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Abstract—A spectral interpretation using the frequency
sensitivity of the Allan variance (Avar) and Thêo-Hybrid
(ThêoH) is used to determine f� noise, or “power-law
noise.” ThêoH has narrower chi-square confidence than
Avar; consequently, ThêoH provides significantly better de-
termination of f� noise types at long term. Furthermore,
ThêoH has even narrower confidence than chi-square. Be-
cause the algorithms used to calculate these confidence in-
tervals are computationally intensive, we have constructed
an empirical formula that approximates confidence intervals
as the percent error for ThêoH.

I. Introduction

“Theoretical variance #1”, or “Thêo1”, is a new,
high-confidence frequency stability statistic that

works up to an averaging time τ that is 3/4 of the total
time T of a data run given by a sequence of time-error sam-
ples {xn : n = 1, . . . , Nx} with a sampling period between
adjacent observations given by τ0. Thêo1 is given by:

Thêo1(m, τ0, Nx) =

1
0.75(Nx − m)(mτ0)2

Nx−m∑
i=1

m
2 −1∑
δ=0

1
(m

2 − δ)

×
[(

xi+m − xi+δ+ m
2

)
−

(
xi−δ+ m

2
− xi

)]2 (1)

with m even, called the “averaging factor,” and 10 ≤ m ≤
Nx − 1 [1]–[3].

Thêo1 is biased with respect to the Allan variance,
which is computed using the unbiased maximum over-
lap estimator Avar. One can remove a computed bias be-
tween Thêo1 and Avar at large m by using ThêoBR (which
stands for “Thêo with bias removed”):

ThêoBR(m, τ0, Nx) =[
1

n + 1

n∑
i=0

Avar(m = 9 + 3i, τ0, Nx)
Thêo1(m = 12 + 4i, τ0, Nx)

]

× Thêo1(m, τ0, Nx), (2)
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where n = �(0.1Nx/3) − 3� (�·� denotes the floor func-
tion) [2], [4]. Then ThêoH (which stands for Thêo-Hybrid
and/or Thêo-high confidence), is a frequency stability esti-
mator that has excellent confidence over the largest range
of m:

ThêoH(m, τ0, Nx) =⎧⎪⎨
⎪⎩

Avar(m, τ0, Nx), for 1 ≤ m < k
τ0

Thêo1(m, τ0, Nx), for k
0.75τ0

≤ m ≤ Nx − 1
m even

, (3)

where k is the largest τ ≤ 10% T where Avar (m, τ0, Nx)
has sufficient confidence [3]. Note that Avar and Thêo1
have different dependence on τ ; for Avar, the averaging
time is τ = mτ0, and the averaging time associated with
Thêo1 is τ = 0.75 mτ0 [2]–[4]. The deviations of Thêo1
and ThêoH are found simply from the square root of the
values given by (1) and (3), respectively. In this paper, the
term ThêoH-dev refers to the deviation of ThêoH.

II. Chi-Square Distribution and Confidence for

Avar and ThêoH

Compared to the Allan variance, ThêoH reports higher
confidence for long-term, frequency stability calculations
[2], [5]. Avar’s constant-Q frequency response is widely
used to determine particular power-law noises by noting
straight-line slopes on a log-log plot. ThêoH has an even
smoother, more ideal frequency response for noise deter-
mination [1], [2].

It has been found that the calculated values of Avar
are distributed as a chi-square distribution [6]. Using the
extensively studied properties of this distribution [7],1, one
can find confidence intervals of each averaging factor m for
a data run of Nx points as those for chi-square [6]–[8]:[

η · Avar
χ2

η,1−p

,
η · Avar

χ2
η,p

]
, (4)

where η is the number of chi-square equivalent degrees of
freedom (edf), computed for each averaging factor m from
standard closed-form formulas [6], [8], and p determines
the desired quantile for each specific Nx and m. For exam-
ple, for a 68.3% confidence interval:

