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Abstract

Stiffness–load curves obtained in quantitative atomic force acoustic microscopy (AFAM) measurements depend on both the elastic

properties of the sample and the geometry of the atomic force microscope (AFM) tip. The geometry of silicon AFM tips changes when

used in contact mode, affecting measurement accuracy. To study the influence of tip geometry, we subjected ten AFM tips to the same

series of AFAM measurements. Changes in tip shape were observed in the scanning electron microscope (SEM) between individual

AFAM tests. Because all of the AFAM measurements were performed on the same sample, variations in AFAM stiffness–load curves

were attributed to differences in tip geometry. Contact-mechanics models that assumed simple tip geometries were used to analyze the

AFAM data, but the calculated values for tip dimensions did not agree with those provided by SEM images. Therefore, we used a power-

law approach that allows for a nonspherical tip geometry. We found that after several AFAM measurements, the geometry of the tips at

the very end is intermediate between those of a flat punch and a hemisphere. These results indicate that the nanoscale tip-sample contact

cannot easily be described in terms of simple, ideal geometries.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The atomic force microscope (AFM) has been used in a
variety of methods to image material properties with
unprecedented spatial resolution. Because AFM images are
usually qualitative, the efforts of many groups are currently
focused on improving the quantitative capability of these
techniques. Our own interests target quantitative measure-
ments of nanoscale elastic properties. The AFM appears
ideally suited for this due to its scanning capabilities, the
small diameter of the sensor tip (�10–100 nm), and the
ability to apply very small static loads (�0.1–5 mN).

For the most part, AFM-based methods that promise
elastic-property information are dynamic approaches in
which the AFM cantilever is vibrated at or near its
resonant frequencies [1–3]. Several of these techniques are
labeled ‘‘acoustic’’ or ‘‘ultrasonic’’ methods, due to the
characteristic frequency range (�0.1–3MHz) applied to the
front matter r 2006 Elsevier B.V. All rights reserved.
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AFM cantilever during measurement. Included in this
category are ultrasonic force microscopy [4], heterodyne
force microscopy [5], ultrasonic atomic force microscopy
[6], and atomic force acoustic microscopy (AFAM) [7].
Although differences exist in the experimental implementa-
tion of the various methods, all of them measure the local
tip-sample contact stiffness. From the contact stiffness, the
elastic properties of the sample can be determined using a
contact-mechanics model. Thus all of these methods,
as well as other contact AFM techniques, must deal
with measurement challenges involving the conditions of
nanoscale tip-sample contact.
The simplest contact-mechanics model to use in AFM-

based techniques is the Hertzian model, which assumes a
hemispherical tip shape and neglects adhesive forces [8,9].
The Hertzian model was successfully applied to systems
with very low surface energy (very small adhesion forces)
and small applied static loads (less than several nanonew-
ton) [10]. These conditions prevented wear and plastic
deformation of specially modified tips with hemispherical
geometry. More detailed contact-mechanics models, such
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as the Derjaguin–Müller–Toporov (DMT) [11] and John-
son–Kendal–Roberts (JKR) models [12] have been adopted
for AFM systems in cases where the adhesion forces could
not be neglected [13,14]. However, even for the simplest
model several parameters must be known, including the tip
geometry and modulus, the applied static load, and the
adhesive forces present (if any). The problem is that many
of these parameters are neither easily measured nor well
controlled. For instance, the static load FC applied to the
tip is usually calculated from the spring constant kc and the
deflection d of the cantilever using Hooke’s law for a
spring: FC ¼ kcd. However, determination of kc requires
separate measurements, and the values obtained sometimes
differ by as much as 10–20% from those provided by the
vendor [15]. Moreover, the force control in AFMs is not
error-free, especially in instruments without closed-loop
feedback. Finally, accurate characterization of the tip
shape usually requires separate tip-reconstruction imaging
experiments [16] or access to a scanning electron micro-
scope (SEM) [17].

Determining local elastic properties with contact AFM-
methods often requires higher static loads (several
hundreds nanonewtons or larger) than those specified in
Ref. [10]. For a material whose modulus is comparable to
that of the tip (here, silicon), this ensures that the stress
field created under the tip extends beyond a contamination
layer. As a result, the tip shape changes with use, and the
tip imaging or calibration procedures must be repeated
frequently to ensure accurate measurements. Using com-
mercially available coated tips does not prevent tip wear,
because the coating is likely to fracture [18]. In addition,
the effective elastic properties of such a tip are more
complex due to the presence of the coating, which makes
the determination of the local elastic modulus more
complicated.

