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ABSTRACT 

Recently, we have reported enhanced permeability of tissues due to in vivo treatment with 
pulsed high intensity focused ultrasound (pHIFU). This new therapy has shown promise as a way 
of increasing the penetration of large drug molecules, both out of the vasculature and through the 
tissue. To date, no clear physical model of tissue exists that can account for these effects. 

A new model is proposed that clearly establishes the link between tissue structure and fluid 
flow properties on one hand, and the history of applied mechanical forces on the other. The 
model draws inspiration from two different theoretical fields of materials science, multi-phase 
theory and continuum damage mechanics. The theory differs from the traditional bi-phasic solid-
fluid model of tissues in that the fluid part here is broken into trapped (moving with the solid) 
and free (moving through the solid) parts. A damage-like variable links the effective elasticity of 
the tissue to the ratio of the trapped to free fluids. As the damage increases, the tissue becomes, 
in effect, less stiff and more permeable. Release of elastic energy drives the process. A 
distribution of energy barriers opposes the process and governs how the fluid is released as 
damage increases. 

INTRODUCTION 

Most current therapeutic applications of high intensity focused ultrasound (HIFU) involve 
continuous application, which promotes temperature elevations sufficient to cause tissue ablation 
in the focal zone [1]. Recently, more attention has been paid to pulsed mode high intensity 
focused ultrasound (pHIFU), which can introduce significant mechanical stresses without 
significant thermal elevation. Although instantaneous energy deposition remains high during 
each pulse, the time-average energy deposition is much lower. This means that the short 
timescale visco-elastic processes become more important than the long timescale thermal 
processes. Whereas very high intensity pulses (>4000 W/cm2) are known to cause cavitation and 
subsequent pulverization and erosion of tissue [2], lower intensities (<1000 W/cm2) have shown 
therapeutic promise unaccompanied by significant tissue destruction by either cavitation or 
heating. Pulsed-HIFU exposure of muscle and tumor tissue, followed by local or systemic 
administration, has been demonstrated to enhance the delivery of high molecular weight 
fluorophores [3], fluorescent nanoparticles [4], and plasmid DNA [5,6]. In related studies, 
pHIFU exposure has been shown to improve the penetration of tissue plasminogen activator 
(tPA) into blood clots in vitro [7], and subsequently increase the rate of thrombolysis in vivo, 
compared to tPA treatments alone. With these and other possible applications, the practical 
potential of this technology is evident. The physical mechanism behind pHIFU remains elusive, 
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however. Preliminary histological analysis seems to show that pHIFU exposures increase the 
permeability of both vasculature and tissue proper by increasing the flow through intercellular 
spaces. The purpose of this paper is to present a new tissue model that can help to explain this 
behavior. The simplest such model must incorporate, along with the standard visco-elastic tissue 
behavior, a model of fluid flow through the tissue and some mechanism for changing this flow. 
One way to do this, and still remain in the regime of continuum theories, is to treat the tissue as 
multi-phasic. Using mixture theory, the fluid flow properties are determined by the macroscopic 
‘permeability’ of the solid portion. This permeability may be made dependent on the history of 
the tissue by introducing a ‘damage’ variable, analogous to that of continuum damage 
mechanics. This damage variable is a measure of the failure of the weaker structural elements of 
the tissue that block fluid flow. An increase in damage results in an increase in permeability as 
the intercellular spaces are opened to increased flow. The conclusion of this research is that the 
increased permeability may, in principle, be driven solely by a mechanical stimulus, such as 
pHIFU. 

MIXTURE THEORY FOR TISSUES 

The basic idea of mixture theory is to treat each point in physical space as being 
simultaneously occupied by particles from each of the mixture phases. These particles are 
allowed to move and behave independently for the most part, but are mathematically connected 
via a few interaction equations. For biological materials, the standard mixture theory [8] consists 
of two phases, a solid phase with an inherent elasticity and permeability, and a fluid phase that is 
characterized locally by its average velocity field. 

A modified bi-phasic mixture theory for tissues 

The standard bi-phasic model of tissue assumes that the fluid phase is monolithic and 
uniformly varying. This assumption works well for highly porous materials such as sponges, but 
is no longer valid when the pore connectivity is much lower, as is the case for tissue. In tissue, 
regions where the fluid velocity is significant are adjacent to regions where it is effectively zero 
(from one side of a cell membrane to the other). We propose to model the flow as having two 
components: one which moves with the solid tissue (‘bound’) and the other which moves 
through it (‘free’) (see Fig 1). The bound fluid does not contribute to the macroscopic flow. The 
effective permeability is therefore a variable, dependent on the free to bound fluid ratio. This 
ratio can be made dependent on the disease, thermal, and, in our case, mechanical history of the 
tissue. The addition of bound and free fluid phases, and a mechanism for converting from one to 
the other, is sufficient to model the link between tissue permeability and mechanical stress 
history. 