68.3% = (1 − 2p) × 100%. (5)

To find confidence intervals for the Allan deviation
(Adev), one need only take the square root of each fac-
tor in (4) [8].
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mcgee and howe: thêoh and allan deviation as power-law noise estimators 449

Confidence factors for ThêoH also can be calculated by
use of the chi-square distribution. ThêoH has substantially
higher values of edf than Avar, and these edf’s can be
computed from the following empirical formulas based on
simulation studies [1]:

edf︸︷︷︸
WHFM

=
[
5.5Nx + 1.07

m
− 3.1Nx + 6.5

Nx

](
m3/2
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)
,
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=
(

2.7N2
x − 1.3Nxm − 3.5m

Nxm
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)(
m
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)
.

Similarly, using these edf’s, one can use (4) and (5)
above to find ThêoH confidence factors.

III. Defining Slope Range in Power-Law Noise

Estimation

Power-law noise processes, models of oscillator noise
types, produce a particular slope on a spectral density plot
[6], [8]. For spectral density of frequency fluctuations of the
form Sy(f) = hαfα, the power-law noise process is com-
pletely specified by α, a number modeling the most ap-
propriate type of power law for the data for a given range
of f , and the corresponding level, hα. Thus, on a log-log
plot of frequency stability versus τ , α becomes the slope
and fα is the straight line that relates Sy(f) to f . The
range of α for which TheoH and Theo1 converge is the
same as for Avar [8]. In general, a plot of Sy(f) represents
a linear combination of these integer power-law processes
[9], [10]. The five common noise types, random walk FM
(RWFM), flicker FM (FLFM), white FM (WHFM), flicker
PM (FLPM), and white PM (WHPM), have slopes de-
scribed by α = −2,−1, 0, 1, 2, respectively [6]. Avar, and
similarly ThêoH, can be related to the power spectral den-
sity; therefore, noise types also can be found by the slope,
given by µ, on a plot of variance versus τ of these statistics
[11], [12].

The noise type of an oscillator noise process is not nec-
essarily known up front. But, because of the power-law
nature of noise processes and the narrow confidence inter-
val of ThêoH, we introduce a method that allows us to
make some determination of the noise type by analyzing
allowed slopes within the confidence intervals.

If we calculate the uncertainty of ThêoH-dev with a chi-
square distribution, the confidence intervals are substan-
tially narrower than those of Adev, especially at longer

(c)

Fig. 1. For the above sample plot of ThêoH with symmetric con-
fidence intervals, the slope range is illustrated as the darkened re-
gion between the consecutive τ values of ThêoH, where mτ0 = τ ,
m = 1, 2, 4, 8 . . . . For each octave, the darkened region indicates all
possible power-law noise types consistent with the given confidence
intervals. The narrower the confidence interval, the smaller the region
and the better one can distinguish one noise type from others.

averaging times for which edf’s are lower [5]. Fig. 1 illus-
trates a sample plot of ThêoH-dev in which confidence in-
tervals are calculated at each octave of τ = mτ0, where
m = 1, 2, 4, 8 . . . . Stability computations that occur in
power-of-2, or “octave”, increments of m are used for de-
termining power-law noise types because these points are
sufficiently independent [3]. Due to the power-law nature
of the noise, ThêoH-dev, as Adev, also has a linear repre-
sentation in a log-log scale with a slope of µ/2 as each is
the square root of a variance.

There are two lines, each having a certain slope, asso-
ciated with the consecutive confidence intervals, as shown
in Fig. 1. One connects the upper confidence factor of the
first octave, Upper1, to the lower confidence factor at the
second octave, Lower2. The other connects the lower con-
fidence factor of the first octave, Lower1, to the upper
confidence factor at the second octave, Upper2. The pos-
sible slopes that ThêoH could take on between these two
lines constitute the slope range of that octave. For a nar-
rower confidence interval, we have a narrower calculated
range. There are fewer possible slopes that ThêoH can take
on; thus, we can determine the type of noise. However, if
the slope range crosses a transition from one noise type to
another, we cannot confidently distinguish the noise type.