In spite of these difficulties, reliable quantitative elastic-
property measurements using dynamic AFM techniques
have been demonstrated, in particular using AFAM.
AFAM uses a reference sample with known elastic
modulus to calibrate the tip, an approach similar to that
used in nanoindentation [19]. AFAM results for the
indentation modulus M of various materials have been
obtained that agreed with both nanoindentation results
and literature values [20]. It has been found that the best
agreement is obtained either by use of a reference sample
with elastic properties similar to those of the unknown
material or by use of two reference materials whose
properties bracket those of the unknown sample [7]. We
believe that such practices compensate in some way for the
differences between the actual, nanoscale contact me-
chanics and that assumed by the theoretical models.
Consequently, special care and attention must be paid to
the choice of the AFAM reference sample. This require-
ment places limits on the ultimate applicability of AFAM
to different materials.

In this paper, we describe experiments to improve our
understanding of the nanoscale tip-sample contact condi-
tions in AFAM or other contact AFM techniques. The
main goal of our study is to understand how well the
contact-mechanics models originally created for macro-
scopic scales can be used to evaluate the geometry of AFM
tips on the nanoscale. To achieve this, we subjected several
AFM tips to the same set of AFAM experiments.
Information about the actual geometry of the tips was
obtained through SEM imaging studies performed in
parallel with the AFAM measurements. We analyzed the
AFAM data using the Hertzian and DMT contact-
mechanics models to obtain information about tip
geometry. In our initial analysis, we assumed that if the
measured contact stiffness increased as a function of static
load, the tip possessed hemispherical geometry. The same,
admittedly simplistic, approach was also used in a very
recent study [21]. Our results show that the real tip-sample
contact geometry is more complex than that assumed by
the theoretical models. Using an approach that allowed for
a nonideal tip geometry not only helped us to understand
better the limitations of the current AFAM approach, but
also showed us possible ways to improve it.

2. Principles of quantitative AFAM

Fig. 1 presents SEM images of a single-crystal silicon
AFM cantilever typically used in AFAM experiments.
Such a cantilever can be described as a beam with a
trapezoidal cross-section that is constant throughout
almost the entire length of the cantilever. The cantilever
in Fig. 1 is about 240 mm long and 7 mm thick. The average
width calculated from the base and the top of the trapezoid
is about 35 mm. The cross-section of the cantilever changes
rapidly over the last 20–25 mm of the length, resulting in a
triangular end section. The tip is located between the
rectangular and triangular parts of the cantilever.
In AFAM experiments, the resonant frequencies of the

AFM cantilever are measured. Experimental methods for
AFAM measurements are discussed in detail elsewhere
[22,23]. First, the free-resonance frequencies are deter-
mined. After engaging the cantilever in contact with the
sample surface, the so-called ‘‘contact-resonance’’ frequen-
cies are then measured. The contact-resonance frequencies
are greater than the corresponding free frequencies, due to
interaction forces between the tip and the sample. An
analytical model for the tip-sample system is used to
extract information about the elastic properties from the
contact-resonance frequencies. The system is modeled as a
vibrating rectangular beam (AFM cantilever) that is
clamped at one end and spring-coupled (interaction forces)
to the sample surface by a tip located near the other end
[24]. Additonal refinements to this model include lateral
contact stiffness [25,26]. In preliminary data analysis, we
found that for our experimental conditions, the values for
the contact stiffness using a refined model did not differ
significantly (typically o1%) from the values obtained by
the simple model. Furthermore, the functional dependence
of k� on FC remained the same. Therefore, the final data
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Fig. 1. SEM images of one of the AFM cantilevers used in this study. (a) Plan view and (b) side view images used to measure the cantilever dimensions. (c)

Close-up of the region containing the tip. Note that the tip is not located at the exact end of the cantilever, and that the last 20–25mm of the cantilever’s

length has a different geometry. (d) Side view of the AFM tip.
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analysis was performed using the simpler model described
above. The stiffness of the spring corresponds to the tip-
sample contact stiffness k�, which depends on the applied
static load, the elastic properties of the tip and the sample,
and the tip geometry. Therefore, experimental values of k�

can be used either to calculate the elastic modulus of a
sample for a known tip geometry, or to characterize the tip
geometry using a reference material with known elastic
properties.