Basic definitions and the continuity equations 

In order to develop an appropriate mathematical structure for the modified tissue model, it is 
necessary to start by treating the medium as tri-phasic. The solid phase is defined as having a 
‘true’ mass density, S

Tρ , and a ‘mixture’ mass density of ( ) ( ) S
T

SS tt ρφρ ,, xx = , where ( )tS ,xφ  is 

the local volume fraction of the solid. Similarly, the fluid phase has a true mass densityF
Tρ . The 
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‘free’ fluid mass density is then ( ) ( ) F
T

ff tt ρφρ ,, xx =  and the ‘bound’ fluid mass density is 

( ) ( ) F
T

bb tt ρφρ ,, xx = . Assuming a continuous mixture implies 1=++ bfS φφφ  everywhere. In a 

tri-phasic theory, these phases may move independently, with velocities ( )tS ,xv , ( )tf ,xv  and 

( )tb ,xv . In our model, the bound portion moves with the solid, therefore Sb vv = . It is also 
necessary to accommodate the transfer of material from the bound fluid state to the free fluid 
state. If ( )tM ,x  is the rate of freeing of bound fluid mass density, the conservation of mass for 
the three phases may be written as: 

 
( ) 0=⋅∇+∂ SSS

t vρρ          (1) 

( ) 0=+⋅∇+∂ MSbb
t vρρ         (2) 

( ) .0=−⋅∇+∂ Mfff
t vρρ         (3) 

 
This system is equivalent to a modified bi-phasic model. Summing the first two continuity 

equations gives a continuity equation for the quasi-solid (solid plus bound fluid) system, without 
loss of information about fluid flow. With bSqS ρρρ += , this yields: 

 
( ) .0=+⋅∇+∂ MSqSqS

t vρρ         (4) 
 

Once the continuity equations are written, it is possible to derive sets of equations guaranteeing 
conservation of momentum and energy. For further information, see Refs. [8,9]. 

Constitutive equations 

Unlike the conservation equations, which are derived from first principles, constitutive 
equations need only to satisfy the second law of thermodynamics and agree with the observed 
experimental behavior. In this case, four constitutive equations are needed (thermal effects are 

Solid plus ‘bound’ fluid ‘Free fluid 

Figure 1. Following a single direct injection (100 µl) of 100 nm red fluorescent nanoparticles 
(1010 ml-1) into the flank muscle of a mouse. Light regions indicate high permeation (many 
particles), dark regions indicate little permeation. The micrograph height corresponds to 1.5 mm. 
Left: control, 200 ms digital camera exposure. Right: after standard treatment, 50 ms exposure.  

0898-L02-05.3



considered negligible): one each to control the elastic behavior of the quasi-solid and the fluid, 
one that governs the flow of the free fluid relative to the solid, and one that governs the release of 
the bound fluid. The fluid may be assumed to be incompressible: 

 
,ij

ff
ij p δφσ −=           (5) 

 
where f

ijσ  is the mechanical stress in the free fluid phase,p  is the hydraulic pressure, and ijδ  is 

the unit tensor. Assuming that the solid plus bound fluid behaves as an elastic solid, with 
modulus dependent on the relative volume fraction of bound fluid, 

 
( ) ,klijklijklij

qSqS
ij QSp εδφσ Φ++−=        (6) 

 
where Sb φφ=Φ , and klε  is the elastic strain (a viscous term may be added to this if 
necessary). Presumably, the solid filled with fluid is stiffer than without so the elastic stiffening 
tensor, ijklQ , should be positive definite, as should the solid stiffness, ijklS . The governing 

equation for the fluid flow is somewhat more complicated: 
 

( ) ( ) ,1 RppRD SSfSqS ∇−−∇+−−= φφvv�       (7) 
 

where qS�  is the body force (force per unit volume) on the quasi-solid due to the fluid flowing 
through it; D  is a material constant (the ‘diffusive drag coefficient’) related to the Darcy’s law 
permeability, DRK /= ; and ( )Φ−−== )1/(1 SSFfR φφφφ  is a dimensionless ‘damage’ 
variable. For uniform tissue, only the first term survives; this provides the viscous character of 
the tissue, as it does in the bi-phasic model. Finally, assuming a barrier energy per unit fluid 
mass, µ , that acts to bind the ‘bound’ portion of the fluid, a reasonable expression for the rate of 
conversion is 

 

( ) ( )
.

