T (h),H(g)) /∈ MTSG OR (Pre(T (h)), T (h),H(g)) ∈ FTSG)

AND (¬∃Fn(e) OR Fn(e) = method(Pre(H(g))))

AND ((T (h),H(g), Pre(H(g))) /∈ MTSG OR (T (h),H(g), Pre(H(g))) ∈ FTSG)

AND ((T (h) ∈ Ns AND ¬∃Fn(Pre(T (h)), T (h))) → availability(Fn(e)) �= PRI)

AND ((H(g) ∈ Ns AND availability(Fn(H(g), Pre(H(g)))) = PRI) → ∃Fn(e))

AND ((T (h) ∈ Nt AND H(g) ∈ Ns AND ∃Fn(e)) → (class(T (h)) �= class(H(g))

OR state(H(g)) = targetState(T (h))))}
Ci+1 = {(ν, nt, µ) | ∃p[(ν, nt, µ, p) ∈ Pi+1]}
Ai+1 = {(ν, nt, µ) | ∃h, g[(ν, nt, µ, h, g) ∈ Qi]}
Xi+1 = Ai+1 − Ci+1

Bi+1 = Xi − Ai+1

The sets Ci+1 identify unsolved def-use pairs in Xi that have found a DU-path in Pi+1. The sets Ai+1
identify unsolved def-use pairs in Xi that remain active candidates for resolution in Pi+1. The sets Bi+1
identify def-use pairs that drop out of consideration for solution at this step of the iteration; the variable
they are associated with is said to be def-bound.

Definition 10. (def-bound) A variable ν is said to be def-bound at a definition node nt of a def-use
pair (nt, µ) if there is no path p from nt to µ, where p = (ν, nt, µ, p) ∈ P .

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 241

The sets of partial paths are defined iteratively as follows. Given Q2k , the def-partial paths are
extended by defining:

Q2k+1 = {(ν, nt, µ, h : n, g) | (ν, nt, µ, h, g) ∈ Q2k AND ∃n, L [n ∈ N AND (T (h), L, n) ∈ E

AND n /∈ D(ν)

AND T (h) : n /∈ h AND (ν, nt, µ) ∈ X2k+1

AND InSeq(h) ≤ OutSeq(T (h), n)

AND (¬∃Fn((Pre(T (h)), T (h))) OR Fn((Pre(T (h)), T (h))) = method(n))

AND ((Pre(T (h)), T (h), n) /∈ MTSG OR (Pre(T (h)), T (h), n) ∈ FTSG)

AND ((T (h) ∈ Ns AND ¬∃Fn(Pre(T (h)), T (h))) → availability(Fn(T (h), n)) �= PRI)

AND ((T (h) ∈ Nt AND n ∈ Ns AND ∃Fn(T (h), n)) → (class(n) �= class(T (h))

OR state(n) = targetState(T (h))))]}
Given Q2k+1, the use-partial paths are extended by defining:

Q2k+2 = {(ν, nt, µ, h, n : g) | (ν, nt, µ, h, g) ∈ Q2k+1 AND ∃n,L[n ∈ N AND (n, L,H(g)) ∈ E

AND n /∈ D(ν)

AND n : H(g) /∈ g AND (ν, nt, µ) ∈ X2k+2

AND InSeq(n : H(g)) ≤ OutSeq(g)

AND (¬∃Fn((n,H(g))) OR Fn((n,H(g))) = method(Pre(H(g))))

AND ((n,H(g), Pre(H(g))) /∈ MTSG OR (n,H(g), Pre(H(g))) ∈ FTSG)

AND ((H(g) ∈ Ns AND availability(Fn(H(g), Pre(H(g)))) = PRI) → ∃Fn(n,H(g)))

AND ((n ∈ Nt AND H(g) ∈ Ns AND ∃Fn(n,H(g))) → (class(n) �= class(H(g))

OR state(H(g)) = targetState(n)))]}
where D(ν) is the set of definition nodes for ν, Fn(e) is the function label of an edge e, Pre(T (h)) is
the preceding node adjacent to T (h) in h, and Pre(H(g)) is the following node adjacent to H(g) in g.
InSeq and OutSeq inequalities are satisfied if either label is null. The partial paths with odd subscripts
are building partial paths from the def node, whereas the partial paths with even subscripts are building
partial paths from the uses.

In the construction of paths, it is possible that a path will exit a node derived from class instance C,
leaving C in state S1, to enter a node derived from another class instance and then later return to the
first node while C is in a new state S2. This is possible only if some other action has caused the state of
C to change from S1 to S2. To capture this other action as part of the path, a rule is enforced at several
points in the above process to ensure that paths may only exit and then re-enter a node derived from a
class instance while the state of the class instance is the same. This rule is called the state compatibility
rule. Experimentation has shown that enforcement of this rule substantially reduces the number of
non-feasible candidate test paths at the expense of increasing the number of unsolved def-use pairs.

The iterative process stops when Xi = ∅. At this point, set P = ∪Pi . This must happen for some
value of i less than the number of edges in the graph since cycles were avoided by ensuring that no
edge appears more than once in any of the partial paths. It is possible for some state nodes and some
transition nodes to appear more than once in a partial path. Not all elements (ν, nt, µ) ∈ VDU will

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

242 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

yield a DU-path. Some variables may be defined at a node nt and used at a use item µ but either no
path exists from nt to µ that satisfies the above constraints or every such path contains a new definition
of ν. If all-defs is being satisfied then another use is found. If all-uses is being satisfied, this def-use
pair is infeasible.

The def-bound variables surface during the calculation of Bi+1 = Xi − Ai+1 in the above iterative
process. At that point, Ci+1 ⊆ Ai+1 ⊆ Xi . It follows that Bi+1 identifies the def-use pairs that were
active during the calculation of Xi , did not find a path to join in Pi+1, yet are no longer active for Xi+1.
They dropped out because in the calculation of the previous Qi, there was no node n to form a new
edge in the partial paths. Thus the sets Bi+1 identify new def-bound variables, if they exist, at each step
of the process.

6.4. Executable test cases

If a variable ν is both defined and used and is not def-bound for a specific def-use pair then the path
generation of the previous section may produce one or more DU-paths linking a definition node nt to
its corresponding use item µ. These DU-paths are considered to be abstract test specifications because
no attempt has yet been made to choose explicit parameter values for any of the function calls. There is
no guarantee that an abstract test specification will be feasible because it may contain a TSG path
segment that is not feasible. However, the process carries along all possible potentially feasible TSG
path elements for each def-use pair, so there is a good chance that a feasible path element will be in the
collection P of candidate test paths constructed by the algorithm of Section 6.3. If at the end of iteration
i, all DU-paths for a DU-pair are found to be infeasible then it is necessary to look for DU-paths of
length i + 1. The DU-pair is re-inserted into the set of active pairs Xi and the algorithm continues by
looking for longer DU-paths.

Even at the end of this process, there is no guarantee that a feasible abstract test specification will
lead to an executable test case. One must still find externally invokable methods that will trigger each
of the function calls in the abstract test specification without violating any of the constraints against
redefinition of the state variable. The iterative process of Section 6.3 is modified to help construct
executable tests from test specifications. Instead of beginning with defs and uses, the modified process
replaces defs with the collection of transition nodes derived from external functions and replaces uses
with the collection of transition nodes derived from non-external functions. The modified process also
eliminates edges that allow a path to enter a terminal target state. The result is a collection of candidate
execution paths in the component flow graph from transition nodes with external methods to all other
relevant transition nodes. In this manner an appropriate external function can be chosen to invoke a
given transition-to-transition or guard-to-transition edge in a candidate test path. With some manual
intervention to choose appropriate guard alternatives, it is then possible to select a sequence of external
functions that force traversal of many candidate test paths. Some results from using this approach on the
Automobile system are given in Section 7.3. Subsequent research will attempt to use this methodology
to automate the process of generating executable test cases from abstract test specifications more fully.

The entire process will not always succeed because some def-use pairs cannot be satisfied by any
candidate test path and the problem of finding executable test cases is generally undecidable. This has
been called the feasible path problem in previous research [37–40]. Figure 6 attempts to illustrate the
possibilities.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 243

? ?

Undecidable Too
hard

Not
solvable

Solvable Too
hard Undecidable

cannot
solve solved

Figure 6. Possibilities when finding candidate test paths and executable test cases.

Some def-use pairs have solutions (solvable) and some do not (not solvable). Some of these can
either be solved or recognized as being unsolvable (solved, cannot solve) by the existing tool. There are
other def-use pairs that are either too hard to solve or too hard to prove to be unsolvable (too hard) by
the current tool, and finally there are DU-paths for which proving them to be unsolvable or finding
solutions is truly undecidable (undecidable). This situation is common to all automatic test data
generation techniques, which by definition can never be perfect for all situations. The goal of any
technique is to increase the number of test requirements that can either be solved or shown to be
unsolvable as much as possible, with the explicit recognition that even if the problem is not solved
completely, it can still be possible to create good quality tests.

7. EMPIRICAL RESULTS FOR THE AUTOMOBILE SYSTEM

This section presents empirical results from applying the inter-class data flow technique to the
Automobile system. Tools have been developed that automate most of the process shown in Figure 3.
The database representation of the specification must be created by hand and the final step of generating
executable test sequences is only partially automated. As an experimental evaluation, tests were
constructed and run on seeded faults and the fault-finding ability of the tests on the seeded faults was
evaluated and compared against tests generated by hand. The subjects (full Automobile specifications
and tests) are provided in a technical report [41]. This section first illustrates an application of the
technique by way of example using the Automobile system, then describes the tool support and finally
the case study on fault detection.

7.1. Applying the technique to the Automobile system

Simple versions of Cruise have been used widely in the specification, specification-based testing
and modelling literature but the version used in this paper includes significantly more components
than other versions, such as in references [42–44]. For example, the version used by Atlee [43]

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

244 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

and Abdurazik et al. [42] had one class, four states, seven functions, 184 blocks and 174 decisions.
The external interface and the cruise control transitions used in this paper are modelled on the cruise
control characteristics of an automobile owned by the first author§. Instead of the four states found in
the other papers, the system used in this paper contains 12 classes for a total of 44 states. Combined,
these states have 43 relevant variables that appear in more than 4300 def-use pairs. For cruise control
testing purposes, only external functions such as ignition, brake and gas pedal positions and cruise
controls are available to human users and testers. Other functions are encapsulated and hidden.

Each process from Sections 3–6 is illustrated on the CruiseControl below. The contents of the initial
tables are as follows.

Class table 12 rows—one for each class in the system
Variable table 58 rows—with 9 for CruiseControl
Parameter table 44 rows—with 7 for CruiseControl
Function table 106 rows—with 20 for CruiseControl
State table 44 rows—with 12 for CruiseControl
Transition table 263 rows—with 91 for CruiseControl

The syntactic analysis from Section 3 on the predicate and action attributes of these tables yields the
following association tables.

StateRefVar 67 instances ActionRefMutatorFn 116 instances
StateRefActorFn 5 instances VarAssocFn 44 instances
ActionDefVar 252 instances ActionRefLocalAsyn 22 instances
ActionRefVar 172 instances GuardRefParm 121 instances
GuardRefVar 117 instances ActionRefParm 80 instances
GuardRefActorFn 17 instances ActionSetsParm 70 instances
ActionRefActorFn 32 instances ActionSetsParmUsingVar 70 instances

Section 4 describes how to derive transitions in each existing class that are relevant to CruiseControl.
In some cases only a few transitions are relevant; for example, the only state of BrakeControl that is
relevant to CruiseControl is whether or not the brakes are engaged. When the brakes are engaged, a
message is sent to AutoSystem and AutoSystem sends a Cancel message to CruiseUnit. The relevant
transitions are derived iteratively from labelled transitions, as defined in Section 4.

R00 91 CruiseControl Base transitions
R0 68 feasible Base transitions
R1 194 labelled transitions at first iteration
R2 260 labelled transitions at second iteration
R3 292 labelled transitions at third iteration
R4 308 labelled transitions at fourth iteration
R5 314 labelled relevant transitions at final pass
R(M) 160 final unlabelled relevant transitions

This process leaves 75 feasible transitions that are not relevant, including oil and water pressure
gauges that were intentionally excluded from consideration, anti-lock brake actions that have no

§National Institute of Standards and Technology (NIST) policy prohibits publication of the make or model of the car.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 245

relevance after the brakes become active, various transmission actions dealing with neutral and reverse
and other actor methods in several classes that could not impact on CruiseControl.