In AFAM measurements, values for the elastic modulus
of an unknown sample are determined in relation to those
of reference material. In this way, we can avoid direct
characterization of the tip and the spring constant of the
cantilever. To date, most AFAM studies have used the
Hertzian contact model. For a hemispherical tip with
radius R pressed against a flat surface with a static load FC,
the Hertzian contact stiffness k�H is given by

k�H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6RFCE�2

3

q
, (1)

where E*
¼ (1/Mt+1/Ms)

�1 is the reduced Young’s mod-
ulus, which depends on the indentation moduli Mt of the
tip and Ms of the sample. In order to eliminate R and FC

from Eq. (1), values of k�r are determined for the reference
(r) material and compared to values of k�s determined for
the unknown sample (s). Assuming the same tip-sample
contact conditions for both samples, Eq. (1) yields [22]:

E�s ¼ E�r
k�s
k�r

� �3=2

. (2)

Eq. (2) gives an upper limit for the elastic properties. The
lower limit is calculated for a constant area (flat punch)
geometry, in which the exponent n ¼ 3=2 is replaced in
Eq. (2) by n ¼ 1 [22]. Values of the indentation modulus
obtained with this procedure have been shown to agree
closely with those obtained from the literature values and
by nanoindentation. However, it has been found experi-
mentally that unless the modulus Mr of the reference
sample is similar to the modulus Ms of the unknown
sample, the calculated values of Ms are either too low or
too high [27]. In this study, we sought to understand this
limitation by investigating the assumptions of the theore-
tical contact-mechanics models used in AFAM data
analysis.
It should be noted that the Hertzian model neglects

adhesion forces. In AFAM measurements, adhesion forces
are generally o10% of the smallest applied static load
(0.3–0.5 mN) and are therefore neglected. The DMT and
JKR models include adhesion in the tip-sample interaction
in two different ways. In the DMT model, the adhesion
forces Fad(DMT) act outside the contact area. The resulting
contact stiffness k�DMT is given by

k�DMT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6RðFC þ FadðDMTÞÞE

�23

q
. (3)

The JKR model assumes that the adhesion forces
Fad(JKR) act inside the contact area. The expression for
the JKR contact stiffness Fad(JKR) has the following form
[14]:

k�JKR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24RF adðJKRÞE

�23

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ FC=FadðJKRÞ

p
2

 !2=3

�

1� 1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þFC=FadðJKRÞ

p

2

� ��1

1� 1
6

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þFC=FadðJKRÞ

p

2

� ��1 . ð4Þ

We used Eqs. (1), (3) and (4) to evaluate the effect of
adhesion forces on k� for a set of typical AFAM
parameters: R ¼ 50 nm, E� ¼ 48:5GPa (a silicon tip in
contact with a fused quartz sample), Fad ¼ 0:08mN, and
FC ¼ 0:0123 mN. Including adhesion forces increased the
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value of k� in comparison to its value from the Hertzian
model, especially for FCo0:15mN. For FC43 Fad, k�DMT

was always greater than k�H by o10% and decreased
rapidly too2% greater with increasing FC. In addition, for
typical AFAM experimental conditions there was virtually
no difference between the DMT and JKR models. For
FC40:6mN, the values of k� predicted by the two models
differed by o1%. Therefore, in our analysis of the AFAM
data, we used only the DMT model due to its simpler
mathematical expression.
3. Experimental procedures

3.1. Characterization of cantilever properties

In this study, we wanted to extract information about
the tip radius of curvature R from experimental AFAM
stiffness-load (k� vs. FC) data. One can use either Eq. (1) or
(3) to calculate R, but these equations require the value of
the applied static load FC. Because we measure the
cantilever deflection d and FC ¼ kcd, we therefore had to
determine the cantilever spring constant kc for each
cantilever.

