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Abstract
Atomic displacements, strains and strain energies in the neighbourhood of
near-spherical, coherent Ge ‘quantum dots’ (QD) in crystalline Si and near a
{001} Si surface have been predicted by multiscale modelling, by use of a
combination of classical molecular dynamics (MD) and Green’s function
(GF) techniques. The model includes the nonlinear effects at the GeSi
interface and allows the boundary of the system to be placed outside the two
million atom host crystallite. A modified-embedded-atom-model interatomic
potential was used for both MD and GF calculations. Dots of four sizes were
analysed, ranging in diameter from 1.1 to 6.5 nm. The supercell size was
34.2 nm. Calculations for strains and displacements in the infinite solid were
extended to the {001} surface of the semi-infinite solid using the scheme
described previously. Atomic displacements in the infinite solid showed
trends generally similar to the early estimate of Mott and Nabarro, but
differed in detail, especially for the smaller dots. Surface displacements were
broadly similar in magnitude and shape to the classic isotropic continuum
solution of Mindlin and Cheng. For large (e.g. 6.5 nm diameter) near-surface
dots, the surface displacements are of a magnitude sufficient to be observed
by advanced scanned probe microscopy.

1. Introduction

1.1. Motivation

Quantum dots (QD) are candidate structures for the active
elements in many revolutionary new devices including
quantum computers, which may have processing capabilities
vastly greater than even today’s extremely sophisticated
billion-transistor complementary metal oxide semiconductor
(CMOS) structures [1]. Quantitative understanding, including
modelling and measurement, of strains around quantum dots
is important because carrier confinement, which is responsible
for the energy levels of quantum dots, is determined by:
(i) dot geometry; (ii) chemical composition of the dot and
its surroundings; and (iii) the mismatch-induced elastic strains
around the dot [2]. In self-assembled dots, the strain affects
the dot geometry and chemical composition. So the mismatch-
induced strains are fundamental to both the formation and

* Contribution of the US National Institute of Standards and Technology. Not
subject to copyright in the US.

the performance of solid state quantum dots [3–5]. Strain
engineering in quantum dots has been reported for controlling
the self-assembly of quantum dot arrays and has been used
to demonstrate the effect of strain on the energy of emitted
photons. The performance of a QD for quantum information
processing or for generation of light can obviously be affected
by strains in and around the dot, in particular, as they affect
decoherence of the quantum states used to store and manipulate
information [6, 7].

Experimental images of surface topography can, in
principle, be used to characterize QD size, spacing and in-plane
location. Quantitative models of displacements and strains
observable at the surface above buried QD offer the possibility
of using quantitative experimental measurements of surface
parameters to produce more exact values for size, spacing and
location, and to extract additional useful information. There
may be useful information in, for example, a quantitative map
of the out-of-plane displacement at and near a buried QD to
extract some important characteristics of the QD such as an
effective lattice misfit. However, quantitative interpretation
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of the experimental results is difficult because of the alloying
and other effects that occur during spacer layer deposition.
These effects depend upon the experimental conditions and the
sample history. On the other hand, model calculations of strain
and displacement field due to an idealized QD can provide
valuable insight into the physical processes and are useful in
the design of experiments. Clearly, models for a range of
shapes and sizes will be needed, because quantum dots of a
variety of shapes have been reported experimentally.

The key contribution of this paper is an analysis approach
that combines a full atomistic treatment of the QD and
its interface to the host lattice with a correct treatment of
the boundary conditions. To demonstrate the approach, we
consider faceted polyhedral (near-spherical) QD of a range
of sizes, although the modelling approach developed here
is applicable to QD of any arbitrary shape. Treatment of
spherical or near-spherical shapes allows comparisons with
closed-form expressions based on continuum mechanics, and
also allows exploration of general behaviour not influenced by
the asymmetries of a particular shape. The largest diameter
analysed here, 6.5 nm, is within the range of observed QD
sizes for GeSi [8] and Ge–silica [9] systems. In general
the experimentally observed QDs are more like pyramids
or truncated pyramids [8]. However, it is important to
establish a correct, as opposed to arbitrary, treatment of the
boundary conditions and to have a good understanding of how
atomistic results for the spherical QD compare to continuum
approximations before proceeding on to more complex shapes.