Fig. 2 demonstrates the divergence of the slope range
of both ThêoH-dev and Adev for RWFM, FLFM, and
WHFM calculated for Nx = 1025 at 90% confidence. For
all three noise types, ThêoH has a consistently smaller
slope range than Adev out to longer averaging times, in-
dicating its ability to better estimate the noise type from
the slope.
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Fig. 2. Slope range per octave for simulated frequency noise consist-
ing of 1025 data points. ThêoH, in the presence of WHFM, FLFM,
and RWFM, has a dependence on τ that goes as τ−1/2, τ0, τ+1/2,
respectively. τ ′ = 1/2(τupper + τlower) is the midpoint between the
consecutive calculations of ThêoH or Adev, τupper and τlower sepa-
rated by an octave. In the plots above, a spread greater than ±1/2,
indicated by the region above the horizontal dashed line, means that
prevailing power-law noise type is indistinguishable from its neigh-
boring type.

IV. Calculating Slope Range

The possible ranges of slope are determined by a
weighted, linear, least-squares regression to the time vari-
able τ ; this provides a probabilistic interpretation for each
octave of the slope range. Reference [13] describes this
weighted regression technique in the context of spectral-
like statistics such as ThêoH and Adev.

The calculation is based on the typical expression for
finding a slope or rise over run. For a calculation of slope
range for the chi-square uncertainty of the variance of
ThêoH-var or Avar, we want to find the rise and run
of both lines connecting the confidence intervals. The
rise, or ∆y, is given by ∆y1 = |Upper2 − Lower1| and
∆y2 = |Upper1−Lower2|. Then we divide by the run, ∆x,
for each octave, we denote as τ ′, the midpoint between the
consecutive calculations of ThêoH-var or Avar:

∆x = τ ′ =
τupper − τlower

2
. (6)

Then the two slopes are given by:

∆y1

∆x
=

|Upper2 − Lower1|
τ ′ , (7)

and

∆y2

∆x
=

|Upper1 − Lower2|
τ ′ . (8)

Subtracting these two slopes, we find the range of
slopes possible between the two consecutive calculations.
The confidence factors of ThêoH-dev and Adev vary by

a square root of their associated variance statistics; and,
in a log-log representation, their slope ranges will vary by
dividing all points down by 2. This already has been done
in Fig. 2.

A transition from one noise type to another happens
when the slope range spans more than 1, indicated in the
plot as ±1/2. For example, in Fig. 2 we see that near
τ ′ = 40τ0, about 4% of the data run, FLFM becomes in-
distinguishable from RWFM or WHFM as calculated by
Adev. However, for ThêoH, FLFM is distinguishable up to
τ ′ = 200τ0, about 1/5 of the data run. At the long term,
ThêoH has a slope range narrow enough to be able to con-
fidently detect the onset of the nonstationary noise types
FLFM or RWFM earlier than Adev.

V. Exact Confidence of ThêoH

Up to this point, we have been assuming a chi-square
distribution, but ThêoH’s confidence intervals are actually
narrower than those determined by a normal chi-square
distribution. It has been shown that one can bring the
ThêoH statistic into the form of a quadratic distribution of
chi-square random variables [5], [14], and numerical tech-
niques for the calculation of quadratic quantiles are avail-
able [5], [15], [16]. Once these are calculated, the exact
confidence factors for ThêoH are given by:[

k · ThêoH-var
q1−p

,
k · ThêoH-var

qp

]
, (9)

where k = (Nx − m+ 1)× (m/2) for each averaging factor
m and number of data points Nx, and qp and q1−p define
the desired quantiles of the new distribution with p and
1 − p defined as described for chi-square in (5). Factors
for ThêoH-dev are the square root of the upper and lower
limits [5].