Ten different cantilevers were used in our experiments.
The measured values of the first and second free-resonance
frequencies f1 and f2 for all ten cantilevers are given in
Table 1. We used the expression proposed by Sader et al.
[28] to calculate kc from the values of f1 and the mass m of
each cantilever:

kc ¼ 4p2kSmf 2
1; (5)

here kS ¼ 0:2427 is the Sader constant. The mass m of a
cantilever was calculated from the mass density of silicon
(r ¼ 2:33 kg=m3) [29] and the volume of the cantilever. The
cantilever volume was calculated in the following way.
From SEM images like those in Fig. 1 for four of the ten
cantilevers, average values of the cantilever width W, the
Table 1

Characteristics of the cantilevers used in this study

Group Cantilever f1 (kHz) f2 (kHz) kc (N/m)

I a 161.56 1004.28 35

b 161.55 1004.33 35

c 161.06 1004.20 35

II a 169.03 1049.00 40

b 169.00 1048.40 40

c 169.36 1056.06 40

d 169.83 1055.31 40

III a 171.25 1062.50 41

b 164.21 1018.96 37

c 167.30 1038.50 38

The measured values of the first and second free resonance frequencies f1
and f2 were used to divide the cantilevers into three groups. The estimated

measurement uncertainty in frequency is 70.05 kHz The values of the

spring constants kc shown were calculated using the Sader expression [28].
length L, and the thickness T were determined. The average
values of L and T were used to predict the first free-
resonance frequency of the cantilever using the relationship
[25]

f 1 ¼ 0:162

ffiffiffiffi
E

r

s
T

L2
, (6)

where E is the Young’s modulus. For our silicon
cantilevers, we use Eh1 1 0i ¼ 169GPa [29]. The average
values of L and T were adjusted for each cantilever until
the predicted value of f1 from Eq. (6) matched the
measured value in Table 1. For all of the cantilevers,
we had to adjust L and T by less than 2–3% to obtain
agreement.
The values of kc obtained in this way are presented in

Table 1. It can be seen that the values range from 35 to
41N/m. The relative uniformity in the values of kc is not
surprising, considering that all the cantilevers were made of
silicon, were provided by the same vendor, and had very
similar dimensions. The values of f1 and f2, and thus the
values of kc, were used to segregate the cantilevers into
three groups. For both groups I and II, all of the
cantilevers in the group had very similar values of f1 and
f2 and kc. Group III is a miscellaneous group containing
those cantilevers that did not fall into the other groups. In
the text, we use these groups to refer not only to the
cantilevers, but the tips attached to them as well.

3.2. AFAM/SEM studies

AFAM stiffness-load data were obtained with the ten
cantilevers characterized in Table 1. For each cantilever, we
measured the contact-resonance frequencies of the first and
second bending modes as a function of the cantilever
deflection d. We used d as the independent parameter
instead of FC because of the uncertainty connected with
calculations of FC from Hooke’s law. All of the measure-
ments were performed with the same sample of fused
quartz. A value M fq ¼ 68� 2GPa for the indentation
modulus of the fused quartz specimen was determined by
nanoindentation. All of the cantilevers went through the
same sequence of measurements, which contained seven
separate measurement ‘‘tests’’. Each test comprised mea-
surements at three to six different deflections. In the first
test, d ¼ 10, 20 and 30 nm. The next two tests consisted of
measurements at four deflections increasing from 10 to
40 nm. In the fourth to seventh tests, d was increased from
20 to 125 nm in six steps. This sequence of tests was chosen
in order to investigate the behavior of new tips under
varying conditions. Applying the same procedure to all of
the cantilevers allowed us to compare changes occurring in
the shapes of the tips. The tests were performed at different
locations on the fused quartz sample.
SEM images were obtained for the new tips before

engaging them in AFAM measurements. Through initial
experiments, in which the tip was imaged after every
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Fig. 2. SEM images of brand new tips revealing the wide differences in

possible new-tip geometry. The scale is the same for all three images. (a)

Sharp tip with radius of curvature Ro10 nm.(b) Tip with R�20 nm. (c)

Very blunt tip with possible surface contamination not seen in other tips.

Fig. 3. SEM images of three tips affected by fracture in the AFAM

measurements. The images were acquired after the (a) third, (b) fifth, and

(c) first AFAM tests. The scale is the same for all three images.
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AFAM test, we learned that it was sufficient to acquire
further SEM images for each tip only intermittently
throughout the AFAM measurement sequence. For most
of the tips, the SEM images were obtained after the first,
third, fifth and seventh test. Each SEM session yielded four
to five images of a tip at magnifications of 105 and 2� 105.
The SEM images were analyzed using commercial software
to measure the radius of curvature R of each tip. With the
software, a circle was drawn to fit the end of the tip as
closely as possible. The radius of this circle was then taken
as the value of R. Tips with a geometry markedly different
from hemispherical were described as flat circular punches
with respective radii a. For each image, two or three values
of R were determined. This process yielded ten individual
values of R that were averaged to obtain a single value. In
the SEM images of small tips (Ro50 nm), it was often
difficult to define the edges of the tip because the quality of
the corresponding images was prone to vibrations and
drift. In these cases, the accuracy of the measurement of R

was limited. Because of these technical difficulties it was
difficult to obtain tip images with magnifications higher
than 2� 105.