R(M) has 105 transitions that have non-trivial actions, as displayed in Appendix A. The component
flow graph defined in Section 5 is summarized as follows.

Nodes 293 nodes Edges 740 edges
TransitionNodes 160 Est Edges 49
StateNodes 44 Esg Edges 85
GuardNodes 89 Egt Edges 85

Ets Edges 160
Egtg Edges 34
Ests Edges 5
Eits Edges 174
Eitt Edges 68
Ects Edges 80

The following is the list of defs and uses from the CruiseControl component of the Automobile
example in this paper (Sections 6.1 and 6.2).

DefnNodes 188
DirectCompUses 131
IndirectCompUses 30
DirectPredUseByState 304
DirectPredUseByGuard 80
IndirectPredUseByState 32
IndirectPredUseByGuard 17
ParmUseByGuard 205
ParmUseByTransition 216

Total VarDefUse triples 4319

DFTU nodes 45
UFTD nodes 17

DFTU & UFTD 17

From Section 6.3, the following are MTSG path segments.

MTSG triples 317 paths
KnownFeasible 85
KnownNotFeasible 100
Indeterminate 132

FTSG triples 217 paths

The above calculations are almost instantaneous, even on a desktop personal computer. However,
the next step, to calculate the DU-paths leading to DU-pairs becomes much more computationally
intensive. The iterative process to construct candidate test paths Pi from Definition 9 proceeds in
several steps. Each step is summarised below.

P1 45 rows (from the DFTU nodes)

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

246 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

Only 45 of the 62 def-use pairs with an action that both defines and uses the same variable are DFTU.
For example, the CruiseUnit transitions t016 and t064 in Appendix A define and then use TargetThrottle
and CurrentSpeed. Likewise, the GasUser transition t002 first defines and then uses PedalPosition and
Engine t003 first defines and then uses Rpm. All relevant Throttle transitions define and then use
Position. Examples of UFTD transition nodes are CruiseUnit transitions t030 and t031, which both
use TargetSpeed and then define it. Throttle transitions t004, t007 and t009 have a parameter-use of
Position as a result of calls to Floor() from CruiseUnit and then immediately define Position. Some
of the def-use pairs are in both DFTU and UFTD and are kept active in the search for new DU-paths
from those nodes back to themselves. The remaining def-use pairs in DFTU have a use that can never
be reached from outside that node without redefining of the variable, immediately resulting in 175
def-bound pairs.

P2 0 rows (none of the 68 Eitt edges give DU-pairs)

There are 68 transitions having actions that return a value from a call to a function in some other
class. None of these calls involve mutator functions, so they do not result in any new DU-pairs with
a test path of length 2. Thus P2 is empty. Continuing with initialization of the DU-pair generation
process yields the following results.

X1 4319 instances (from VDU triples)
Q1 4319 instances (from VDU—set Head and Tail)
B1 175 instances (from 45 DFTU pairs not in UFTD)

X2 4099 instances (removing 45 found and 175 def-bound pairs)
Q2 4099 instances (removing same 220 instances from Q1)

At iteration 3, the algorithm finds 414 candidate test paths of lengths 3 or 4. Approximately one-half
of the paths go through the target state of their transitions to an outgoing edge from that target state.
Most of these yield either an easy feasible path or an obvious non-feasible path that should have been
identified in the initial class definition. The other half of the paths do not go through the target state
of the transition; instead, they follow a mutator function to the source state of some other transition in
the same class. All of these MTSG path segments are based on a call to CheckState() in the CruiseUnit
or Wheel classes. For some of these, it is relatively easy to find an executable test case. Others yield
an obvious non-feasible path that should have been identified in the transition-state-guard discussion
following Definition 7. At this step, all paths are still completely contained in a single class. All 414 new
paths result in new DU-pairs. Seventeen new def-bound variables are identified: BrakeActive is defined
in AutoSystem transitions but can never reach their predicate uses in some Engine states, IsActive is
defined in both BrakeControl and BrakeUser but can never reach its use in state predicates. In all cases
a Cancel() message gets sent instead to shut down all further CruiseControl processing.

Iteration 4 creates 341 new paths of lengths 3 and 4, all of which identify new DU-pairs. The paths
may be handled similarly to the paths in the previous iteration, although some of the mutator functions
force actions in other classes. For each mutator transition in the path, the process described in
Section 7.2 is used to find external (user-level) functions that will trigger that transition. The difficulty
is to find a function that does not redefine the def-use variable. It is often necessary to use a longer
indirect external function, such as ExternalDrag(), to cause changes of state in CruiseUnit without
redefining the def-use variables under test. This iteration also discovers 231 def-bound pairs.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 247

Table II. CruiseControl—candidate test paths.

New paths New DU-pairs Active pairs New DefnBnd Partial paths Process time
Pi Ci Xi Bi Qi (h:mm:ss)

1 45 45 4319 175 4319 0:02
2 0 0 4099 0 4099 0:01
3 414 414 3668 17 9332 2:57
4 341 341 3096 231 30 604 3:06
5 536 502 2519 75 49 898 4:17
6 194 190 2304 25 93 116 4:14
7 157 146 2036 122 58 290 3:01
8 201 132 1645 259 111 942 5:38
9 124 104 1414 127 166 281 9:05

10 124 84 1314 16 378 383 12:06
11 107 72 1185 57 747 816 20:27
12 18 8 1177 0 1 083 242 39:41
13 50 12 1137 28 1 579 445 50:36
14 3 1 1136 0 3 056 216 2:03:35
15 32 8 1010 118 4 476 452 3:32:55
16 10 1 873 136 7 589 298 6:07:22
17 0 0 802 71 12 951 518 10:16:13
18 16 3 795 4 19 938 236 16:32:52
19 0 0 762 33 ∼33 114 919 ∼31:44:50
20 0 0 762 0 — —

Totals 2372 2063 1494 ∼74:00:00

The process takes multiple iterations, as shown in Table II. The ‘New paths’ column corresponds to
new candidate test paths. Sometimes multiple paths are found for the same def-use pair so the ‘New
DU-pairs’ column corresponds to def-use pairs that have found a path and thereby become DU-pairs.
The ‘Active pairs’ column shows the number of pairs for which no path has been found up to and
including the current iteration. The ‘New DefnBnd’ column identifies the number of def-use pairs
determined to be def-bound at this iteration. The ‘Partial paths’ column identifies the number of partial
paths existing at the end of the current iteration. The ‘Process time’ column is for each iteration, and is
from the prototype implementation using an Access database on a Pentium 4 class PC at 2 GHz with
1 GB RAM.

The majority of DU-path generation takes place in iterations 3–10 (with total processing time less
than 45 minutes) but some new DU-paths continue to be generated through to iteration 18. Time and
space costs for obtaining new information prevent the tool from continuing past iteration 20. Out of a
total of 4319 def-use pairs, 2372 candidate test paths were found to cover 2064 pairs (47%) and 1494
(35%) pairs were shown to be def-bound, with no def-free candidate test paths. Thus, 82% (3557) of the
def-use pairs were resolved (with a test or shown to be infeasible), leaving only 18% (762) unknown.
This experimental difficulty in solving 18% of all def-use pairs is consistent with the limitation
stemming from undecidability and the theoretical discussion in the last paragraph of Section 6.4.
However, as shown in Table III in Section 7.3, the resulting tests were good at finding faults.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

248 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

Table II shows that iteration 5 finds 536 new DU-paths but only 502 of them identify new
DU-pairs. In addition, 75 pairs were found to be def-bound (Bi). The number of active pairs (Xi)
is thus reduced by 577. Many of the paths are similar to the above, either composed of successive
application of feasible transitions within a class, going through the target state of one transition to the
source state of the next or involving interactions between classes via calls of mutator functions along
MTSG edges.

Multiple DU-paths can occur for the same DU-pair in several different ways. This can occur
when a transition gets the values of multiple variables from the same class so each call generates a
separate potential path; this occurs in Ignition transition t003, since it calls both ThrottleFloor and
ThrottleGovernor from AutoSystem where both variables are defined by transition t001. This also
occurs in CruiseUnit transition t025, where the guard predicate calls both Position and Floor from
Throttle where both variables are defined by transition t004. Another source of multiple DU-paths for
the same DU-pair is when a guard predicate identifies multiple choices in the interior of a path, thereby
generating separate subpaths to reach the same def and use; this occurs often for variables defined
in CruiseUnit where a path may travel through multiple states of throttle, without the variable being
redefined, before returning to a use in CruiseUnit.

More interesting paths begin to occur after iteration 5. For example, the following path involving
Throttle (c10) and CruiseUnit (c05) begins with Throttle.Position defined by Throttle.Floor(x) at
transition node c10t005 and ends with Position used by the action of CruiseUnit.UserMode(SD/NT) at
transition node c05t043:

c10t005:TS:c10s01:ST:c10t016:TT:c05t064:TS:c05s03:SG:c05gt030:GT:c05t030:TS:c05s05:SG:c05gt043:GT:c05t043

After the definition of Position, the path follows a transition-to-state (TS) edge to throttle state node
c10s01 (Idle), where it waits for a subsequent action. The action of CruiseUnit.UserMode(SD/NT)
at transition node c05t064 calls Throttle.Position() via transition node c10t016 along a transition-to-
transition (TT) edge, coming to rest at state node c05s03 (Cruise) to wait for another subsequent action.
The only way this can happen is for the automobile to be in a high gear and going downhill so that
the idle speed in the throttle is sufficient to maintain a speed greater than SlowCutoff to satisfy the
guard predicate of c05t064, thereby allowing an Override-to-Cruise state transition. The next action of
CruiseUnit.UserMode(SD) at transition node c05t030 leads the path through state-to-guard (SG) and
guard-to-transition (GT) edges, putting the CruiseUnit into its Decel state at state node c05s05. The user
holds down the SD button to achieve this deceleration, then releases it, thereby calling Usermode(NT),
to effect the final action and usage of the Position variable in the action at transition node c05t043,
causing a Decel-to-Cruise state transition.

Using methods introduced in Section 6.4 and further described in Section 7.2, the above abstract
test specification can be used to generate the following executable test sequence. While in Cruise state
at highway speed in a high gear and going downhill, the following sequence of actions are performed:

(1) CruiseUser.Cancel () Puts CruiseUnit in the Override state and calls Throttle.Floor(0),
which defines Throttle.Position = fconst and puts Throttle in the
Idle state;

(2) Pause Waits for the Engine to settle at Idle speed while maintaining
Gauges.Speed > CruiseUnit.SlowCutoff;

(3) CruiseUser.Mode (SD) Sets the CruiseUnit.UserMode variable to SD with no other effect;

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 249

(4) CruiseUser.Mode (NT) Causes an Override-to-Cruise transition (t064) when button is
released;

(5) CruiseUser.Mode (SD) Causes a Cruise-to-Decel transition in CruiseUnit while
maintaining Throttle in Idle without redefining Position;

(6) CruiseUser.Mode (NT) Causes a Decel-to-Cruise transition (t043) and uses
Throttle.Position() to set the TargetThrottle variable.

7.2. Status of automation

At least four different testing activities can benefit from automation. First is the selection and generation
of test data, second is the evaluation of the test data (e.g. according to a test criterion), third is the
identification and generation of expected results and fourth is the execution of the tests. The first
activity is widely considered to be the hardest to automate and is supported by the fewest number
of tools, both research and commercial. The goal of this research is to automate the generation of test
data as much as possible.

Most previous research in data flow testing has focused on the intra-method problem and is usually
based on the source code. At the inter-method level (testing multiple methods together), Harrold and
Soffa [10] tried to generate tests that covered def-use pairs between two procedures, focusing on the
problems associated with inter-method analysis. Jin and Offutt [17] defined a limited form of data
flow testing between pairs of methods that only considered certain definitions and uses (first-uses
and last-defs). This work was again based on control flow graphs from the program. Alexander and
Offutt [18,19] defined def-use pairs among program classes and identified the various possibilities that
could occur in the presence of polymorphism and dynamic binding, based on the polymorphic call
set. The current research is based on the specifications (finite state machines) rather than the code and
goes beyond most of the previous papers. All of these papers identified def-use pairs. Only this paper
and the work by Alexander and Offutt identify candidate test paths and this paper goes a step further
in identifying test path specifications. Work on generating test values has previously been limited to
the inter-method case; research into intra-class and inter-class testing has not tried to automatically
generate values but has instead focused on generating sequences of method calls where parameters are
assigned values by hand or created randomly.