Percent error is another way of talking about the con-
fidence of a measurement that relates the size of the con-
fidence interval to the value of the computed statistic [5].
For a set of ThêoH calculations, the percent error for each
averaging factor is given by the following formula:

%-error, ThêoH-dev =
|closest confidence factor − ThêoH-dev|

ThêoH-dev
× 100%. (10)

VI. Empirical Formula

The algorithms for exact calculations of ThêoH con-
fidence factors are computationally intense and can take
more time to run than ThêoH itself, especially for increas-
ing values of Nx and m. Because of this, computing exact
confidence intervals for every data set becomes impracti-
cal. We have constructed an empirical formula that conve-
niently and reliably predicts the percentage upper bound
(indicating how much worse the measurement might be)
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TABLE I
Quantiles and edf for RWFM at 68.3%.

Nx m k q.159 q.841 edf

32 2 31 23.22 38.78 29.85
32 4 58 37.39 78.60 13.48
32 8 100 47.28 152.7 5.352
32 16 136 34.53 236.7 1.420
64 2 63 51.85 74.15 62.23
64 4 122 91.37 152.6 29.65
64 8 228 142.9 313.0 13.39
64 16 392 180.8 601.6 5.323
64 32 528 130.0 963.5 1.418

at 68.3% of low values of edf of ThêoH-dev, the low values
being the most important here [2].

For general population statistics, the formulation of er-
ror is proportional to one over the square root of the num-
ber of independent points [7]1. For our empirical formula,
we begin with this general form, in which we have the
computed edf’s as the number of independent points and
produce a result that conservatively approximates our ex-
act calculations. Percentage confidence is given by:

%-error using ThêoH-dev(τ) =
100√

2(edf + 6.6)
.

(11)

The lower bounds of percent error (indicating how much
better the estimate might be) are skewed downward, mean-
ing they are skewed optimistically. These are not particu-
larly as useful in interpreting stability estimates as upper
bounds.

Table I lists quantiles for RWFM noise calculated with a
numerical algorithm for quadratic distributions [13]. It also
lists the ThêoH equivalent degrees of freedom for RWFM
given in Section II. For each noise type, edf is given by
empirical formulas and depends on the number of data
points, Nx, and τ = 0.75 mτ0 [1].

Fig. 3 compares upper-bound percent error versus edf
for Adev and ThêoH for RWFM at one standard devia-
tion. The upper confidence factor was calculated with chi-
square for Adev and with both the quadratic distribution
confidence factors, (9), and the empirical formula, (11),
for ThêoH. At edf’s near 1, corresponding to long-term
τ , both formulations for ThêoH show a percent error at
or below 25% compared to Adev’s 50%, indicating again
that ThêoH reports substantially higher confidence. The
bottom plots in Fig. 3 show that the percent error for
ThêoH as given by the empirical formula is conservative
with respect to the exact formula given in (9).

VII. Conclusions

ThêoH reports long-term frequency stability for up to
3/4 of a given data run. By defining a slope range with high
confidence between chi-square confidence factors for each
averaging time, we can use maximum and minimum slopes

Fig. 3. The upper bound of a 68.3% confidence interval comparing
values for Adev calculated from chi-square and ThêoH calculated
from both quadratic distribution, (9), and the empirical formula,
(11). At lower edf values, hence, in long-term, ThêoH reports sub-
stantially lower percent error for both formulations than possible for
Adev.

in a probabilistic sense to determine noise types. Because
of its high confidence, ThêoH is a better estimator of noise
type than Adev.

ThêoH more exactly fits a distribution with narrower
confidence intervals than chi-square. In order to benefit
from these narrow confidence intervals, one must work
with the numerical techniques needed for calculating the
quantiles of a quadratic distribution. However, these can
be difficult and computationally intense to implement. To
aid the estimation of slope type, we have introduced a very
simple, empirical formula for percent error that can be
used to calculate upper confidence factors for ThêoH eas-
ily and reliably without extensive numerical calculation.
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