4. Results and discussion

4.1. Changes in tip shape occurring in AFAM measurements

Fig. 2 shows SEM images of three different new tips that
represent the variety of geometries observed. Most of the
tips were very sharp with a radius Ro10 nm, as shown in
Fig. 2(a). These sharp tips broke during the AFAM
measurements. The fracture events were observed in the
AFAM data by a sudden, large increase in the contact
stiffness. For each such event occurring in the AFAM data,
the subsequent SEM images showed a change in tip shape
consistent with fracture. Two of the new tips had initial
radii of R � 20225 nm, as shown in Fig. 2(b). We did not
observe fracture of these tips during the AFAM tests, and
the corresponding SEM images showed very little increase
in R. The SEM image in Fig. 2(c) shows an extreme tip
shape observed in our study. This tip was very blunt, even
when new.

As mentioned above, the sharpest tips broke during the
AFAM measurements. The images in Fig. 3 show some
of the different tip geometries that resulted from fracture.
Fig. 3(a) shows an SEM image obtained for tip Ic in
Table 1. This tip broke during its second AFAM test at a
static load of about 1 mN. The resulting geometry resembles
a flat punch with radius a � 20 nm, rather than a
hemisphere. There appears to be debris from the fracture
on the right side of the tip. Tip IIIc, shown in Fig. 3(b),
fractured twice during its fourth AFAM test at static loads
of about 1.5 and 3 mN. The tip had a distinct plateau at its
end with a � 45 nm. Tip Ib, shown in Fig. 3(c), fractured
during its very first AFAM test at the static load of about
0.3 mN, but afterward remained approximately hemisphe-
rical, with R � 20 nm. Thus, there seems to be no rule
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Fig. 4. Example of tip shape evolution in AFAM experiments. (a) SEM

image of new tip IIIc. (b) Experimental AFAM values for the normalized

contact stiffness k�=kc. The different symbols correspond to different

AFAM tests in which the load was progressively increased. Indicated are

the points at which the SEM images of the tip in (a) and (c) were acquired.

The arrows indicate tip fracture events. (c) SEM image of the same tip

after performing the set of AFAM tests. The scale is the same as in (a).
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concerning when a tip will break or what its shape will be
after the fracture. This lack of consistency makes the
analysis of AFAM data with simple contact-mechanics
models even more complicated.

It is important to remember that the tip shape directly
affects the values of k� measured in AFAM experiments.
We interpret AFAM data by use of contact-mechanics
models that assume simple geometries, such as a sphere or
flat punch to estimate lower and upper limits for the elastic
modulus. However, as Figs. 2 and 3 reveal, the tip
geometry is rarely simple and often changes with use.
One such example is presented in Fig. 4. The new tip is very
sharp with Ro10 nm, as shown in Fig. 4(a). Values for the
normalized contact stiffness k�=kc obtained with this tip
from the AFAM tests are presented in Fig. 4(b). The legend
of the plot defines the different symbols that correspond to
different AFAM tests in which the applied static load was
progressively increased, as described above. It can be seen
that k�=kc was relatively low during the first test, as
expected from Eq. (1) due to the small radius of the new
tip. During the second and third test, the values of k�=kc

increased slightly, suggesting a small increase in R. The
values of k�=kc increased rapidly and significantly twice
during the fourth AFAM test, suggesting two separate tip
fracture events. In the subsequent tests, the values of k�=kc

obtained for a given applied static load were very similar,
indicating little, if any, further change in the tip shape. An
image of the tip obtained at the end of the AFAM tests is
shown in Fig. 4(c). It can be seen that the shape of the tip
has indeed changed and now resembles a flat punch.

4.2. Analysis of AFAM data using contact-mechanics

models

Eqs. (1) and (3) can be used to calculate the tip radius R

from the AFAM data if the value of the applied static load
FC is known. The values of kc in Table 1 allowed us to
determine the values of FC for each AFAM test. The values
of R resulting from this contact-mechanics analysis of the
AFAM data were then compared to the values obtained
independently in the SEM images.