Consider the testing architecture shown in Figure 7. The Test Sequence Generator of Figure 3 is
represented as one tool in a collection of tools designed to automate as much of the testing process
as possible. A database implementation of the specification is used to separately create a reference
implementation or generation of executable test sequences. For each test sequence, the Test Harness
executes the external methods in the prescribed order against the reference implementation and at the
end of each execution compares the predicted state of each class in the system with the actual state in
the implementation.

This process usually finds errors in the specification; fixes can then be applied to the database
representation and the process repeated. At an appropriate time, a real implementation can be
substituted for the prototype with the same set of test sequences as in the test suite. An implementation
passes the test suite if the actual states of the classes at each step match the predicted states. The Test
Harness records each mis-match for subsequent analysis. The Graphical User Interface is an optional
component that allows a tester to apply ad hoc testing procedures or to visualise the effect of changes to
the specification. At this point the visualisation is tied to the Automobile example but could be partially

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

250 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

Test Sequence

Generator

Java

Reference

Imp

Java

Rapid Prototype

Machine

Test

Harness

Graphical

User Interface

DB Rep
of

Spec

Executable

Test

Sequences

Figure 7. Testing tool architecture.

generalised on a class-by-class basis to provide rapid visualisations for all software systems derived
from a base set of classes or components.

The Rapid Prototype Machine (RPM) is a generic test simulator written in Java. The machine
consists of a simple kernel able to wait for, queue and process input tasks from either a user or from
the Test Harness. An input task is codified as an instance of a Java class called a MessageObject.
The MessageObject class is a wrapper class that stores data fields traditionally associated with
object-oriented programming, such as an object’s identity, state and behaviour, applied to that object
(a function). The object in question is an instance of a ClassObject. Each ClassObject instantiated in the
RPM is defined by the class, state and variable tables in the database specification. Each ClassObject
retains a queue of MessageObjects, named a CallQueue. CallQueues are threaded, interruptible,
first-in, first-out data structures capable of waiting for, storing and passing MessageObjects to an
RPM interpreter. The RPM interpreter evaluates a MessageObject by inspecting the identity, state
and behaviour fields stored in the MessageObject. Next, the RPM interpreter queries the database
specification’s transition table, using a combination of these fields and then proceeds to further evaluate
the transition actions stored there. This chain of events may result in: (1) a value returned by the RPM
interpreter (accessor function); (2) a ClassObject property changed by the RPM interpreter (mutator
function); or (3) a combination of the two. The RPM provides an interface for test writers to add
visual components for simulation purposes. By implementing the interface, test writers are given
access to RPM interpreter return values and ClassObject states, can instantiate and evaluate their own
MessageObjects and can update custom visualisations appropriately.

The Test Harness is designed to support testers who want to run a sequence of test cases under the
RPM or against a real implementation inserted into the testing architecture in place of the reference
implementation. It is a threaded Java component that sequentially evaluates executable test methods

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 251

stored in a database table. The Test Harness requires the test writer to create two application-specific
tables; in Figure 7 this is done by the Test Sequence Generator. The first table is a list of test methods
to execute under the RPM. The second table is a list of the states to which each ClassObject should
undergo a transition after applying a given method. For each method in the list of test methods, the
Test Harness instructs the relevant ClassObject to create a MessageObject and place that object on its
CallQueue. The MessageObject is evaluated by the RPM interpreter, causing any affected ClassObjects
to undergo a transition to an appropriate state as prescribed by the actions codified in the message.
After a specified transitional period, the Test Harness interrupts all system CallQueues and samples the
state of each RPM ClassObject. Each ClassObject state is compared to the expected ClassObject state
in the second table, described above. If the set of all RPM ClassObject states for a given test method
is equivalent to the set of all expected states for that method, the system records a passing test, restarts
the CallQueues and moves on to the next test method. If, however, the set of all ClassObject RPM
states for a given test method is not equivalent to the set of all expected states for that method, the
system records a ClassObject state inconsistency, restarts the CallQueues and moves on to the next test
method. The preceding process is repeated until all test method items in the table have been executed
or until an action causes a fatal system error.

The last step in developing executable test sequences uses the ideas discussed in Section 6.4 to
identify methods that can be invoked externally and that lead directly to a transition node in the
component flow graph. Given a system state, that is, the state of each class instance in the system and a
transition node selected to be the next action node in a candidate test path, the partial implementation
eliminates all paths from external methods that are not compatible with the current system state
and presents the human tester with the remaining external method choices. By examining the guard
predicates of each alternative presented, the tester chooses an external method with input parameters
to satisfy all guard predicates along some path to the selected action node. Beginning with a system
state in which all classes are in their initial states, it is possible to generate an executable sequence of
external methods that covers a collection of candidate test paths. As candidate test paths are covered by
these actions, they become test specifications for their associated def-use pairs. The result also records
the specific def-use pair associated with each new test specification so it is possible to determine the
specific pairs solved by each external method of the test sequence.

Using the automobile specification and the results generated above, a tester is able to identify
transition nodes derived from external functions (source transition nodes) and separate them from
other transition nodes (target transition nodes). Using these notions of source and target, the following
source-to-target pairs and paths are identified. A source is said to trigger a target if a path exists in
the component flow graph from source to target that does not stop in a wait state. The continuously
generated Checkstate() methods in the CruiseUnit and Wheel classes allow many non-intuitive source-
to-target paths:

Source transition nodes 24 instances Pairs with one or more generated path 571 instances
Target transition nodes 160 instances Generated source-to-target paths 4598 instances
Source-to-target pairs 3840 instances

This process requires 44 iterations of the algorithm derived from Section 6.3 to test each source-to-
target pair. All source to target paths were found by the 27th iteration but it took 17 additional iterations
to prove that paths do not exist for the remaining 3029 source-to-target pairs. The CPU processing

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

252 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

time to generate these results, using the same Access database on a Pentium 4 class PC at 2 GHz with
1 GB RAM described in Section 7.1 for candidate test path generation, was 5 hours and 27 minutes.

7.3. Case study

As an experimental evaluation, 108 faults were seeded into the automobile specification; then two
sets of tests were run on the seeded faults. The first test set was derived from the Finite State Machine
(FSM) data flow methods presented in this paper and the second test set was manually constructed from
intuitive use of CruiseControl. To help eliminate bias, all manual steps were independently performed
by different researchers. Faults were constructed by modifying the transitions table in the specification
database (Appendix A). They were designed by one author (Offutt) by making small syntactic changes,
similar to mutants, in every possible location. This process was very mechanical and straightforward.
These changes were marked on paper and then implemented by copying the table once for each fault
and making one change by another person (Zanon). This resulted in 108 copies of the table.

One author (Gallagher) used the partially automated tool described above to create the executable
FSM data flow tests. Another author (Offutt) derived manual test specifications to try to emulate a
typical manual testing process. The tests followed a sequence of actions that use every user feature
of the CruiseControl in various situations. The fact that the same person designed the faults and also
created the manual tests has the potential for introducing a problem with internal validity. However,
the faults were designed almost a full year before the manual tests and both activities were very
mechanical in nature. These two factors serve to ameliorate the potential for problems with internal
validity. The manual test specifications were given to another person (Zanon), who translated them
into inputs to the Test Harness, the interface having been independently designed by the third author
(Cincotta). The manual test specification sequence is described in user terms as follows:

(1) start Ignition, change gears and reach highway speed;
(2) set CruiseControl by turning cruise switch On and pushing SD cruise button;
(3) use brake to slow speed;
(4) use RA button to return to previous speed;
(5) manually increase speed using gas pedal;
(6) use SD button to set cruise at higher speed;
(7) use brake to slow speed;
(8) use SD button to set cruise at new slower speed;
(9) use ExternalDrag to maintain cruise speed both up and downhill;

(10) turn cruise switch Off;
(11) set speed manually with gas pedal to less than SlowCutoff;
(12) turn cruise switch On;
(13) test SD button to ensure that nothing happens at slow speed;
(14) brake to a stop and turn ignition off.

The FSM-derived test cases were created to cover a specific set of candidate test paths (CTPs)
and DU-pairs. This information was not determined for the manually created tests. The FSM-derived
tests predicted the system state for all 12 classes at the end of each execution, whereas intuition and
common sense were used to predict the system state for the manually created tests. Both sets of tests
were executed by the third author (Cincotta), using the RPM and Test Harness to execute all actions

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 253

Table III. Case study results on Automobile example.

FSM data flow Manual

CTPs covered 1001 Unknown
DU-pairs covered 954 Unknown
Tests 145 41
Faults 108 108
Faults found 106 24

Percentage found 98% 22%

and to compare the predicted system state with the actual system state after each action. The results are
shown in Table III.

Clearly this testing scenario favours the FSM method because it contains more than three times as
many tests as the manual method does. In particular, the FSM tests use Accelerate and Decelerate
buttons to increase and decrease speed over normal ranges and to exceed the Slow and FastCutoff
points, whereas the manual tests do not. However, the manual tests require intensive human effort to
decide what new expectations to test, while the FSM approach merely responds to simple answers to
questions about which guard predicates to satisfy at each step of the process and cranks out new test
actions to cover candidate test paths not previously covered. The actual test sequences and expected
system states for both test methods are included in the technical report [41].

A major additional benefit of the testing architecture described above is the ability to generate
quickly a reference implementation that responds reasonably to external actions. This capability
allowed the tests to find a number of flaws in the original specification that would have been difficult
to detect simply by inspecting the guards and actions of the transitions. The granularity of adjustments
to the throttle in CruiseUnit transitions t026 and t027 and the granularity of checks in the guard
predicates of transitions t023 to t025 have a significant impact on the oscillating effect one gets when
using the Resume/Accel button to resume a previously targeted speed or when setting ExternalDrag to
sharply different values. Although technically correct according to the specifications, speeds would
sometimes wildly oscillate above and below the target speed several times before settling down.
Another specification error immediately discovered was forgetting that action queues can hold multiple
actions, sometimes resulting in unexpected method invocations in a current state that were put on
the queue while the class was in a previous state. Another unexpected result occurs when ‘Pauses’
are added to the specification, e.g. in CruiseUnit transitions t023, t026, t027, t038, t050 and t065.
One sometimes forgets that when one class is pausing, perhaps to wait for delayed effects, other classes
may be piling actions on a call queue. Rapid access to a reference implementation helped discover a
number of errors of this type in the original specification.

Constructing test cases that predict the expected system state at each step greatly improves the
ability to find specification errors in transitions that correctly manage the state of their own class,
but forget to send proper messages to effect that change in other classes. Early tests found an error
in CruiseUnit transition t057 for method UserSwitch(Off) in that it properly changed the state of

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

254 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

CruiseUser, CruiseUnit and Gauges but initially forgot to send a message to the Throttle to go into
the Idle state. Very common specification errors are to assign values to variables, declare that the
object moves to a new state but forget to check if the state predicate of the new state is satisfied.
Test construction found several subtle specification errors of this type. An error found by a test but
still existing in the specification is that Transmission transition t005 properly sends a message to
the Wheel to change speed when a gear is changed, but forgets that DriveRatio() is handled by the
current transition, which returns zero for Neutral, so the Wheel state does not change no matter
which gear is set from Neutral. This is an example where a state predicted by a test case (Wheel in
DirectDrive) differs from intuition (Wheel in Accel), so a closer look at the specification reveals the
error. In all, approximately a dozen errors were found in the specifications. These were found by tests
that were created when the test generator was under development and the specifications were corrected.
Consequently, the manual tests and the experimental results in Table III were based on the corrected
version of the specifications. Of course, this may not be indicative because domain experts did not
write the specifications. Still, it is positive anecdotal evidence that the analysis needed to develop tests
can help improve specifications.

7.4. Scalability

The collection of tools described in Section 7.2 automates all but two steps in the generation of
executable test cases. The database representation of the specification must be created by hand and the
final step of generating executable test sequences is only partially automated. A Web-based graphical
user interface is currently under development to capture and store specification information into the
database. These tool implementations are not typical testing tools that consist of compiled programs.
Instead, they consist of the system information represented in a highly structured database schema,
together with database queries and other database operations that implement each step in the process.
The logical requirements of the algorithm for path generation are implemented as queries and updates
to leverage the database system for powerful logical computation and efficient I/O management.
Modern commercial databases access the hard disk in the most optimal way, certainly not with every
query. They use very effective optimisation strategies that are based on caching, prefetching and
other operating system concepts. Optimisation is part of the advantage of using a database—few
programmers could manage memory with even a fraction of the efficiency of commercial database
products. This allows the methodology to be applied to integration testing in software systems that
might otherwise be too large for easy manipulation in the main memory. The literature contains no
other methodology that leverage database capabilities in this manner or that can handle data flow
testing with graphs this large.