22

22

�
�
�

�

�
�
�

�
−−−Φ= µ

φρ
εε Sf

SF
T

klijijklQ
AM

vv
      (8) 

 
where A is some positive material constant. It is possible to show from the continuity equations 
that ( )Φ∇⋅+∂−= S

t
SM vφ , resulting in a reasonably simple differential equation. A similar 

expression may be applicable for the reverse process (healing). Eq. (8) states that the rate of 
change of fluid from bound to free is: (i) proportional to the current bound fluid fraction; (ii) 
driven by the decrease of elastic ‘free’ energy; and (iii) opposed by the barrier energy. 

BARRIER ENERGY DISTRIBUTIONS 

In the above expression, a single barrier energy was defined. In real tissues, however, there 
exist many different structures that create barriers to fluid flow, and even similar structures may 
have dissimilar strengths. It makes much more sense, therefore, to use a distribution of bound 
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fluid volumes governed by a continuous range of barrier potentials. Since Sφ  is a constant, this 
implies, 

 
( ) ,dˆ�Φ=Φ µµ           (10)  

 

where ( )µΦ̂  is the barrier distribution function, which remains to be determined from 
experiment. Since Φ  is linearly related to M , a similar expression holds: 

 
( )�= .dˆ µµMM           (11) 

 
Then analogous to Eq. (8), 

 

( ) ( ) ( ) ( )
,

22
ˆˆ

22

�
�
�

�

�
�
�

�
−−−Φ= µ

φρ
εε

µµ
Sf

SF
T

klijijklQ
AM

vv
     (12) 

from which the net conversion rate may be found by using Eq. (11). 

APPLICATION TO pHIFU 

The above theory was applied to the mechanical stimulation in the focal zone of the pHIFU 
beam. The model tissue we used was liver, which is assumed to be isotropic and homogenous. 
Quasi-static material parameters were taken from Lizzi, et al. [10]. Since, at high frequencies, it 
is the fluid viscosity that dominates the stress, the quasi-static elastic moduli were used in all the 
equations above, while the high frequency constants were used only in the ultrasonic wave 
equations. Standard pHIFU treatment was assumed to be 40 W, 50 ms pulses applied with a 
repetition rate of 1 Hz. The ultrasonic beam was modeled as a longitudinal plane wave, of 
frequency 1 MHz, with a 2 mm beam-waist Gaussian profile in the focal zone. Two sources of 
damage were considered: the longitudinal strain energy from the wave itself, and the shear strain 
energy due to the radiation force. From our experimental work and the literature [3-6], it is clear 
that the changes due to pHIFU are limited to opening of the intercellular spaces and minor 
changes in elastic constant. In the absence of significant experimental evidence to the contrary, 
the barrier distribution was assumed to be bi-modal, with the bulk of the fluid trapped behind the 
high energy barriers of the cell membrane well beyond the reach of the pHIFU, and a smaller 
portion in the intercellular space with a much lower barrier potential. Based upon evidence from 
micrographs, such as Fig. 1, the free volume fraction is changed from about 1 % to about 10 % 
by the application of a full treatment of 100 pHIFU pulses. This is assumed to represent the bulk 
of the bound fluid available to be freed by this process, and thus gives the bounds on the barrier 
energy distribution in the low energy region. Much less information is available regarding the 
changes in elastic constant due to the damage evolution. A 10 % decrease in both the shear and 
bulk moduli might be reasonable, but this remains to be verified. With these assumptions, the 
rate constant in Eq. (12) may be estimated. It is then possible to predict the evolution of the free 
fluid volume fraction, which is proportional to the tissue permeability, due to application of 
pHIFU. Fig. 2 shows the evolution of the free fluid volume fraction predicted in and near the 
pHIFU focal zone due to the longitudinal wave itself, and due to the radiation force. Because the 
radiation force is proportional to the square of the wave amplitude, this component becomes 
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increasingly important at higher acoustic power. This explains why, in our case, the dominant 
effect is due to the radiation force (Fig. 2 on the right) rather than the action of the wave itself. 

                     
 
Figure 2. Increases in free fluid volume fraction (permeability) as a function of off-axis distance, 
for a longitudinal pHIFU wave of Gaussian profile. Left: increase due to direct action of the 
wave. Right: increase due to action of the radiation force. 

CONCLUSION 

In this paper, we have outlined a new material model for tissue which may be useful in 
explaining changes observed during pHIFU exposures. This provides us with a fundamental 
understanding of the process, even as further research is needed to fill in the details. With further 
experiments, we hope to better define the tissue parameters needed for accurate mathematical 
modeling. Ultimately, these considerations will assist in rapid optimization of pHIFU exposure 
parameters across different tissue types and for different drug therapies. 
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