An example of this type of comparative analysis is shown
in Fig. 5. Fig. 5(a) shows an SEM image obtained for tip
IId when new. The tip possessed a hemispherical geometry
in the SEM images and showed very little increase in R

(20–25 nm) over the course of the AFAM measurements.
The cantilever spring constant was 40N/m. We used the
Hertz and DMT contact-mechanics models to calculate R

from the AFAM data. The values of RH calculated using
Eq. (1) are shown in Fig. 5(b). For the Hertzian model, we
expect RH to remain constant with no dependence on FC.
Instead, as can be seen in Fig. 5(b), RH showed a strong
dependence on FC, decreasing from 90 to 18 nm as the
static load increased from 0.4 to 5 mN.

Such behavior is not physically realistic and could be
possibly explained by the presence of an offset stiffness
(i.e., k�a0 for FC ¼ 0). An offset stiffness could result
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Fig. 6. Normalized contact stiffness k�=kc as a function of cantilever

deflection d. The three sets of data were obtained with three different tips

attached to cantilevers with nearly identical values of their spring

constants kc. The differences in the values of k�=kc were caused by the

differences in tip geometry.

Fig. 5. (a) SEM image of new tip IId. (b) Tip radius RH versus applied

static load FC calculated using the Hertzian contact model. (c)

Comparison between experimental values for k� (points) and those

predicted using the DMT contact-mechanics model as defined in Eq. (3)

(line). The values for R and Fad used as fit parameters are given.
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from either the presence of an adhesion force Fad or from a
geometry different from a hemisphere. To examine the
issue of adhesion forces, we used the DMT model to
analyze the experimental values of k�AFAM obtained with tip
IId. We used Eq. (3) to fit the experimental dependence of
k�AFAM on FC using RDMT and Fad(DMT) as fit parameters.
We used commercial software to perform fitting and to
calculate the corresponding error values. As seen in
Fig. 5(c), the dependence of k� on FC predicted by the
DMT model agreed with our data reasonably well.
However, the values for RDMT and Fad(DMT) needed to
match the data differed strongly from the actual values.
The best-fit value of RDMT was about 8 nm, whereas the
SEM images yielded values from 20 to 25 nm for the new
and used tip. The value for the adhesion force Fad(DMT)

determined by the fitting procedure was very large—almost
6 mN. This value is much larger than the estimated
maximum applied static force (4–6 mN) for any of the
AFAM measurements. Furthermore, the expected values
for Fad are �0.1 mN, as estimated from the pull-off forces
observed during AFAM measurements. We analyzed the
AFAM and SEM data for the other nine tips in a similar
manner. Results very similar to those in Figs. 5(b) and (c)
were obtained. For all of the tips, the values calculated for
RH using the Hertzian approach showed a dependence on
FC. Analysis with the DMT yielded values for RDMT that
differed significantly, but not systematically, from the
values obtained from the SEM images, while the values of
Fad(DMT) were always 10–100 times larger than expected.
The results of this analysis indicated that the assumptions
of the Hertzian and DMT models did not describe the tip-
sample contact geometry accurately.
In our analysis, we used the values for kc given in

Table 1, treating kc as a known parameter. However, we
were aware that our calculations of the spring constant had
an uncertainty resulting from discrepancies between the
real and the assumed rectangular beam. Therefore, the
AFAM data were re-analyzed using kc as an additional
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fitting parameter. We found that we could describe the
AFAM data with the DMT model using values for RDMT

and Fad(DMT) that agreed reasonably well with the expected
values. However, the results obtained for the same tip from
test to test were not consistent. The values of kc were not
constant (for tip Ia, kc ranged from 30 to 50N/m), which is
not physically realistic. Furthermore, sometimes the values
of RDMT decreased with use, while the SEM data showed
an increase.

Finally, we observed that the function k�(FC) depends on
the tip geometry. Fig. 6 presents data obtained with the
three cantilevers from group I. The cantilevers had very
similar values of their first and second free-resonance
frequencies, and therefore had virtually the same values of
their spring constants kc. In Fig. 6, the values of the
normalized contact stiffness k�=kc are plotted as a function
of the cantilever deflection to obtain a plot independent of
kc. SEM images indicated that tips Ia and Ib could be
described as hemispherical with R ¼ 65 and 37 nm,
respectively. The shape of tip Ic, shown in Fig. 3(a), was
much closer to that of a flat punch than that of a sphere. As
can be seen in Fig. 6, the dependence of k�=kc on the
cantilever deflection d reflects these differences in tip
geometry. The values of k�=kc determined for tips Ia and
Ib increased significantly with the cantilever deflection and
the slopes of the normalized stiffness-load curves were
similar. In addition, values of k�=kc determined with tip Ia
are greater than these determined with tip Ib. These two
facts agree well with the available SEM information. The
results obtained with tip Ic show different behavior. The
values of k�=kc increase little with the increasing d,
indicating a geometry close to that of a flat punch. This
is also consistent with the corresponding SEM image.