Although it is true that this work thus far has not assured scalability, the authors have experience
in both building and using source code-level data flow analysis software and know of no other
source code-level data flow testing systems, either commercial or experimental, which can handle
software specifications that have thousands of DU-pairs. A less obvious advantage was with regards
to maintenance. With this technique, it was very easy to modify the algorithm to add additional
refinements or to correct small omissions—by modifying a single SQL predicate.

The FSM flow tests found 106 faults, whereas the manual tests only found 24 faults. Not only did
the FSM flow tests find more faults, they found more faults per test. This might be a little misleading,
however, because the exact number of tests created will vary greatly depending on the decisions made

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 255

during test creation. Thus even though not all def-use pairs were covered by the automatic approach,
the tests were of a high quality and indicate that in larger systems, not all def-use pairs would need to
be covered in order to find many of the critical faults.

The database representation provides a convenient and efficient way to go one step beyond traditional
data flow systems and provide definition-clear DU-paths rather than just DU-pairs. Traditional code-
level data flow systems provide DU-pairs (as statement numbers) and use instrumentation to check
whether separately supplied test inputs cause def-clear paths to be executed from the definitions to the
uses. This is often a hit-or-miss process, with the tester throwing test inputs at the software, hoping that
the data flow system eventually reports that the DU-pairs were covered. It is sometimes very difficult for
a tester to find a test case that will cover a particular DU-pair and attempts have been made to generate
tests by generating and solving predicates [45]. Source code-level data flow analysis has always had
problems with the predicates getting too large for memory, which is one reason why data flow testing
is seldom, if at all, used in practice. The early papers on data flow discussed data flow paths, but none
of the implementations dealt with construction of the paths, which meant that discussions of data flow
paths were theoretical.

One reason that traditional code-level data flow programs do not provide complete paths is because
the problems of finding feasible paths and determining if the path is def-clear are generally undecidable.
When the problems can be solved, the complexity of the control flow, problems with function calls and
variable aliasing (where two different names are given to the same memory object) and the size of
the data space make the cost of the exponential algorithms prohibitive. This work, however, avoids
some of the problems associated with code-level data flow analysis. The ‘control flow’ on average is
much simpler than in code-level control-flow graphs, the data space is much smaller and there is no
aliasing. The point of using a database system is that it provides a powerful compute engine for solving
predicates, which is one of the most difficult parts of a data flow analyser to implement.

8. CONCLUSIONS AND FUTURE WORK

This paper presents two major and several minor results. The first major result is a method
for integration level, inter-class testing for object-oriented programs using data flow techniques.
The second is a computational approach to find feasible and infeasible paths. This is a difficult problem
where current solutions are not very effective. The approach in this paper could be used in other path-
based testing criteria. One minor result is a technique for representing data flow and control flow graphs
in a relational database and using the database as a compute engine for deriving DU-pairs and DU-paths
to satisfy data flow testing criteria. Software components are modelled as finite state machines and data
flows are defined on the finite state machines, yielding DU-paths that are used as a basis for testing.
A second minor result is a rapid prototyping machine that allows a quick and convenient way to execute
software specifications and a third is an automated test harness to support the test method. A fourth
minor result is the introduction of a fairly substantial cruise control example, which can be used by
other researchers in their empirical studies. The relevant transitions are in Appendix A, and the full
specifications are online in the technical report [41]. These tools and the example were used to obtain
empirical results from applying the testing method and comparing it with manual tests.

This paper does not prove the existence of an executable test case for each DU-pair, but by
eliminating def-bound pairs and by generating a small collection of potentially feasible candidate

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

256 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

test paths for each remaining pair, it substantially increases the likelihood of finding an executable
test case. Careful design of the states and guards in a functional specification of transitions and
early identification of non-feasible path segments in a component flow graph will also help reduce
the number of non-feasible candidate test paths. Future efforts will focus on improving the tool for
automatic generation of executable test cases for black-box testing and increasing the automation of
generating executable test sequences from candidate test paths.

This paper does not explicitly handle class variables (Java static) or inheritance. However, class
variables can be modelled by assuming that they are instance variables in a separate, virtual class,
where only one instance of that class is available and where the static methods that access the class
variables are methods in the separate class. Inheritance of variables from a superclass is handled by
replacing variable references in the subclass with a method invocation of the associated get and set
methods of the superclass. Other aspects of inheritance do not directly impact on this model.

For clarity, the definitions and example in this paper only consider one object per class but extending
the method is straightforward. However, aggregation and consideration of multiple class instances are
essential for practical application. In static environments with static type hierarchies and static type
binding, aggregation and multiple instances are achieved by allowing state variables to be references
to some other object. All such reference variables are collected together, creating a new table in the
model with a primary key called RefId. Each row of the new table identifies an object whose state
and behaviour must be maintained throughout the testing process. Then the associations of Figure 3
are extended to be specified in terms of RefIds instead of just ClassIds. The remainder of the test
specification for this situation follows as presented here. The situation is substantially more complex
when class hierarchies with dynamic type binding and polymorphism are used. This is an issue for
future work.

One interesting question is when to employ the techniques presented in this paper and three
possibilities emerge. The most obvious is when software components are integrated. At that time,
the FSMs can be generated and relevant transitions can be determined to be those transitions that are
included as part of the components in the current integration step. It may also be possible to employ
these techniques during maintenance. If a component is to be changed, the impact of that change can
be estimated in terms of the relevant transitions, and regression testing can proceed on the relevant
transitions. This impact could also be limited by applying a testing firewall [46], which was found to
be very helpful in industrial practice [47] and could readily be incorporated into the FSM model in
this paper. Finally, if a new component is to be added to a system, then relevant transitions (and the
resulting tests) can be created in terms of the new component. The authors hope to explore these ideas
in future work.

With the increasing popularity of object-oriented specification methods, for example, UML [24]
and especially state transition specification of classes, for example, UML’s state machine package, it
becomes possible to align more closely the specification and testing of object-oriented software, with
executable test cases generated automatically from the specification. With the addition of database
tools, it becomes possible to apply finite state analysis and testing methods to moderate-sized software
systems. Follow-on work will focus on further integration of the specification and testing aspects of
software development and on the potential application of statistical methods.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 257

A
P

P
E

N
D

IX
A

.R
el

ev
an

t
fe

as
ib

le
m

ut
at

or
tr

an
si

ti
on

s
fo

r
C

ru
is

eC
on

tr
ol

C
la

ss
T

ra
nI

d
So

ur
ce

Ta
rg

et
Fu

nc
tio

n
G

ua
rd

A
ct

io
n

A
ut

oS
ys

te
m

t0
01

In
iti

al
In

ac
tiv

e
A

ut
oS

ys
te

m
()

tr
ue

T
hr

ot
tle

Fl
oo

r:
=1

2;
T

hr
ot

tle
G

ov
er

no
r:
=8

0;
G

lo
ba

lB
ra

ke
C

on
tr

ol
:=

N
ew

B
ra

ke
C

on
tr

ol
()

;
B

ra
ke

A
ct

iv
e:

=f
al

se
;

G
lo

ba
lC

lu
tc

hU
se

r:
=N

ew
C

lu
tc

hU
se

r(
);

C
lu

tc
hA

ct
iv

e:
=f

al
se

;
G

lo
ba

lG
au

ge
s:
=N

ew
G

au
ge

s(
);

D
an

ge
r:
=f

al
se

;
G

lo
ba

lC
ru

is
eU

ni
t:=

N
ew

C
ru

is
eU

ni
t(

);
A

ut
oS

ys
te

m
t0

02
In

ac
tiv

e
A

ct
iv

e
B

ra
ke

A
ct

iv
e(

x)
x=

tr
ue

B
ra

ke
A

ct
iv

e:
=t

ru
e;

C
al

lC
ru

is
eU

ni
t.C

an
ce

l(
);

A
ut

oS
ys

te
m

t0
05

A
ct

iv
e

A
ct

iv
e

B
ra

ke
A

ct
iv

e(
x)

x=
tr

ue
B

ra
ke

A
ct

iv
e:

=t
ru

e;
C

al
lC

ru
is

eU
ni

t.C
an

ce
l(

);
A

ut
oS

ys
te

m
t0

08
A

ct
iv

e
In

ac
tiv

e
B

ra
ke

A
ct

iv
e(

x)
x=

fa
ls

e
&

C
lu

tc
hA

ct
iv

e=
fa

ls
e

&
D

an
ge

r=
fa

ls
e

B
ra

ke
A

ct
iv

e:
=f

al
se

;

B
ra

ke
C

on
tr

ol
t0

01
In

iti
al

In
ac

tiv
e

B
ra

ke
C

on
tr

ol
()

tr
ue

G
lo

ba
lB

ra
ke

U
se

r:
=N

ew
B

ra
ke

U
se

r(
);

Is
A

ct
iv

e:
=f

al
se

;
Pe

da
lP

re
ss

ur
e:

=0
;

L
in

eP
re

ss
ur

e:
=0

;
W

he
el

sT
ur

ni
ng

:=
fa

ls
e;

B
ra

ke
C

on
tr

ol
t0

02
In

ac
tiv

e
B

ra
ki

ng
Is

A
ct

iv
e(

x)
x=

tr
ue

Is
A

ct
iv

e:
=t

ru
e;

C
al

lA
ut

oS
ys

te
m

.B
ra

ke
A

ct
iv

e(
tr

ue
);

B
ra

ke
C

on
tr

ol
t0

03
B

ra
ki

ng
In

ac
tiv

e
Is

A
ct

iv
e(

x)
x=

fa
ls

e
Is

A
ct

iv
e:

=f
al

se
;

C
al

lA
ut

oS
ys

te
m

.B
ra

ke
A

ct
iv

e(
fa

ls
e)

;
B

ra
ke

C
on

tr
ol

t0
04

L
oc

ke
d

In
ac

tiv
e

Is
A

ct
iv

e(
x)

x=
fa

ls
e

Is
A

ct
iv

e:
=f

al
se

;
C

al
lA

ut
oS

ys
te

m
.B

ra
ke

A
ct

iv
e(

fa
ls

e)
;

B
ra

ke
U

se
r

t0
01

In
iti

al
In

ac
tiv

e
B

ra
ke

U
se

r(
)

tr
ue

Is
A

ct
iv

e:
=f

al
se

;
Pe

da
lP

re
ss

ur
e:

=0
;

pc
on

st
:=

5;
B

ra
ke

U
se

r
t0

02
In

ac
tiv

e
B

ra
ki

ng
Is

A
ct

iv
e(

x)
x=

tr
ue

Is
A

ct
iv

e:
=t

ru
e;

C
al

lA
ut

oS
ys

te
m

.B
ra

ke
A

ct
iv

e(
tr

ue
);

C
al

lB
ra

ke
C

on
tr

ol
.I

sA
ct

iv
e(

tr
ue

);
B

ra
ke

U
se

r
t0

03
B

ra
ki

ng
In

ac
tiv

e
Is

A
ct

iv
e(

x)
x=

fa
ls

e
Is

A
ct

iv
e:

=f
al

se
;

C
al

lA
ut

oS
ys

te
m

.B
ra

ke
A

ct
iv

e(
fa

ls
e)

;
C

al
lB

ra
ke

C
on

tr
ol

.I
sA

ct
iv

e(
fa

ls
e)

;
C

ru
is

eU
ni

t
t0

01
In

iti
al

O
ff

C
ru

is
eU

ni
t(

)
tr

ue
G

lo
ba

lC
ru

is
eU

se
r:
=N

ew
C

ru
is

eU
se

r(
);

U
se

rS
w

itc
h:

=O
ff

;
Sl

ow
C

ut
of

f:
=2

5;
Fa

st
C

ut
of

f:
=9

5;
U

se
rM

od
e:

=N
ul

l;
C

ur
re

nt
Sp

ee
d:

=0
;

Ta
rg

et
Sp

ee
d:

=0
;

Ta
rg

et
T

hr
ot

tle
:=

0;
C

ru
is

eU
ni

t
t0

04
O

ff
O

ff
Se

tS
pe

ed
()

tr
ue

C
ur

re
nt

Sp
ee

d:
=G

au
ge

s.
Sp

ee
d(

);
C

ru
is

eU
ni

t
t0

09
O

ff
In

ac
tiv

e
U

se
rS

w
itc

h(
x)

x=
O

n
U

se
rS

w
itc

h:
=O

n;
C

ru
is

eU
ni

t
t0

12
In

ac
tiv

e
In

ac
tiv

e
Se

tS
pe

ed
()

tr
ue

C
ur

re
nt

Sp
ee

d:
=G

au
ge

s.
Sp

ee
d(

);
C

ru
is

eU
ni

t
t0

14
In

ac
tiv

e
In

ac
tiv

e
U

se
rM

od
e(

x)
x=

N
T

&
U

se
rM

od
e=

SD
& (G

au
ge

s.
Sp

ee
d(

)<
=S

lo
w

C
ut

of
f

O
R

G
au

ge
s.