This paper is focused on three aspects of the near-spherical
Ge–Si QD: the positions of the atoms near the Ge–Si interface,
the surface distortions produced by buried QD and the strain
at the surface above a buried QD. The atomic positions are
critical for calculation of the electronic–photonic behaviour
of the QD. The surface distortions are potentially useful
for relating scanned-probe microscopy (SPM) observations
to certain features of buried QD. And the surface strains
provide an indication of which positions may be favourable for
formation of neighbouring dots in self-assembled arrays.

1.2. Multiscale approach

Modelling of strains in and around quantum dots is a key
tool in strain engineering of QD. However, the modelling of
these strains is complicated by the large number of atoms
that must be considered in order to treat quantitatively the
effects of the QD-matrix interaction. Both multiscale and
direct approaches to modelling strain around QD have been
reported in the literature. The direct approaches include
continuum elasticity, e.g. [10], Green’s function (GF) [11, 12]
and molecular dynamics (MD) [13–17] approaches. The
multiscale approaches so far include MD and finite element
(FE) combinations [18] and MD and GF combinations [19, 20].
Our model systems are similar in size to those reported by
Makeev and Madhukar [17], except that our models are as large
in the [001] direction, perpendicular to the free surface of the
Si host, as in the other directions. We used a different potential;
our germanium quantum dots are faceted according to the
Wigner–Seitz symmetry; and we used much more modest
computational resources. Our results show some features not
seen in [17].

Here we apply the multiscale approach that incorporates
MD and GF [19]. We take advantage of the fact that, away
from the QD, the strains are relatively small, that is, small
enough that the harmonic approximation is accurate. These
far-field strains provide the boundary condition for the QD,
and so cannot be ignored. Treating the far field in a harmonic
approximation, by use of the Green’s function approach, is a
much more efficient use of computer power than a full MD
treatment would be [19, 20]. We note that the GF is itself
multiscale, allowing a seamless transition between an atomistic
treatment of a perfect, harmonic lattice (LGF) and a continuum
with infinitesimal strain (CGF). Therefore our approach is
multiscale over three different scales: nonlinear atomistic,
in the MD region; linear atomistic, in the LGF region; and
continuum, in the CGF region. A similar multiscale approach
has been used previously [21] to model single Ge impurities
and their aggregates in Si. That approach does not include
nonlinear effects, and is based on a numerical calculation of
the Green’s function using Tersoff’s [22] potential for Si. We
used the present approach to model Au nanoislands in Cu using
a different interatomic potential [19].

In the case of QDs of realistic sizes, it is necessary
to model a large host crystallite in order to avoid spurious
size effects that might be introduced by arbitrarily assumed
boundary conditions. It is also necessary to include
nonlinear effects inside and near QDs because of large atomic
displacements in these regions. Our multiscale model is
computationally efficient and accounts for these nonlinear
effects as well as models a large crystallite without being CPU
intensive. In the present calculations we are able to model a
QD as large as 6.5 nm and include 2 million atoms in the host
crystallite on a desktop computer.

One mathematical problem in linking the lattice scale
to the continuum scale is that the discrete lattice model
yields atomic displacements at discrete lattice points. On the
other hand, stress and strain are continuum model parameters.
They are continuous variables and are defined in terms of
the derivatives of the displacement field. In the continuum
model these derivatives are uniquely defined because the
displacement field is a continuous variable. In the lattice model
the displacement field is a discrete variable and a numerical
algorithm and an averaging process are needed to define
the derivatives. Although elegant averaging techniques [23]
have been developed for this purpose in infinite solids,
the averaging process is not unique and requires careful
attention to convergence as well as various conservation laws,
particularly in models containing a free surface. This problem
does not arise in our multiscale model because the lattice
Green’s function reduces seamlessly [24] to the continuum
Green’s function from which stress and strain can be uniquely
determined.

