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ABSTRACT

Recently, we have reported enhanced permeability of tissues ouato treatment with
pulsed high intensity focused ultrasound (pHIFU). This new therapy has ghomwise as a way
of increasing the penetration of large drug molecules, bothf dhié wasculature and through the
tissue. To date, no clear physical model of tissue exists thatcanrd for these effects.

A new model is proposed that clearly establishes the link betvgsaie tstructure and fluid
flow properties on one hand, and the history of applied mechaarcaisfon the other. The
model draws inspiration from two different theoretical fieldsnatterials science, multi-phase
theory and continuum damage mechanics. The theory differs from tietralbi-phasic solid-
fluid model of tissues in that the fluid part here is broken into trappedrimaith the solid)
and free (moving through the solid) parts. A damage-like variaiKe the effective elasticity of
the tissue to the ratio of the trapped to free fluids. As the damagasges, the tissue becomes,
in effect, less stiff and more permeable. Release of elamiggdrives the process. A
distribution of energy barriers opposes the process and governs houidhs feleased as
damage increases.

INTRODUCTION

Most current therapeutic applications of high intensity focusedsolired (HIFU) involve
continuous application, which promotes temperature elevations safftoi cause tissue ablation
in the focal zone [1]. Recently, more attention has been paid to pulsechighdsetensity
focused ultrasound (pHIFU), which can introduce significant mechanicasssravithout
significant thermal elevation. Although instantaneous energy digmosemains high during
each pulse, the time-average energy deposition is much lower. Ténms et the short
timescale visco-elastic processes become more importanthf®dong timescale thermal
processes. Whereas very high intensity pulses (>4000 fV&mknown to cause cavitation and
subsequent pulverization and erosion of tissue [2], lower inten&itl€9)0 W/cm) have shown
therapeutic promise unaccompanied by significant tissue destrbgtieither cavitation or
heating. Pulsed-HIFU exposure of muscle and tumor tissue, followketdlyor systemic
administration, has been demonstrated to enhance the delivery of hggulaniveight
fluorophores [3], fluorescent nanoparticles [4], and plasmid DNA [5,6klated studies,
pHIFU exposure has been shown to improve the penetration of tissnanplgen activator
(tPA) into blood clotsn vitro [7], and subsequently increase the rate of thrombdlysiso,
compared to tPA treatments alone. With these and other pogsiileations, the practical
potential of this technology is evident. The physical mechanism behindJpidiRains elusive,
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however. Preliminary histological analysis seems to show that pEXpOsures increase the
permeability of both vasculature and tissue proper by incigésenflow through intercellular
spaces. The purpose of this paper is to present a new tissue modahtheatp to explain this
behavior. The simplest such model must incorporate, alonghégthtandard visco-elastic tissue
behavior, a model of fluid flow through the tissue and some mechdoisthanging this flow.
One way to do this, and still remain in the regime of continuum thediastreat the tissue as
multi-phasic. Using mixture theory, the fluid flow properties artemteined by the macroscopic
‘permeability’ of the solid portion. This permeability may bada dependent on the history of
the tissue by introducing a ‘damage’ variable, analogous to thahttheom damage
mechanics. This damage variable is a measure of the failure of tkeng&actural elements of
the tissue that block fluid flow. An increase in damage results in agaisein permeability as
the intercellular spaces are opened to increased flow. The donctighis research is that the
increased permeability may, in principle, be driven solely by a mechatimaliss, such as
pHIFU.

MIXTURE THEORY FOR TISSUES

The basic idea of mixture theory is to treat each point in physicag sysaoeing
simultaneously occupied by particles from each of the mixtureegh@bese particles are
allowed to move and behave independently for the most part, but are raatiadynconnected
via a few interaction equations. For biological materials, thredatal mixture theory [8] consists
of two phases, a solid phase with an inherent elasticity and permeainitity, fluid phase that is
characterized locally by its average velocity field.