Sp
ee

d(
)>

=F
as

tC
ut

of
f)

U
se

rM
od

e:
=N

T;

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

258 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

C
la

ss
T

ra
nI

d
So

ur
ce

Ta
rg

et
Fu

nc
tio

n
G

ua
rd

A
ct

io
n

C
ru

is
eU

ni
t

t0
16

In
ac

tiv
e

C
ru

is
e

U
se

rM
od

e(
x)

x=
N

T
&

U
se

rM
od

e=
SD

&
(S

lo
w

C
ut

of
f<

G
au

ge
s.

Sp
ee

d(
)

<
Fa

st
C

ut
of

f)
& A

ut
oS

ys
te

m
.B

ra
ke

A
ct

iv
e(

)=
fa

ls
e

&
A

ut
oS

ys
te

m
.D

an
ge

r(
)=

fa
ls

e

U
se

rM
od

e:
=N

T;
C

ur
re

nt
Sp

ee
d:

=G
au

ge
s.

Sp
ee

d(
);

Ta
rg

et
Sp

ee
d:

=C
ur

re
nt

Sp
ee

d;
Ta

rg
et

T
hr

ot
tle

:=
T

hr
ot

tle
.P

os
iti

on
()

;
C

al
lG

au
ge

s.
C

ru
is

e(
O

n)
;

C
al

lT
hr

ot
tle

.F
lo

or
(T

ar
ge

tT
hr

ot
tle

);
Pu

tC
he

ck
St

at
e(

)
on

C
al

lQ
ue

ue
;

C
ru

is
eU

ni
t

t0
17

In
ac

tiv
e

In
ac

tiv
e

U
se

rM
od

e(
x)

x<
>

N
T

U
se

rM
od

e:
=x

;
C

ru
is

eU
ni

t
t0

19
In

ac
tiv

e
O

ff
U

se
rS

w
itc

h(
x)

x=
O

ff
U

se
rS

w
itc

h:
=O

ff
;

C
ru

is
eU

ni
t

t0
21

C
ru

is
e

O
ve

rr
id

e
C

an
ce

l(
)

tr
ue

C
al

lG
au

ge
s.

C
ru

is
e(

O
ff

);
C

al
lT

hr
ot

tle
.F

lo
or

(0
);

C
ru

is
eU

ni
t

t0
23

C
ru

is
e

C
ru

is
e

C
he

ck
St

at
e(

)
A

B
S(

Ta
rg

et
Sp

ee
d-

C
ur

re
nt

Sp
ee

d)
<

0.
5

Pa
us

e;
C

ur
re

nt
Sp

ee
d:

=G
au

ge
s.

Sp
ee

d(
);

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;
C

ru
is

eU
ni

t
t0

24
C

ru
is

e
C

ru
is

e
C

he
ck

St
at

e(
)

0.
5<

=A
B

S(
Ta

rg
et

Sp
ee

d-
C

ur
re

nt
Sp

ee
d)

<
1.

0
C

ur
re

nt
Sp

ee
d:

=G
au

ge
s.

Sp
ee

d(
);

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;
C

ru
is

eU
ni

t
t0

25
C

ru
is

e
C

ru
is

e
C

he
ck

St
at

e(
)

A
B

S(
Ta

rg
et

Sp
ee

d-
C

ur
re

nt
Sp

ee
d)

>
=1

.0
&

T
hr

ot
tle

.P
os

iti
on

()
>

T
hr

ot
tle

.F
lo

or
()

C
ur

re
nt

Sp
ee

d:
=G

au
ge

s.
Sp

ee
d(

);
Pu

tC
he

ck
St

at
e(

)
on

C
al

lQ
ue

ue
;

C
ru

is
eU

ni
t

t0
26

C
ru

is
e

C
ru

is
e

C
he

ck
St

at
e(

)
C

ur
re

nt
Sp

ee
d-

Ta
rg

et
Sp

ee
d>

=1
.0

& T
hr

ot
tle

.P
os

iti
on

()
=T

hr
ot

tle
.F

lo
or

()

C
al

lT
hr

ot
tle

.F
lo

or
(T

hr
ot

tle
.F

lo
or

()
-0

.5
);

Pa
us

e;
C

ur
re

nt
Sp

ee
d:

=G
au

ge
s.

Sp
ee

d(
);

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;
C

ru
is

eU
ni

t
t0

27
C

ru
is

e
C

ru
is

e
C

he
ck

St
at

e(
)

Ta
rg

et
Sp

ee
d-

C
ur

re
nt

Sp
ee

d>
=1

.0
& T

hr
ot

tle
.P

os
iti

on
()
=T

hr
ot

tle
.F

lo
or

()

C
al

lT
hr

ot
tle

.F
lo

or
(T

hr
ot

tle
.F

lo
or

()
+

0.
5)

;
Pa

us
e;

C
ur

re
nt

Sp
ee

d:
=G

au
ge

s.
Sp

ee
d(

);
Pu

tC
he

ck
St

at
e(

)
on

C
al

lQ
ue

ue
;

C
ru

is
eU

ni
t

t0
28

C
ru

is
e

C
ru

is
e

Se
tS

pe
ed

()
tr

ue
C

ur
re

nt
Sp

ee
d:

=G
au

ge
s.

Sp
ee

d(
);

C
ru

is
eU

ni
t

t0
30

C
ru

is
e

D
ec

el
U

se
rM

od
e(

x)
x=

SD
Ta

rg
et

Sp
ee

d:
=T

ar
ge

tS
pe

ed
-1

;
U

se
rM

od
e:

=S
D

;
Pu

tC
he

ck
St

at
e(

)
on

C
al

lQ
ue

ue
;

C
ru

is
eU

ni
t

t0
31

C
ru

is
e

A
cc

el
U

se
rM

od
e(

x)
x=

R
A

Ta
rg

et
Sp

ee
d:

=T
ar

ge
tS

pe
ed

+
1;

U
se

rM
od

e:
=R

A
;

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;
C

ru
is

eU
ni

t
t0

34
C

ru
is

e
O

ff
U

se
rS

w
itc

h(
x)

x=
O

ff
C

al
lG

au
ge

s.
C

ru
is

e(
O

ff
);

U
se

rS
w

itc
h:

=O
ff

;
U

se
rM

od
e:

=N
ul

l;
C

al
lT

hr
ot

tle
.F

lo
or

(0
);

C
ru

is
eU

ni
t

t0
35

D
ec

el
O

ve
rr

id
e

C
an

ce
l(

)
tr

ue
C

al
lG

au
ge

s.
C

ru
is

e(
O

ff
);

U
se

rM
od

e:
=N

ul
l;

C
al

lT
hr

ot
tle

.F
lo

or
(0

);
C

ru
is

eU
ni

t
t0

38
D

ec
el

D
ec

el
C

he
ck

St
at

e(
)

C
ur

re
nt

Sp
ee

d>
Sl

ow
C

ut
of

f
C

al
lT

hr
ot

tle
.F

lo
or

(T
hr

ot
tle

.P
os

iti
on

()
-0

.5
);

Pa
us

e;
C

ur
re

nt
Sp

ee
d:

=G
au

ge
s.

Sp
ee

d(
);

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 259

C
la

ss
T

ra
nI

d
So

ur
ce

Ta
rg

et
Fu

nc
tio

n
G

ua
rd

A
ct

io
n

C
ru

is
eU

ni
t

t0
39

D
ec

el
O

ve
rr

id
e

C
he

ck
St

at
e(

)
C

ur
re

nt
Sp

ee
d<

=S
lo

w
C

ut
of

f
C

al
lG

au
ge

s.
C

ru
is

e(
O

ff
);

U
se

rM
od

e:
=N

ul
l;

C
al

lT
hr

ot
tle

.F
lo

or
(0

);
C

ru
is

eU
ni

t
t0

40
D

ec
el

D
ec

el
Se

tS
pe

ed
()

tr
ue

C
ur

re
nt

Sp
ee

d:
=G

au
ge

s.
Sp

ee
d(

);
C

ru
is

eU
ni

t
t0

43
D

ec
el

C
ru

is
e

U
se

rM
od

e(
x)

x=
N

T
U

se
rM

od
e:

=N
T;

Ta
rg

et
Sp

ee
d:

=G
au

ge
s.

Sp
ee

d(
);

Ta
rg

et
T

hr
ot

tle
:=

T
hr

ot
tle

.P
os

iti
on

()
;

C
ur

re
nt

Sp
ee

d:
=T

ar
ge

tS
pe

ed
;

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;
C

ru
is

eU
ni

t
t0

45
D

ec
el

O
ff

U
se

rS
w

itc
h(

x)
x=

O
ff

C
al

lG
au

ge
s.

C
ru

is
e(

O
ff

);
U

se
rS

w
itc

h:
=O

ff
;

U
se

rM
od

e:
=N

ul
l;

C
al

lT
hr

ot
tle

.F
lo

or
(0

);
C

ru
is

eU
ni

t
t0

47
A

cc
el

O
ve

rr
id

e
C

an
ce

l(
)

tr
ue

C
al

lG
au

ge
s.

C
ru

is
e(

O
ff

);
U

se
rM

od
e:

=N
ul

l;
C

al
lT

hr
ot

tle
.F

lo
or

(0
);

C
ru

is
eU

ni
t

t0
50

A
cc

el
A

cc
el

C
he

ck
St

at
e(

)
C

ur
re

nt
Sp

ee
d<

Fa
st

C
ut

of
f

C
al

lT
hr

ot
tle

.F
lo

or
(T

hr
ot

tle
.P

os
iti

on
()

+
0.

5)
;

Pa
us

e;
C

ur
re

nt
Sp

ee
d:

=G
au

ge
s.

Sp
ee

d(
);

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;
C

ru
is

eU
ni

t
t0

51
A

cc
el

O
ve

rr
id

e
C

he
ck

St
at

e(
)

C
ur

re
nt

Sp
ee

d>
=F

as
tC

ut
of

f
C

al
lG

au
ge

s.
C

ru
is

e(
O

ff
);

U
se

rM
od

e:
=N

ul
l;

C
al

lT
hr

ot
tle

.F
lo

or
(0

);
C

ru
is

eU
ni

t
t0

52
A

cc
el

A
cc

el
Se

tS
pe

ed
()

tr
ue

C
ur

re
nt

Sp
ee

d:
=G

au
ge

s.
Sp

ee
d(

);
C

ru
is

eU
ni

t
t0

55
A

cc
el

C
ru

is
e

U
se

rM
od

e(
x)

x=
N

T
U

se
rM

od
e:

=N
T;

Ta
rg

et
Sp

ee
d:

=G
au

ge
s.

Sp
ee

d(
);

Ta
rg

et
T

hr
ot

tle
:=

T
hr

ot
tle

.P
os

iti
on

()
;

C
ur

re
nt

Sp
ee

d:
=T

ar
ge

tS
pe

ed
;

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;
C

ru
is

eU
ni

t
t0

57
A

cc
el

O
ff

U
se

rS
w

itc
h(

x)
x=

O
ff

C
al

lG
au

ge
s.

C
ru

is
e(

O
ff

);
U

se
rS

w
itc

h:
=O

ff
;

U
se

rM
od

e:
=N

ul
l;

C
al

lT
hr

ot
tle

.F
lo

or
(0

);
C

ru
is

eU
ni

t
t0

61
O

ve
rr

id
e

O
ve

rr
id

e
Se

tS
pe

ed
()

tr
ue

C
ur

re
nt

Sp
ee

d:
=G

au
ge

s.
Sp

ee
d(

);
C

ru
is

eU
ni

t
t0

63
O

ve
rr

id
e

O
ve

rr
id

e
U

se
rM

od
e(

x)
x<

>
N

T
O

R
G

au
ge

s.
Sp

ee
d(

)<
=S

lo
w

C
ut

of
f

O
R

G
au

ge
s.