The details of our multiscale model have been given
in [19, 24]. Here we shall present a brief summary and the
salient features of our model. We consider the quantum dot
as a defect in an otherwise perfect lattice. The defect causes
lattice distortion by displacing each atom in the lattice from its
position of equilibrium. The displacement field u in the entire
lattice can be written [24, 25] as

u = G∗F, (1)
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where G∗ is the defect Green’s function [25] of the lattice
containing the defect. It is related [25] to the perfect lattice
Green’s function G (for the host lattice without the defect)
through the Dyson equation [26]:

G∗ = G + GΔΦ(u)G∗, (2)

where ΔΦ denotes the change in the lattice force constants
caused by the defect. All the quantities in equations (1) and (2)
are matrices in the vector space defined by all the lattice sites.
G, G∗ and ΔΦ are square matrices and u, F and F∗ are column
matrices. In the harmonic approximation ΔΦ is independent
of u. In this case equation (2) can be solved by standard
methods [25, 26].

As shown in [19, 24, 25], we can rewrite equation (1) in
the following exactly equivalent form

u = GF∗, (3)

where

F∗ = F + ΔΦ(u)u. (4)

The effective force F∗ is known as the Kanzaki force [27].
Physically it can be interpreted as the force due to the defect
at the displaced positions of the atoms. The Kanzaki force
contains the full contribution of the discrete structure of the
lattice in the defect space as well as nonlinear effects.

As shown in [24, 25], G, but not G∗, reduces asymptot-
ically to the continuum Green’s function. Equation (3) forms
the basis of our multiscale model. We first calculate F∗ by
using an iterative procedure described below. This method is
based upon the use of the standard MD and the lattice Green’s
function method [25]. We calculate the displacements near the
defect from equation (1) by using the lattice Green’s function.
At large distances from the defect, we replace G by Gc, the
continuum Green’s function [28], but still use the lattice value
of F∗ given by equation (4). Equation (3) thus relates the dis-
crete lattice parameters through F∗ to the continuum model pa-
rameters through Gc. We incorporate the effect of extended
defects in Gc by imposing appropriate boundary conditions us-
ing the standard [28] techniques of the continuum model.

Prospective applications of (1) are manifold. For example,
dislocations and other local defects within or at the boundary
of the Ge QD can be included within the inner core region,
since MD accommodates such geometries and can be used to
produce a set of Kanzaki forces representative of the QD with
dislocations. Using this approach, the effect of dislocations or
other features of the QD structure on the strains surrounding
the QD could be modelled [29].

To model observable effects of the QD, a surface is
introduced in the continuum region using the technique
described previously [24]. The technique of Mindlin is used
with the Kanzaki forces [25] and the continuum Green’s
function to calculate the additional image forces that are
needed to model the effect of the surface. Here we have not
accounted for the effect of the surface on the Kanzaki forces.
This introduces a small error into our results for surface strains
and displacements, which is not expected to affect our general
conclusions.

1.3. Interatomic potential

The GF and MD regions of our multiscale model use the
same interatomic force model. We have chosen the modified
embedded atom model (MEAM) [30], because it is realistic for
Si, Ge and their alloys, and is practical. However, our model
is not limited to this particular potential. Any differentiable
potential function can be used, from which force constants can
be obtained numerically or analytically. The force constants
are needed for calculation of the lattice Green’s function.

Equation (9) of [30], for the background electron density,
allows negative values inside the square root for certain
nonequilibrium, but very possible, atomic arrangements; we
use instead equation (12c), introduced in [31] and discussed
further in [32]. The parameters originally given in [30] were
adjusted to best fit the modified potential to the elastic moduli,
vacancy energy, and energy and volume of metastable crystal
structures of Si and Ge [33–36]. (Fits to the sublimation energy
and lattice parameter are built in to the MEAM potential.) We
followed the prescription given in the original [30] to derive
parameters for the Si–Ge interaction. The MEAM parameters
used here for Si–Si, Si–Ge and Ge–Ge interactions are listed in
table A.1 of the appendix. The screening and distance cutoffs
ensured that, for configurations near equilibrium, only the
interactions with the four nearest neighbours were calculated
explicitly. Interactions of an atom with its more distant
neighbours are indirect, through the background electron
density. The MD calculations used the XMD computer
program, described by Rifkin [37], significantly modified by
the addition of the MEAM potential.