A modified bi-phasic mixturetheory for tissues

The standard bi-phasic model of tissue assumes that the fluid pihasedkthic and
uniformly varying. This assumption works well for highly porouastenials such as sponges, but
is no longer valid when the pore connectivity is much lower, deisdse for tissue. In tissue,
regions where the fluid velocity is significant are adjacent tmnsgwvhere it is effectively zero
(from one side of a cell membrane to the other). We propasede! the flow as having two
components: one which moves with the solid tissue (‘bound’) and thevatiigh moves
through it (‘free’) (see Fig 1). The bound fluid does not contribute to theoswaaic flow. The
effective permeability is therefore a variable, dependent@ifrée to bound fluid ratio. This
ratio can be made dependent on the disease, thermal, and, in ounexdsaical history of the
tissue. The addition of bound and free fluid phases, and a mechanism fotingrfvem one to
the other, is sufficient to model the link between tissue pernitgadnild mechanical stress
history.

Basic definitions and the continuity equations

In order to develop an appropriate mathematical structure fondldédied tissue model, it is
necessary to start by treating the medium as tri-phasic. Tidepbalse is defined as having a

‘true’ mass densityp?, and a ‘mixture’ mass density af®(x,t) = ¢°(x,t)pS, whereg®(x,t) is
the local volume fraction of the solid. Similarly, the fluid phase haseamass densifg; . The



0898-L02-05.3

Solid plus ‘bound’ fluic ‘Free fluid

Figure 1. Following a single direct injection (1Q0) of 100 nm red fluorescent nanoparticles
(10" mI'Y into the flank muscle of a mouse. Light regiamdi¢ate high permeation (many
particles), dark regions indicate little permeati®he micrograph height corresponds to 1.5 mm.
Left: control, 201 ms digital camera exposure. Right: astandard tratment, 50 ms exposu
‘free’ fluid mass density is thep ' (x,t) = @' (x,t)of and the ‘bound’ fluid mass density is
,ob(x,t) = qz)[’(x,t),oTF . Assuming a continuous mixture implies + @' + ¢’ = eterywhere. In a
tri-phasic theory, these phases may move independently, with \Boc?lﬁx,t), v' (x,t) and
v®(x,t). In our model, the bound portion moves with the solid, therefre v°. It is also
necessary to accommodate the transfer of material from the bauohdtfte to the free fluid
state. IfM (x,t) is the rate of freeing of bound fluid mass densftg conservation of mass for
the three phases may be written as:

3,0° +0p°v®)=0 1)
3,0° +0{p"vs)+M =0 )
9.0 +DEﬂpfvf)—M =0. (3)

This system is equivalent to a modified bi-phasadel. Summing the first two continuity
equations gives a continuity equation for the gisatid (solid plus bound fluid) system, without

loss of information about fluid flow. With® = p° + p°, this yields:

6tpqs+DEqusvS)+M =0. (4)

Once the continuity equations are written, it isgble to derive sets of equations guaranteeing
conservation of momentum and energy. For furthi@rination, see Refs. [8,9].

Constitutive equations

Unlike the conservation equations, which are derivem first principles, constitutive
equations need only to satisfy the second lawarfntiodynamics and agree with the observed
experimental behavior. In this case, four constituequations are needed (thermal effects are
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considered negligible): one each to control theteldehavior of the quasi-solid and the fluid,
one that governs the flow of the free fluid relatte the solid, and one that governs the release of
the bound fluid. The fluid may be assumed to benmaressible:

Uijf :_p¢7f5ij' ()

where aijf is the mechanical stress in the free fluid phpsis, the hydraulic pressure, aid is

the unit tensor. Assuming that the solid plus bolluid behaves as an elastic solid, with
modulus dependent on the relative volume fractidmoond fluid,

0 = ~pgs; +(Ss + ©Qu Je, ©

where® = ¢’ /¢° , and &, is the elastic strain (a viscous term may be adiol¢is if
necessary). Presumably, the solid filled with fligdtiffer than without so the elastic stiffening
tensor,Q,, , should be positive definite, as should the ssfiifiness, S, . The governing

equation for the fluid flow is somewhat more coroated:
2% =-D(v® -v')+ pRO¢® - p{l- ¢°JOR )

wheren® is the body force (force per unit volume) on tiiasj-solid due to the fluid flowing
through it; D is a material constant (the ‘diffusive drag cagéint’) related to the Darcy’s law
permeability, K =R/D;andR=¢' /¢ =1- (qps Ia- ¢S))CD is a dimensionless ‘damage’
variable. For uniform tissue, only the first terangves; this provides the viscous character of
the tissue, as it does in the bi-phasic model.lfin@ssuming a barrier energy per unit fluid
mass, 1, that acts to bind the ‘bound’ portion of the lua reasonable expression for the rate of

conversion is

Qijkl &€y _ (Vf )2 - (VS)Z
207 ¢° 2

M = Ad -ul (8)

whereA is some positive material constant. It is possiblshow from the continuity equations
thatM = —(05(6t +v° D]])(D , resulting in a reasonably simple differential &ipn. A similar
expression may be applicable for the reverse psate=aling). Eq. (8) states that the rate of

change of fluid from bound to free is: (i) proportal to the current bound fluid fraction; (ii)
driven by the decrease of elastic ‘free’ energyt @i opposed by the barrier energy.