Sp
ee

d(
)>

=F
as

tC
ut

of
f

U
se

rM
od

e:
=x

;

C
ru

is
eU

ni
t

t0
64

O
ve

rr
id

e
C

ru
is

e
U

se
rM

od
e(

x)
x=

N
T

&
U

se
rM

od
e=

SD
& (S

lo
w

C
ut

of
f<

G
au

ge
s.

Sp
ee

d(
)<

Fa
st

C
ut

of
f)

& A
ut

oS
ys

te
m

.B
ra

ke
A

ct
iv

e(
)=

fa
ls

e
&

A
ut

oS
ys

te
m

.D
an

ge
r(

)=
fa

ls
e

C
ur

re
nt

Sp
ee

d:
=G

au
ge

s.
Sp

ee
d(

);
Ta

rg
et

Sp
ee

d:
=C

ur
re

nt
Sp

ee
d;

Ta
rg

et
T

hr
ot

tle
:=

T
hr

ot
tle

.P
os

iti
on

()
;

C
al

lG
au

ge
s.

C
ru

is
e(

O
n)

;
C

al
lT

hr
ot

tle
.F

lo
or

(T
ar

ge
tT

hr
ot

tle
);

U
se

rM
od

e:
=N

T;
Pu

tC
he

ck
St

at
e(

)
on

C
al

lQ
ue

ue
;

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

260 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

C
la

ss
T

ra
nI

d
So

ur
ce

Ta
rg

et
Fu

nc
tio

n
G

ua
rd

A
ct

io
n

C
ru

is
eU

ni
t

t0
65

O
ve

rr
id

e
C

ru
is

e
U

se
rM

od
e(

x)
x=

N
T

&
U

se
rM

od
e=

R
A

& (S
lo

w
C

ut
of

f<
G

au
ge

s.
Sp

ee
d(

)<
Fa

st
C

ut
of

f)
& A

ut
oS

ys
te

m
.B

ra
ke

A
ct

iv
e(

)=
fa

ls
e

&
A

ut
oS

ys
te

m
.D

an
ge

r(
)=

fa
ls

e

C
al

lT
hr

ot
tle

.F
lo

or
(T

ar
ge

tT
hr

ot
tle

);
C

al
lG

au
ge

s.
C

ru
is

e(
O

n)
;

U
se

rM
od

e:
=N

T;
Pa

us
e;

C
ur

re
nt

Sp
ee

d:
=G

au
ge

s.
Sp

ee
d(

);
Pu

tC
he

ck
St

at
e(

)
on

C
al

lQ
ue

ue
;

C
ru

is
eU

ni
t

t0
66

O
ve

rr
id

e
O

ve
rr

id
e

U
se

rM
od

e(
x)

x=
N

T
&

U
se

rM
od

e=
N

ul
l

U
se

rM
od

e:
=N

T;
C

ru
is

eU
ni

t
t0

69
O

ve
rr

id
e

O
ff

U
se

rS
w

itc
h(

x)
x=

O
ff

U
se

rS
w

itc
h:

=O
ff

;
U

se
rM

od
e:

=N
ul

l;
C

ru
is

eU
se

r
t0

01
In

iti
al

O
ff

C
ru

is
eU

se
r(

)
tr

ue
Sw

itc
h:

=O
ff

;M
od

e:
=N

T;
C

ru
is

eU
se

r
t0

02
O

ff
N

eu
tr

al
Sw

itc
h(

x)
x=

O
n

Sw
itc

h:
=O

n;
C

al
lC

ru
is

eU
ni

t.U
se

rS
w

itc
h(

O
n)

;
C

ru
is

eU
se

r
t0

03
N

eu
tr

al
O

ff
Sw

itc
h(

x)
x=

O
ff

Sw
itc

h:
=O

ff
;C

al
lC

ru
is

eU
ni

t.U
se

rS
w

itc
h(

O
ff

);
C

ru
is

eU
se

r
t0

04
N

eu
tr

al
A

cc
el

M
od

e(
x)

x=
R

A
M

od
e:

=R
A

;C
al

lC
ru

is
eU

ni
t.U

se
rM

od
e(

R
A

);
C

ru
is

eU
se

r
t0

05
A

cc
el

N
eu

tr
al

M
od

e(
x)

x=
N

T
M

od
e:

=N
T;

C
al

lC
ru

is
eU

ni
t.U

se
rM

od
e(

N
T

);
C

ru
is

eU
se

r
t0

06
D

ec
el

N
eu

tr
al

M
od

e(
x)

x=
N

T
M

od
e:

=N
T;

C
al

lC
ru

is
eU

ni
t.U

se
rM

od
e(

N
T

);
C

ru
is

eU
se

r
t0

07
N

eu
tr

al
D

ec
el

M
od

e(
x)

x=
SD

M
od

e:
=S

D
;C

al
lC

ru
is

eU
ni

t.U
se

rM
od

e(
SD

);
C

ru
is

eU
se

r
t0

08
A

cc
el

O
ff

Sw
itc

h(
x)

x=
O

ff
Sw

itc
h:

=O
ff

;M
od

e:
=N

T;
C

al
lC

ru
is

eU
ni

t.U
se

rS
w

itc
h(

O
ff

);
C

ru
is

eU
se

r
t0

09
D

ec
el

O
ff

Sw
itc

h(
x)

x=
O

ff
Sw

itc
h:

=O
ff

;M
od

e:
=N

T;
C

al
lC

ru
is

eU
ni

t.U
se

rS
w

itc
h(

O
ff

);
C

ru
is

eU
se

r
t0

10
N

eu
tr

al
N

eu
tr

al
C

an
ce

l(
)

tr
ue

C
al

lC
ru

is
eU

ni
t.C

an
ce

l(
);

C
ru

is
eU

se
r

t0
16

A
cc

el
A

cc
el

C
an

ce
l(

)
tr

ue
C

al
lC

ru
is

eU
ni

t.C
an

ce
l(

);
C

ru
is

eU
se

r
t0

19
D

ec
el

D
ec

el
C

an
ce

l(
)

tr
ue

C
al

lC
ru

is
eU

ni
t.C

an
ce

l(
);

E
ng

in
e

t0
01

In
iti

al
N

or
m

al
E

ng
in

e(
)

tr
ue

R
pm

:=
0;

G
as

Fl
ow

:=
0;

E
xt

er
na

lD
ra

g:
=1

;
W

at
er

T
M

in
:=

0;
O

ilP
M

in
:=

0;
E

ng
in

e
t0

03
N

or
m

al
N

or
m

al
G

as
Fl

ow
(x

)
tr

ue
G

as
Fl

ow
:=

x;
R

pm
:=

(2
-E

xt
er

na
lD

ra
g)

*G
as

Fl
ow

*6
30

;
C

al
lG

au
ge

s.
Ta

ch
(R

pm
);

C
al

lW
he

el
.A

xe
lR

pm
(R

pm
*T

ra
ns

m
is

si
on

.D
ri

ve
R

at
io

()
);

E
ng

in
e

t0
05

N
or

m
al

N
or

m
al

E
xt

er
na

lD
ra

g(
x)

tr
ue

E
xt

er
na

lD
ra

g:
=x

;
R

pm
:=

(2
-E

xt
er

na
lD

ra
g)

*G
as

Fl
ow

*6
30

;
C

al
lG

au
ge

s.
Ta

ch
(R

pm
);

C
al

lW
he

el
.A

xe
lR

pm
(R

pm
*T

ra
ns

m
is

si
on

.D
ri

ve
R

at
io

()
);

G
as

U
se

r
t0

01
In

iti
al

A
ct

iv
e

G
as

U
se

r(
)

tr
ue

Pe
da

lP
os

iti
on

:=
0;

G
as

U
se

r
t0

02
A

ct
iv

e
A

ct
iv

e
Pe

da
lP

os
iti

on
(x

)
x>

0
&

x<
>

Pe
da

lP
os

iti
on

Pe
da

lP
os

iti
on

:=
x;

C
al

lT
hr

ot
tle

.G
as

Pe
da

l(
Pe

da
lP

os
iti

on
);

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 261

C
la

ss
T

ra
nI

d
So

ur
ce

Ta
rg

et
Fu

nc
tio

n
G

ua
rd

A
ct

io
n

G
au

ge
s

t0
00

In
iti

al
N

or
m

al
G

au
ge

s(
)

tr
ue

Sp
ee

d:
=0

;C
ru

is
e:

=O
ff

;T
ac

h:
=0

;O
ilP

re
ss

ur
e:

=0
;

O
ilL

ig
ht

:=
O

ff
;

O
do

m
et

er
:=

N
ul

l;
T

ri
pM

et
er

:=
N

ul
l;

W
at

er
Te

m
p:

=0
;A

bs
L

ig
ht

:=
O

ff
;B

at
te

ry
:=

O
ff

;
Se

at
B

el
t:=

O
ff

;
H

an
dB

ra
ke

:=
N

ul
l;

L
ow

G
as

:=
O

ff
;

G
au

ge
s

t0
06

N
or

m
al

N
or

m
al

Ta
ch

(x
)

tr
ue

Ta
ch

:=
x;

G
au

ge
s

t0
08

N
or

m
al

N
or

m
al

Sp
ee

d(
x)

x<
18

0
Sp

ee
d:

=x
;

G
au

ge
s

t0
09

N
or

m
al

D
an

ge
r

Sp
ee

d(
x)

x>
=1

80
Sp

ee
d:

=M
in

(x
,2

50
);

C
al

lA
ut

oS
ys

te
m

.D
an

ge
r(

tr
ue

);
G

au
ge

s
t0

17
N

or
m

al
N

or
m

al
C

ru
is

e(
x)

tr
ue

C
ru

is
e:

=x
;

G
au

ge
s

t0
34

D
an

ge
r

D
an

ge
r

Sp
ee

d(
x)

x>
=1

80
Sp

ee
d:

=M
in

(x
,2

50
);

Ig
ni

tio
n

t0
00

In
iti

al
O

n
Ig

ni
tio

n(
)

tr
ue

K
ey

:=
O

n;
E

ng
in

eO
n:

=f
al

se
;

G
lo

ba
lA

ut
oS

ys
te

m
:=

N
ew

A
ut

oS
ys

te
m

()
;

Ig
ni

tio
n

t0
01

O
n

In
iti

al
K

ey
(x

)
x=

O
ff

K
ey

:=
O

ff
;E

ng
in

eO
n:

=f
al

se
;

D
es

tr
oy

T
hr

ot
tle

;
D

es
tr

oy
E

ng
in

e;
D

es
tr

oy
A

ut
oS

ys
te

m
;D

es
tr

oy
Se

lf
;

Ig
ni

tio
n

t0
03

O
n

O
n

St
ar

tE
ng

in
e(

)
E

ng
in

eO
n=

fa
ls

e
G

lo
ba

lT
ra

ns
m

is
si

on
:=

N
ew

T
ra

ns
m

is
si

on
()

;
G

lo
ba

lE
ng

in
e:

=N
ew

E
ng

in
e(

);
G

lo
ba

lG
as

U
se

r:
=N

ew
G

as
U

se
r(

);
G

lo
ba

l
T

hr
ot

tle
:=

N
ew

T
hr

ot
tle

(A
ut

oS
ys

te
m

.T
hr

ot
tle

Fl
oo

r(
);

A
ut

oS
ys

te
m

.T
hr

ot
tle

G
ov

er
no

r(
))

;
E

ng
in

eO
n:

=t
ru

e;
T

hr
ot

tle
t0

01
In

iti
al

Id
le

T
hr

ot
tle

(x
,y

)
0<

x
&

x<
y

&
y<

10
0

fc
on

st
:=

x;
gc

on
st

:=
y;

Po
si

tio
n:

=f
co

ns
t;

C
al

lE
ng

in
e.