The GF is based on this same interatomic potential, except
that only Si–Si interactions occur in the GF region of the
problem. The GF was built up by the procedure described
in [24] from numerical force derivatives calculated from the
present potential function. The force constant matrices used
here are given explicitly in the appendix.

1.4. General procedure and outline of the paper

Our objective is to find the correct set of Kanzaki forces and
then apply them to calculate certain quantities of interest for
the Ge–Si QD. The configurations to be treated are described
in section 2. An iterative scheme to calculate the Kanzaki
forces is outlined in section 3. In section 4, the Kanzaki forces
are utilized to calculate: boundary conditions used in an MD
calculation of atomic positions at the Ge–Si interface; atomic
displacements along principal directions around a Ge–Si QD
in an infinite solid; and strains and displacements at a surface
near the QD. Section 5 compares our approach and results to
previous models of the Ge–Si QD.

2. Model configurations

We have analysed the Ge–Si QD as a Ge inclusion in a
Si host lattice. Our nomenclature is shown in figure 1.
The QD is contained within a supercell with full Wigner–
Seitz face-centred-cubic symmetry. The supercell boundaries
remain fixed throughout the solution procedure. The supercell
diameter is 34.2 nm. Therefore we expect to obtain good
accuracy for atomic displacements and derived quantities up
to a distance of about 17 nm from the centre of our QD. By
this distance, the displacements and strains are very small. The
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Si inner core 

Si outer core 

Ge QD

Si shell

Si host

Figure 1. Schematic diagram of a Ge–Si quantum dot, showing
regions considered in the multiscale analysis. The MD and GF
solutions are joined by matching forces at each atom in the shell
region.

Kanzaki forces, which occur near the centre of the supercell
and therefore are considered to be unaffected by the cell
boundary, are used to evaluate displacements and strains at
much larger distances.

Our Ge QD are built up by including Wigner–Seitz unit
cells out to spherical cutoffs, to preserve the symmetry of
the lattice. For this demonstration analysis the QD has the
full tetrahedral symmetry, but this is not required by the
method. This scheme produces faceted polyhedral Ge QD,
which become more nearly spherical as the size increases. Our
smallest QD is definitely faceted, and our largest inclusion
is nearly spherical, see figures 2 and 3. We report on four
inclusion sizes, which are referred to below as A, B, C and
F. The diameters and atom counts are given in table 1. The
largest size described here, size F, contains 7193 Ge atoms, for
a QD diameter of about 6.5 nm. The shell, where the force
balance between the GF and MD sides of the problem occurs,
consists of 7796 Si atoms. This size was chosen because it is
large enough to be physically realistic but still small enough
to be modelled with tractable calculation times; the smaller
sizes were chosen to look for the possibility of size effects.
Throughout the calculation, we used the Cartesian coordinate
system with axes aligned along the crystallographic axes.

3. Analysis

3.1. Approach

We have developed and applied an iterative scheme to calculate
the needed Kanzaki forces. In this problem the Kanzaki forces
represent, in a somewhat complex fashion to be discussed
below, the force exerted by the QD and its surrounding atoms,
out to the core, on the shell and the host atoms, as defined in
figure 1. The Ge lattice is larger than that of Si, so the QD
expands against the restraining force of the surrounding atoms.
The shell is the transition or ‘handshake’ region between the
MD and GF portions of the analysis; the shell atoms remain
fixed during each MD analysis. It is straightforward to use MD
to calculate the outward force on the shell atoms, but the result
depends on the position of the shell atoms. The shell atoms can
be displaced using (1), once we have a set of forces. Iteration
is required because we must first use (1) to displace the shell
atoms, and then repeat the MD calculation to refine the force
values.

Figure 2. Section through the [010] plane of quantum dot size A,
showing facets. Only atoms near the QD are shown; the full model is
much larger.

Figure 3. Section through the [010] plane of quantum dot size F,
showing that this QD is nearly spherical. Only atoms near the QD are
shown; the full model is much larger.