BARRIER ENERGY DISTRIBUTIONS

In the above expression, a single barrier energydedined. In real tissues, however, there
exist many different structures that create bagrierfluid flow, and even similar structures may
have dissimilar strengths. It makes much more se¢heeefore, to use a distribution of bound
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fluid volumes governed by a continuous range ofibapotentials. Since® is a constant, this
implies,

® = [d(u)dy, (10)

where &J(,u) Is the barrier distribution function, which remaito be determined from
experiment. Since&b is linearly related tdV , a similar expression holds:

M = I M (1) dpe. (11)
Then analogous to Eq. (8),

N (1) = Ad(u) szf; ) ;(v )

from which the net conversion rate may be foundiéing Eq. (11).

_ul, (12)

APPLICATION TO pHIFU

The above theory was applied to the mechanicalsdition in the focal zone of the pHIFU
beam. The model tissue we used was liver, whielsssimed to be isotropic and homogenous.
Quasi-static material parameters were taken frarmilét al. [10]. Since, at high frequencies, it
is the fluid viscosity that dominates the strelse,duasi-static elastic moduli were used in all the
equations above, while the high frequency constaete used only in the ultrasonic wave
equations. Standard pHIFU treatment was assumieel 40 W, 50 ms pulses applied with a
repetition rate of 1 Hz. The ultrasonic beam waslehed as a longitudinal plane wave, of
frequency 1 MHz, with a 2 mm beam-waist Gaussiarfilprin the focal zone. Two sources of
damage were considered: the longitudinal strainggnieom the wave itself, and the shear strain
energy due to the radiation force. From our expenital work and the literature [3-6], it is clear
that the changes due to pHIFU are limited to opgoirnthe intercellular spaces and minor
changes in elastic constant. In the absence offisgm experimental evidence to the contrary,
the barrier distribution was assumed to be bi-maodlgh the bulk of the fluid trapped behind the
high energy barriers of the cell membrane well Inelythe reach of the pHIFU, and a smaller
portion in the intercellular space with a much lowarrier potential. Based upon evidence from
micrographs, such as Fig. 1, the free volume foads changed from about 1 % to about 10 %
by the application of a full treatment of 100 pHIBUIses. This is assumed to represent the bulk
of the bound fluid available to be freed by thisqess, and thus gives the bounds on the barrier
energy distribution in the low energy region. Mdebs information is available regarding the
changes in elastic constant due to the damagetmrolé 10 % decrease in both the shear and
bulk moduli might be reasonable, but this remamise verified. With these assumptions, the
rate constant in Eq. (12) may be estimated. hies tpossible to predict the evolution of the free
fluid volume fraction, which is proportional to thissue permeability, due to application of
pHIFU. Fig. 2 shows the evolution of the free flwiolume fraction predicted in and near the
pHIFU focal zone due to the longitudinal wave itsahd due to the radiation force. Because the
radiation force is proportional to the square @& wWave amplitude, this component becomes
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increasingly important at higher acoustic powelisT@xplains why, in our case, the dominant

effect is due to the radiation force (Fig. 2 on tight) rather than the action of the wave itself.
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Figure 2. Increases in free fluid volume fraction (permeagpilas a function of off-axis distance,
for a longitudinal pHIFU wave of Gaussian profileft: increase due to direct action of the
wave. Right: increase due to action of the radmatarce.

CONCLUSION

In this paper, we have outlined a new material rhfmdissue which may be useful in
explaining changes observed during pHIFU exposuUias. provides us with a fundamental
understanding of the process, even as furtherndseaneeded to fill in the details. With further
experiments, we hope to better define the tissuenpeters needed for accurate mathematical
modeling. Ultimately, these considerations willissg rapid optimization of pHIFU exposure
parameters across different tissue types and fi@reint drug therapies.
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