G
as

Fl
ow

(C
on

ve
rt

(P
os

iti
on

))
;

Fl
oo

r:
=f

co
ns

t;
C

al
lG

as
U

se
r.P

ed
al

Po
si

tio
n(

fc
on

st
);

T
hr

ot
tle

t0
02

Id
le

M
an

ua
l

G
as

Pe
da

l(
x)

x>
fc

on
st

G
as

Pe
da

l:=
x;

Po
si

tio
n:

=M
in

(G
as

Pe
da

l,
gc

on
st

);
C

al
lE

ng
in

e.
G

as
Fl

ow
(C

on
ve

rt
(P

os
iti

on
))

;
T

hr
ot

tle
t0

03
M

an
ua

l
Id

le
G

as
Pe

da
l(

x)
x<

=f
co

ns
t

G
as

Pe
da

l:=
x;

Po
si

tio
n:

=f
co

ns
t;

C
al

lE
ng

in
e.

G
as

Fl
ow

(C
on

ve
rt

(f
co

ns
t)

);
C

al
lG

as
U

se
r.P

ed
al

Po
si

tio
n(

fc
on

st
);

T
hr

ot
tle

t0
04

Id
le

A
ut

om
at

ic
Fl

oo
r(

x)
x>

fc
on

st
Fl

oo
r:
=M

in
(x

,g
co

ns
t)

;P
os

iti
on

:=
Fl

oo
r;

C
al

lE
ng

in
e.

G
as

Fl
ow

(C
on

ve
rt

(P
os

iti
on

))
;

C
al

lG
as

U
se

r.P
ed

al
Po

si
tio

n(
Po

si
tio

n)
;

T
hr

ot
tle

t0
05

A
ut

om
at

ic
Id

le
Fl

oo
r(

x)
x<

=f
co

ns
t

Fl
oo

r:
=f

co
ns

t;
Po

si
tio

n:
=f

co
ns

t;
C

al
lE

ng
in

e.
G

as
Fl

ow
(C

on
ve

rt
(P

os
iti

on
))

;
C

al
lG

as
U

se
r.P

ed
al

Po
si

tio
n(

fc
on

st
);

T
hr

ot
tle

t0
06

M
an

ua
l

A
ut

om
at

ic
G

as
Pe

da
l(

x)
x>

fc
on

st
&

x<
=F

lo
or

G
as

Pe
da

l:=
x;

Po
si

tio
n:

=F
lo

or
;

C
al

lE
ng

in
e.

G
as

Fl
ow

(C
on

ve
rt

(P
os

iti
on

))
;

C
al

lG
as

U
se

r.P
ed

al
Po

si
tio

n(
Fl

oo
r)

;
T

hr
ot

tle
t0

07
M

an
ua

l
A

ut
om

at
ic

Fl
oo

r(
x)

x>
=P

os
iti

on
Fl

oo
r:
=M

in
(x

,g
co

ns
t)

;P
os

iti
on

:=
Fl

oo
r;

C
al

lE
ng

in
e.

G
as

Fl
ow

(C
on

ve
rt

(P
os

iti
on

))
;

C
al

lG
as

U
se

r.P
ed

al
Po

si
tio

n(
Fl

oo
r)

;

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

262 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

C
la

ss
T

ra
nI

d
So

ur
ce

Ta
rg

et
Fu

nc
tio

n
G

ua
rd

A
ct

io
n

T
hr

ot
tle

t0
08

A
ut

om
at

ic
M

an
ua

l
G

as
Pe

da
l(

x)
x>

fc
on

st
&

x>
Fl

oo
r

&
x<

=g
co

ns
t

G
as

Pe
da

l:=
x;

Po
si

tio
n:

=x
;

C
al

lE
ng

in
e.

G
as

Fl
ow

(C
on

ve
rt

(P
os

iti
on

))
;

T
hr

ot
tle

t0
09

A
ut

om
at

ic
A

ut
om

at
ic

Fl
oo

r(
x)

x>
fc

on
st

Fl
oo

r:
=M

in
(x

,g
co

ns
t)

;P
os

iti
on

:=
Fl

oo
r;

C
al

lE
ng

in
e.

G
as

Fl
ow

(C
on

ve
rt

(P
os

iti
on

))
;

C
al

lG
as

U
se

r.P
ed

al
Po

si
tio

n(
Po

si
tio

n)
;

T
hr

ot
tle

t0
24

Id
le

Id
le

G
as

Pe
da

l(
x)

x<
=f

co
ns

t
G

as
Pe

da
l:=

x;
T

hr
ot

tle
t0

25
Id

le
Id

le
Fl

oo
r(

x)
x<

=f
co

ns
t

Fl
oo

r:
=f

co
ns

t;
T

hr
ot

tle
t0

26
M

an
ua

l
M

an
ua

l
G

as
Pe

da
l(

x)
x>

fc
on

st
&

x<
=g

co
ns

t&
x>

Fl
oo

r
G

as
Pe

da
l:=

x;
Po

si
tio

n:
=x

;
C

al
lE

ng
in

e.
G

as
Fl

ow
(C

on
ve

rt
(P

os
iti

on
))

;
T

hr
ot

tle
t0

28
M

an
ua

l
M

an
ua

l
Fl

oo
r(

x)
x<

Po
si

tio
n

Fl
oo

r:
=M

ax
(f

co
ns

t,
x)

;
T

hr
ot

tle
t0

30
A

ut
om

at
ic

A
ut

om
at

ic
G

as
Pe

da
l(

x)
x>

fc
on

st
&

x<
=F

lo
or

G
as

Pe
da

l:=
x;

T
ra

ns
m

is
si

on
t0

01
In

iti
al

N
eu

tr
al

T
ra

ns
m

is
si

on
()

tr
ue

G
ea

r:
=N

;R
at

io
R

:=
1.

84
6;

R
at

io
1:

=2
.5

63
;

R
at

io
2:

=1
.5

52
;R

at
io

3:
=1

.0
22

;
R

at
io

4:
=0

.6
53

;R
at

io
5:

=0
.4

71
;

R
at

io
D

if
f:
=4

.4
29

;G
lo

ba
lW

he
el

:=
N

ew
W

he
el

()
;

T
ra

ns
m

is
si

on
t0

05
N

eu
tr

al
Fo

rw
ar

d
G

ea
r(

x)
x=

1
O

R
x=

2
O

R
x=

3
O

R
x=

4
O

R
x=

5
G

ea
r:
=x

;
C

al
lW

he
el

.A
xe

lR
pm

(G
au

ge
s.

Ta
ch

()
*D

ri
ve

R
at

io
()

);
T

ra
ns

m
is

si
on

t0
07

Fo
rw

ar
d

N
eu

tr
al

G
ea

r(
x)

x=
N

G
ea

r:
=N

;C
al

lW
he

el
.A

xe
lR

pm
(0

);
T

ra
ns

m
is

si
on

t0
08

Fo
rw

ar
d

Fo
rw

ar
d

G
ea

r(
x)

x=
1

O
R

x=
2

O
R

x=
3

O
R

x=
4

O
R

x=
5

G
ea

r:
=x

;
C

al
lW

he
el

.A
xe

lR
pm

(G
au

ge
s.

Ta
ch

()
*D

ri
ve

R
at

io
()

);
W

he
el

t0
01

In
iti

al
D

ir
ec

tD
ri

ve
W

he
el

()
tr

ue
A

xe
lR

pm
:=

0;
W

he
el

R
pm

:=
0;

W
he

el
D

ia
m

:=
0.

00
05

6;
W

he
el

t0
02

D
ir

ec
tD

ri
ve

D
ir

ec
tD

ri
ve

A
xe

lR
pm

(x
)

A
B

S(
x-

W
he

el
R

pm
)<

=2
A

xe
lR

pm
:=

x;
W

he
el

R
pm

:=
x;

C
al

l
G

au
ge

s.
Sp

ee
d(

W
he

el
R

pm
*(

3.
14

15
9)

*6
0*

W
he

el
D

ia
m

);
W

he
el

t0
03

D
ir

ec
tD

ri
ve

D
ec

el
A

xe
lR

pm
(x

)
x+

2<
W

he
el

R
pm

A
xe

lR
pm

:=
x;

W
he

el
R

pm
:=

W
he

el
R

pm
-1

;
C

al
l

G
au

ge
s.

Sp
ee

d(
W

he
el

R
pm

*(
3.

14
15

9)
*6

0*
W

he
el

D
ia

m
);

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;
W

he
el

t0
04

D
ir

ec
tD

ri
ve

A
cc

el
A

xe
lR

pm
(x

)
x-

2>
W

he
el

R
pm

A
xe

lR
pm

:=
x;

W
he

el
R

pm
:=

W
he

el
R

pm
+1

;
C

al
l

G
au

ge
s.

Sp
ee

d(
W

he
el

R
pm

*(
3.

14
15

9)
*6

0*
W

he
el

D
ia

m
);

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;
W

he
el

t0
05

D
ec

el
D

ec
el

A
xe

lR
pm

(x
)

x+
2<

W
he

el
R

pm
A

xe
lR

pm
:=

x;
W

he
el

R
pm

:=
W

he
el

R
pm

-1
;

C
al

l
G

au
ge

s.
Sp

ee
d(

W
he

el
R

pm
*(

3.
14

15
9)

*6
0*

W
he

el
D

ia
m

);
Pu

tC
he

ck
St

at
e(

)
on

C
al

lQ
ue

ue
;

W
he

el
t0

06
D

ec
el

A
cc

el
A

xe
lR

pm
(x

)
x-

2>
W

he
el

R
pm

A
xe

lR
pm

:=
x;

W
he

el
R

pm
:=

W
he

el
R

pm
+1

;
C

al
l

G
au

ge
s.

Sp
ee

d(
W

he
el

R
pm

*(
3.

14
15

9)
*6

0*
W

he
el

D
ia

m
);

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;
W

he
el

t0
07

D
ec

el
D

ir
ec

tD
ri

ve
A

xe
lR

pm
(x

)
A

B
S(

x-
W

he
el

R
pm

)<
=2

A
xe

lR
pm

:=
x;

W
he

el
R

pm
:=

x;
C

al
l

G
au

ge
s.

Sp
ee

d(
W

he
el

R
pm

*(
3.

14
15

9)
*6

0*
W

he
el

D
ia

m
);

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 263

C
la

ss
T

ra
nI

d
So

ur
ce

Ta
rg

et
Fu

nc
tio

n
G

ua
rd

A
ct

io
n

W
he

el
t0

08
A

cc
el

D
ec

el
A

xe
lR

pm
(x

)
x+

2<
W

he
el

R
pm

A
xe

lR
pm

:=
x;

W
he

el
R

pm
:=

W
he

el
R

pm
-1

;
C

al
l

G
au

ge
s.

Sp
ee

d(
W

he
el

R
pm

*(
3.

14
15

9)
*6

0*
W

he
el

D
ia

m
);

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;
W

he
el

t0
09

A
cc

el
D

ir
ec

tD
ri

ve
A

xe
lR

pm
(x

)
A

B
S(

x-
W

he
el

R
pm

)<
=2

A
xe

lR
pm

:=
x;

W
he

el
R

pm
:=

x;
C

al
l

G
au

ge
s.

Sp
ee

d(
W

he
el

R
pm

*(
3.

14
15

9)
*6

0*
W

he
el

D
ia

m
);

W
he

el
t0

10
A

cc
el

A
cc

el
A

xe
lR

pm
(x

)
x-

2>
W

he
el

R
pm

A
xe

lR
pm

:=
x;

W
he

el
R

pm
:=

W
he

el
R

pm
+1

;
C

al
l

G
au

ge
s.

Sp
ee

d(
W

he
el

R
pm

*(
3.

14
15

9)
*6

0*
W

he
el

D
ia

m
);

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;
W

he
el

t0
12

D
ec

el
D

ec
el

C
he

ck
St

at
e(

)
A

xe
lR

pm
+2

<
W

he
el

R
pm

W
he

el
R

pm
:=

W
he

el
R

pm
-1

;
C

al
l

G
au

ge
s.

Sp
ee

d(
W

he
el

R
pm

*(
3.

14
15

9)
*6

0*
W

he
el

D
ia

m
);

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;
W

he
el

t0
13

D
ec

el
D

ir
ec

tD
ri

ve
C

he
ck

St
at

e(
)

A
xe

lR
pm

+2
>

=W
he

el
R

pm
W

he
el

R
pm

:=
A

xe
lR

pm
;

C
al

l
G

au
ge

s.
Sp

ee
d(

W
he

el
R

pm
*(

3.
14

15
9)

*6
0*

W
he

el
D

ia
m

);
W

he
el

t0
14

A
cc

el
A

cc
el

C
he

ck
St

at
e(

)
A

xe
lR

pm
-2

>
W

he
el

R
pm

W
he

el
R

pm
:=

W
he

el
R

pm
+1

;
C

al
l

G
au

ge
s.