The subtlety of the plan outlined above is that the Kanzaki
forces must be applied to the perfect Si lattice, even though
the configuration of interest is different, namely the Ge–
Si QD. As indicated by (1), it is possible to choose the
Kanzaki force values to account for this difference between
G∗ and G. Figure 4 shows simplified force balance diagrams
from two configurations of atoms, one representing a physical
configuration of interest, in this case a Ge–Si QD, the other a
perfect Si lattice (PL).

In the QD there are no external forces; the outward
expansion of the QD is balanced by the restraining force
exerted by the host. In the parallel PL model, we impose a
Kanzaki force on each shell atom, and both the host and the
core exert opposing forces. We place the corresponding shell
atoms in the two corresponding models in the same positions.
Therefore, the restraining force exerted by the host on each
shell atom must be identical in the two cases; we note that these
forces occur at the actual final position of the atoms. We denote
this set of forces as f QD

S,H. This symbol represents generically
the force on a shell atom from the host atoms and from all
other shell atoms. The equality of this quantity between the
two systems is expressed as

f QD
S,H = f PL

S,H, (5)
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Table 1. Diameters and atom counts for four multiscale models of GeSi quantum dots.

Initial radius, Diameter of Ge dot Inner core Outer core Shell Total atoms Total atoms
unit = aSi/4 along 〈100〉 (nm) (atom count) (atom count) (atom count) in MD model in supercell

Atom type Ge Si Si

Model ID

A 4 1.1 35 246 376 657 2000 000
B 8 2.2 281 634 840 1755 2000 000
C 12 3.3 915 1234 1320 2149 2000 000
F 24 6.5 7193 26 340 7796 41 329 2000 000

PL: 

QD: 

F* 

fPL
S,H fPL

S,C 

fQD
S,C 

fQD
S,H 

Figure 4. Illustrative force balance diagrams for individual shell
atoms in the quantum dot (QD) and perfect lattice (PL)
configurations. The diagrams show the relative senses and
magnitudes of various force components in equations (6) and (7).
The forces are generally radial, either inward or outward; the force
sums illustrated apply to each vector component. Both the QD and
PL sums refer to atomic arrangements similar to figure 1, but all
atoms in the PL are Si. In the QD configuration, the outward force on
each shell atom from the core is balanced by the restraining force
from the host, as given by equation (6). For each shell atom in the
PL, the Kanzaki force, Fk , is balanced by the sum of the inward force
exerted by the core, f PL

S,C, and the restraining force exerted by the host,
f PL

S,H, equation (7).

where the superscript QD indicates that the actual physical
forces are evaluated in the QD configuration, the first subscript,
S, indicates forces on a shell atom, and the second subscript
indicates the source of the forces, H for host. At the
equilibrium configuration of the whole QD model, we note that
for each shell atom and for each term in the column vectors of
forces we must have

f QD
S,C + f QD

S,H = 0, (6)

where the second subscript indicates the source of the forces, C
for core and H for host, and forces of shell atoms on other shell
atoms are included with forces from the host. This equation
relies on the fact that a full MD calculation with an unlimited
number of atoms, or any other proper calculation method, must
produce a set of atomic displacements for which the net force
on each shell atom is zero.

Force balance within the PL model requires

f PL
S,H(F∗) = −F∗ − f PL

S,C(F∗), (7)

where the superscripts PL indicate the perfect lattice model, the
subscripts have the same meaning as in (6) and the dependence

of the response forces on the Kanzaki force is shown explicitly.
By substituting and rearranging ((5)–(7)) we may write:

F∗ = f QD
S,C(uS(F∗)) − f PL

S,C(F∗). (8)

This equation applies to each shell atom. The first term on
the right is the force on a shell atom from the core atoms; it
depends on the positions uS (fixed for each MD run) of the
shell atoms, which depend in turn on the Kanzaki force. This
equation can be regarded as giving the ‘output forces’ on the
left as a functional of the ‘input forces’ on the right. The
solution is the set of forces for which the equation holds. The
last quantity on the right is conveniently calculated numerically
with the MD software before the core atoms are allowed to
move, after positioning the outer core atoms by use of (1). This
is a highly nonlinear equation; we solve it iteratively. At the
first step, both F∗ and uS are equal to zero; the resulting value
of F∗ provides the input to the next iteration, etc.