We found a qualitative correlation between the slope of
the AFAM stiffness-load data and the SEM geometry
information, in that k� increased with FC for approxi-
mately hemispherical tips and stayed relatively constant
with FC for flat-punch type tips. However, we have already
shown that quantitative data analysis using a simple tip
geometry cannot be made. Therefore, we have followed
ideas used in nanoindentation that allow for non-ideal tip
shapes. In nanoindentation, the values of the contact
stiffness are determined from the slope of the unloading
part of the load–displacement curve. The unloading curve is
fitted using a power law [19]. It was found that the
exponent varies from 1.25 for a flat punch to 1.5 for a
sphere. In AFAM measurements, we obtain a stiffness–

load curve that can also be described with a power law:

k� ¼ bFn
C, (7)

where b is a factor depending on the tip geometry and the
elastic properties of the tip and the sample. As defined
in Eq. (7), n varies from 0 for a flat punch to 1/3 for
a hemisphere. We used Eq. (7) to fit the AFAM data
presented in Fig. 6. The values of n obtained for tips Ia and
Ib were 0.140 and 0.142, respectively. This result indicates
that the two tips had nearly the same geometry, which was
between that of a hemisphere and that of a flat punch. The
exponent factor n determined for tip Ic was 0.03, which is
very close to that expected for flat-punch geometry.
The results of this quantitative analysis of AFAM data

suggest that contact geometry occurring on a very small
scale of tens of nanometers cannot be idealized. It should
be noted that in typical AFAM measurements, the
estimated diameter of the contact area and the tip-sample
deformation are less than 40 and 5 nm, respectively. This
means that the tip shape must be characterized on exactly
the same scale. However, the SEM images lacked the
necessary spatial resolution to obtain such information at
the very last nanometers of the tip. This explains why
AFAM data obtained with tips that appeared hemisphe-
rical in SEM images could not be evaluated using a power-
law function with n ¼ 1=3.

5. Summary and conclusions

We have performed a series of defined atomic force
acoustic microscopy (AFAM) measurements with ten
different atomic force microscope (AFM) tips in order to
study the impact of tip geometry on the quantitative
analysis of contact stiffness data. Information about the tip
geometry during the AFAM measurements was obtained
from high-resolution scanning electron microscope (SEM)
images. We found that commercially obtained AFM tips
had various geometries even when new, although the
majority of tips were very sharp (Ro10 nm). Such sharp
tips always broke at some point in the AFAM measure-
ments. The fracture events were easy to identify during the
AFAM experiments by a sudden increase in the measured
values of the contact-resonance frequencies. After fracture,
the tip radius increased gradually with use. However,
despite applying relatively high loads (F C43 mN), the
radius of most tips stayed below 70 nm. This ensures the
high lateral spatial resolution of AFAM.
Efforts to apply basic contact-mechanics models were

unsuccessful, even for tips showing a hemispherical
geometry in the SEM images. Calculations of the tip
radius using the Hertzian model showed a strong
dependence on the applied static load, which is not
physically realistic. Applying the Derjaguin–Müller–To-
porov (DMT) contact-mechanics model was not successful
either. The values determined for R varied indeterminately
from the SEM results, and the values obtained for the
adhesion forces were higher than the highest load applied
in our measurements (few mN). We analyzed our data
successfully using an approach adopted from nanoindenta-
tion, in which the AFAM stiffness-load data were
described by a power law with an exponent n depen-
dent on the tip geometry. This analysis showed that n

was characteristic of tip geometries intermediate between
flat punch and hemisphere. In many contact AFM
techniques, the tip-sample contact occurs on the scale of
a few nanometers. SEM images typically lacked the
resolution needed to sufficiently characterize tip geometry
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on this scale. Therefore, the approach of nonideal
geometry characterization shows promise towards improv-
ing the quantitative analysis of data obtained with AFAM
and other contact AFM techniques.
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