Sp
ee

d(
W

he
el

R
pm

*(
3.

14
15

9)
*6

0*
W

he
el

D
ia

m
);

Pu
tC

he
ck

St
at

e(
)

on
C

al
lQ

ue
ue

;
W

he
el

t0
15

A
cc

el
D

ir
ec

tD
ri

ve
C

he
ck

St
at

e(
)

A
xe

lR
pm

-2
<

=W
he

el
R

pm
W

he
el

R
pm

:=
A

xe
lR

pm
;

C
al

l
G

au
ge

s.
Sp

ee
d(

W
he

el
R

pm
*(

3.
14

15
9)

*6
0*

W
he

el
D

ia
m

);

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

264 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

ACKNOWLEDGEMENTS

The second author gratefully acknowledges the support by the U.S. National Science Foundation under grant CCR-
98-04111 during this research. The second author is also employed as a part-time faculty researcher at NIST. It is a
pleasure to acknowledge Julie Zanon for the tool that generates all of the derived associations described in Figure 4
as well as initial tool development for making this approach available on the Internet as a Web application and
also Roger Alexander, Paul E. Black and the anonymous reviewers for a number of helpful suggestions.

REFERENCES

1. Chen M-H, Kao M-H. Testing object-oriented programs—an integrated approach. Proceedings of the 10th International
Symposium on Software Reliability Engineering (ISSRE’99), Boca Raton, FL, November 1999. IEEE Computer Society
Press: Los Alamitos, CA, 1999; 73–83.

2. Chow TS. Testing software design modeled by finite-state machines. IEEE Transactions on Software Engineering 1978;
4(3):178–187.

3. Linn RJ, Uyar MÜ. Conformance Testing Methodologies and Architectures for OSI Protocols. IEEE Computer Society
Press: Los Alamitos, CA, 1994.

4. Turner D, Robson DJ. The state-based testing of object-oriented programs. Proceedings of the International Conference
on Software Maintenance, Montreal, Quebec, Canada, September 1993. IEEE Computer Society Press: Los Alamitos, CA,
1993; 302–310.

5. Booch G. Object Oriented Design with Applications. Benjamin Cummings: Menlo Park, CA, 1991.
6. Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W. Object Oriented Modeling and Design. Prentice-Hall:

Englewood Cliffs, NJ, 1991.
7. Hong HS, Kwon YR, Cha SD. Testing of object-oriented programs based on finite state machines. Proceedings of the 2nd

Asia-Pacific Software Engineering Conference, Brisbane, Australia, December 1995. IEEE Computer Society Press: Los
Alamitos, CA, 1995; 234–241.

8. Frankl PG, Weyuker EJ. An applicable family of data flow testing criteria. IEEE Transactions on Software Engineering
1988; 14(10):1483–1498.

9. Offutt J, Liu S, Abdurazik A, Ammann P. Generating test data from state-based specifications. Software Testing, Verification
and Reliability 2003; 13(1):25–53.

10. Harrold MJ, Soffa ML. Selecting and using data for integration testing. IEEE Software 1991; 8(2):58–65.
11. Laski J, Korel B. A data flow oriented program testing strategy. IEEE Transactions on Software Engineering 1983;

9(3):347–354.
12. Harrold MJ, Rothermel G. Performing data flow testing on classes. Proceedings of the 2nd ACM SIGSOFT Symposium on

Foundations of Software Engineering, New Orleans, LA, December 1994. ACM Press: New York, 1994; 154–163.
13. Parrish S, Borie RB, Cordes DW. Automated flow graph-based testing of object-oriented software modules. Journal of

Systems and Software 1993; 23(11):95–109.
14. Doong RK, Frankl PG. The ASTOOT approach to testing object-oriented programs. ACM Transactions on Software

Engineering and Methodology 1994; 3(2):101–130.
15. Chen HY, Tse TH, Chan FT, Chen TY. In black and white: An integrated approach to class-level testing of object-oriented

programs. ACM Transactions on Software Engineering and Methodology 1998; 7(3):250–295.
16. Chen HY, Tse TH, Chen TY. TACCLE: A methodology for object-oriented software testing at the class and cluster levels.

ACM Transactions on Software Engineering and Methodology 2001; 10(4):56–109.
17. Jin Z, Offutt J. Coupling-based criteria for integration testing. Software Testing, Verification and Reliability 1998; 8(3):133–

154.
18. Alexander R, Offutt J. Analysis techniques for testing polymorphic relationships. Proceedings of the 30th International

Conference on Technology of Object-Oriented Languages and Systems (TOOLS USA’99), Santa Barbara, CA, August
1999. IEEE Computer Society Press, 1999; 104–114.

19. Alexander R, Offutt J. Criteria for testing polymorphic relationships. Proceedings of the 11th International Symposium on
Software Reliability Engineering (ISSRE’00), San Jose, CA, October 2000. IEEE Computer Society Press: Los Alamitos,
CA, 2000; 15–23.

20. Kung D, Suchak N, Gao J, Hsia P, Toyoshima Y, Chen C. On object state testing. Proceedings of the 18th Computer
Software and Applications Conference (COMPSAC’94), Taipei, Taiwan, November 1994. IEEE Computer Society Press:
Los Alamitos, CA, 1994; 222–227.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

INTEGRATION TESTING OF OBJECT-ORIENTED COMPONENTS 265

21. Kung D, Liu CH, Hsia P. An object-oriented Web test model for testing Web applications. Proceedings of the 24th Annual
International Computer Software and Applications Conference (COMPSAC 2000), Taipei, Taiwan, October 2000. IEEE
Computer Society Press: Los Alamitos, CA, 2000; 537–542.

22. Kung D, Gao J, Hsia P, Toyoshima Y, Chen C. A test strategy for object-oriented programs. Proceedings of the 19th
Computer Software and Applications Conference (COMPSAC’95), Dallas, TX, August 1995. IEEE Computer Society
Press: Los Alamitos, CA, 1995; 239–244.

23. Liu CH, Kung D, Hsia P, Hsu CT. Structural testing for Web applications. Proceedings of the 11th International Symposium
on Software Reliability Engineering (ISSRE 2000), San Jose, CA, October 2000. IEEE Computer Society Press: Los
Alamitos, CA, 2000; 84–96.

24. Unified Modeling Language (UML) Version 1.4.2, International Standard ISO/IEC 19501:2005, published 13 April 2005.
Related documentation available at: http://www.omg.org/technology/documents/formal/uml.htm [December 2005].

25. Codd EF. A relational model of data for large shared data banks. Communications of the ACM 1970; 13(6):377–387,
reprinted in January 1983, 26(1):64–69.

26. Date J. An Introduction to Database Systems (6th edn). Addison-Wesley: Reading, MA, 1995.
27. Melton J, Simon A. Understanding the New SQL: A Complete Guide. Morgan Kaufmann: San Mateo, CA, 1993.
28. Gosling J, Joy B, Steele G, Bracha G. The Java Language Specification (3rd edn). Sun Microsystems and Addison-Wesley

Professional, 2005. Related documentation available at: http://java.sun.com/ [December 2005].
29. Ntafos SC. A comparison of some structural testing strategies. IEEE Transactions on Software Engineering 1988;

14(6):868–874.
30. Gallagher L. Conformance testing of object-oriented components specified by state/transition classes. Technical Report

NISTIR 6592, National Institute of Standards and Technology, May 1999. Available at:
http://www.itl.nist.gov/div897/ctg/conformance/obj-comp-testing.pdf.

31. Clarke LA, Podgurski A, Richardson DJ, Zeil SJ. A comparison of data flow path selection criteria. Proceedings of the
8th International Conference on Software Engineering, London, U.K., August 1985. IEEE Computer Society Press: Los
Alamitos, CA, 1985; 244–251.

32. Frankl PG, Weiss SN. An experimental comparison of the effectiveness of branch testing and data flow testing. IEEE
Transactions on Software Engineering 1993; 19(8):774–787.

33. Frankl PG, Weiss SN, Hu C. All-uses versus mutation testing: An experimental comparison of effectiveness. The Journal
of Systems and Software 1997; 38(3):235–253.

34. Hutchins M, Foster H, Goradia T, Ostrand T. Experiments on the effectiveness of dataflow- and controlflow-based test
adequacy criteria. Proceedings of the 16th International Conference on Software Engineering, Sorrento, Italy, May 1994.
IEEE Computer Society Press: Los Alamitos, CA, 1994; 191–200.

35. Mathur P, Wong WE. An empirical comparison of data flow and mutation-based test adequacy criteria. Software Testing,
Verification and Reliability 1994; 4(1):9–31.

36. Offutt J, Pan J, Tewary K, Zhang T. An experimental evaluation of data flow and mutation testing. Software—Practice and
Experience 1996; 26(2):165–176.

37. Goldberg A, Wang TC, Zimmerman D. Applications of feasible path analysis to program testing. Proceedings of the 1994
International Symposium on Software Testing and Analysis (ISSTA’94), Seattle, WA, August 1994. ACM Press: New York,
1994; 80–94.

38. Hedley D, Hennell MA. The causes and effects of infeasible paths in computer programs. Proceedings of the 8th
International Conference on Software Engineering, London, U.K., August 1985. IEEE Computer Society Press: Los
Alamitos, CA, 1985; 259–266.

39. Jasper R, Brennan M, Williamson K, Currier B, Zimmerman D. Test data generation and feasible path analysis. Proceedings
of the 1994 International Symposium on Software Testing and Analysis (ISSTA’94), Seattle, WA, August 1994. ACM Press:
New York, 1994; 95–107.

40. Offutt J, Pan J. Detecting equivalent mutants and the feasible path problem. Proceedings of the 1996 Annual Conference
on Computer Assurance (COMPASS’96), Gaithersburg, MD, June 1996. IEEE Computer Society Press: Los Alamitos, CA,
1996; 224–236.

41. Gallagher L, Offutt AJ. Integration testing of object-oriented components using FSMS: Theory and experimental details.
Technical Report ISE-TR-04-04, Department of Information and Software Engineering, George Mason University, Fairfax,
VA, July 2004. Available at: http://www.ise.gmu.edu/techrep/.

42. Abdurazik A, Ammann P, Ding W, Offutt J. Evaluation of three specification-based testing criteria. Proceedings of the 6th
IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’00), Tokyo, Japan, September
2000. IEEE Computer Society Press: Los Alamitos, CA, 2000; 179–187.

43. Atlee JM. Native model-checking of SCR requirements. Proceedings of the 4th International SCR Workshop, November
1994.

44. Gomaa H. Designing Concurrent, Distributed, and Real-Time Applications with UML. Addison-Wesley: Reading, MA,
2000.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

266 L. GALLAGHER, J. OFFUTT AND A. CINCOTTA

45. Offutt J, Jin Z, Pan J. The dynamic domain reduction approach to test data generation. Software—Practice and Experience
1999; 29(2):167–193.

46. Leung H, White L. A study of integration testing and software regression at the integration level. Proceedings of the IEEE
International Conference on Software Maintenance, San Diego, CA, November 1990. IEEE Computer Society Press: Los
Alamitos, CA, 1990; 290–301.

47. White L, Robinson B. Industrial real-time regression testing and analysis using firewalls. Proceedings of the 20th IEEE
International Conference on Software Maintenance, Chicago, IL, September 2004. IEEE Computer Society Press: Los
Alamitos, CA, 2004; 18–27.

Published in 2006 by John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2006; 16:215–266

	1 INTRODUCTION
	2 BACKGROUND
	2.1 Single-class example---Engine
	2.2 Multi-class example---Automobile
	2.3 Overview of methodology

	3 REPRESENTING COMPONENT SPECIFICATIONS
	4 CHOOSING RELEVANT STATE MACHINE TRANSITIONS
	5 A DATA FLOW GRAPH MODEL OF STATE TRANSITIONS
	6 GENERATING TEST REQUIREMENTS
	6.1 Definition-use pairs
	6.2 Data flow path coverage
	6.3 Finding all-uses candidate test paths
	6.4 Executable test cases

	7 EMPIRICAL RESULTS FOR THE AUTOMOBILE SYSTEM
	7.1 Applying the technique to the Automobile system
	7.2 Status of automation
	7.3 Case study
	7.4 Scalability

	8 CONCLUSIONS AND FUTURE WORK