In summary, the multiscale calculation is accomplished by
combining three separate calculations: GF evaluation of the
displacements of the shell and core atoms of the PL using (1),
based on an estimate of the Kanzaki forces; MD evaluation
of the forces on the shell atoms from the core atoms, after
the displacements calculated using the GF are imposed on
the starting configuration; and MD equilibration of the core
atoms to their minimum energy configuration, while holding
the shell atoms fixed. This calculation is iterated until (8) is
sufficiently well satisfied. The convergence criterion is the
match between output forces and the input forces. If the forces
match, the calculation has converged and we have our Kanzaki
forces. If not, a new estimate of F∗ is made based on the
mismatch between the ‘input’ and ‘output’ force in (8), and
the calculation is repeated.

By the usual arguments, this force-balance configuration,
between the expanding QD core and the restraining effect
of the surrounding host lattice, corresponds to the minimum
energy of the whole system: core, shell and host. Each
successful iteration produced a closer balance between the
input and output forces in (8); we were not able exactly balance
the force values for each atom, partly because the MD model
had a tendency to drift slightly around its energy minimum,
rather than locking on to it. The uncertainty values for our final
forces, estimated as the difference between input and output
values of F∗ in (8) at the final iteration, are listed below.

3.2. Procedure

In each iteration, the outer core and shell atoms are positioned
using (1) with the current value of F∗. For the first iteration, F∗
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Figure 5. Force imbalance for near-converged force values in
quantum dot size A, of radius 4 (aSi/4), for iteration 3. Note that the
range of magnitude of the errors (y-axis scale) is much smaller than
the range of the forces themselves (x axis). For some small force
values, the error is comparable to the force, but the small forces do
not have a large effect on the result.

is zero and all atoms are placed at perfect Si lattice positions.
For all the MD runs, the shell atoms are fixed and provide
the boundary condition for the MD analysis. Before the core
atoms are allowed to move, the second term on the right-hand
side (RHS) of (5) is calculated. Then the Ge QD proper and
the inner and outer core atoms are allowed to move toward
their minimum-energy positions. Several thousand MD quench
steps are calculated. Two different ‘quench’ options were
used in the MD program; in both, a specified set of atomic
velocities are numerically nulled whenever a related potential
energy value increases. Single-atom and full-model quenches
were used. Both remove kinetic energy from the MD model,
so the total energy in the model gradually decreases. We
tried introducing small amounts of thermal energy to speed up
convergence, followed by quenching, but this always resulted
in an energy value larger than the best minimum value.

Each MD iteration provides a new value of the first term on
the RHS of (8). The ‘output force’ is evaluated according to (8)
and compared to the initial value for the current iteration. If the
difference is too large, the ‘output force’ becomes the ‘input
force’ for the next iteration, equation (1) is applied to find the
positions of the shell and core atoms, the shell atoms are fixed
at their new positions, another MD run is carried out, and so on.
Perfect convergence is the condition where the ‘input’ forces,
namely those used in (1) to position the shell atoms, are exactly
equal to the ‘output’ forces, as given by (8).

We estimate that the individual components of our
Kanzaki forces are correct within 1% of the maximum
component and we expect that their combined effects are
correct to within a much smaller uncertainty, because errors
at individual atoms are distributed randomly. Figures 5 and 6
display sets of forces and energies plotted to show the approach
to minimum overall energy for the smallest QD. Figure 5 shows
the x-direction force error, namely the difference between
output and input force value, plotted against the input force for
all the shell atoms of inclusion size A. This figure shows that
each individual force component has its own error. There are
hundreds or thousands of these in the problems studied here.
The force error plotted in figure 5 is the difference between
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Figure 6. Total strain energies in quantum dot size A of radius 4
(aSi/4) plotted as average energy per atom of the QD. The curves are
drawn as guides for the eye. The total strain energy of the Ge–Si QD
is the sum of core and host contributions. The core considered in
isolation, initially placed with all atoms on Si lattice sites, reduces its
energy by expanding and so reducing the compressive strain in the
Ge QD. Eventually, at large expansions, the isolated core would go
into hydrostatic tension and its energy would increase. For the
QD-in-host system, the host is compressed radially outward by the
expanding QD core and its strain energy rises. The forces on each
atom are balanced at the minimum of the total energy.

the ‘input forces,’ used in (1) to position the shell atoms, and
the ‘output forces,’ calculated according to (8) from the MD
results.

Table 2 summarizes the residual force errors. The root-
mean-square (RMS) forces and force errors are given and the
RMS force errors are compared with the maximum force for
each QD. Table 2 shows that the errors are small compared to
the maximum forces. Since the GF is linear, the maximum
possible relative error in the displacements is the same as
the relative error in the forces. This implies that, for all the
displacements reported here, even for the small displacements
at atoms located distant from the QD, the errors resulting from
imperfect force matching are less than 1%.

Figure 6 shows the energy balance for inclusion size A.
Energy is plotted against RMS shell atom displacement. The
strain energy is made up of two main contributions, the shell-
host part, based on the f PL

S,H term illustrated in the PL part of

figure 4 and the core-shell part, corresponding to the f QD
S,C term

in the MD model. The zero for the shell-host interaction energy
is the energy of the Si lattice at its equilibrium lattice spacing;
the shell-core interaction energy is referred to the energy of
the SiGe heterostructure with no surrounding host lattice. The
curves drawn in the plot are only to guide the eye. This plot
shows that the total energy has a broad minimum and supports
the choice of basing the convergence procedure on the force
balance, as opposed to energy minimization.

4. Results

4.1. QD in infinite solid

Figure 7 shows calculated radial atomic displacements along
the 〈110〉 direction for the four QD sizes. The displacements
are taken as the difference between the final position of
each atom and its initial position, which was assumed to
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Table 2. Average forces and force errors for the QD models.

RMS force RMS force error /maximum
Quantum dot RMS force (dyn) error (dyn) force (%)

A 1.522 × 10−6 9.98 × 10−10 0.023
B 1.888 × 10−6 1.71 × 10−8 0.31
C 3.351 × 10−6 3.58 × 10−8 0.35
F 8.229 × 10−6 1.04 × 10−7 0.5
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Figure 7. Plot of radial atomic displacements along the 〈110〉
direction around Ge–Si quantum dots in an infinite Si solid. The unit
on both axes is aSi/4. All displacements are relative to the perfect Si
lattice. The curves labelled MN give Mott–Nabarro continuum
solution values for comparison.
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Figure 8. Atomic displacements near the Ge–Si interface, relative to
perfect Si lattice positions, plotted against distance from the dot
centre for quantum dot size A in the infinite solid.

be a point on the perfect Si lattice. All atomic positions
and displacements are given in units of one-fourth of the
diamond cubic Si lattice parameter, that is, aSi/4 =
1.358 Å (0.1358 nm). The displacement of each atom relative
to the perfect Si lattice is plotted. Atom positions in the perfect
Ge lattice are shown for reference, plotted as displacements
from perfect Si sites. Compressive strain within the QD moves
the Ge atoms away from the perfect Ge lattice positions, given
as the solid line. Ashby and Brown [38] gave a very useful
statement of the Mott–Nabarro [39] estimate of displacement
around a spherical inclusion. We adopt this Mott–Nabarro
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Figure 9. Atomic displacements near the Ge–Si interface, relative to
perfect Si lattice positions, plotted against distance from the dot
centre for quantum dot size B in the infinite solid.

(MN) result as a convenient reference, even though it is
applicable specifically only to an isotropic continuum. The
dashed line represents the MN solution, which is the same
within all the dots; it lies below the solid line (perfect Ge
positions) indicating compressive strain within the QD. The
calculated atomic displacements within the dots lie above the
dashed MN line and closer to the solid line. This indicates
a lower compressive strain within the QD than that given by
MN. The MN curve is given only for the largest QD, size F,
outside the dots. In the infinite solid, the strains around the
dots are compressive. Our atomic positions for this dot lie
below the MN curve, indicating smaller displacements than the
MN estimate. This plot shows the continuity between the GF
and MD parts of the models, as well as the broad similarity
between the present results and the MN results. It also shows
quantitative differences between the present results and the MN
estimate.

Figures 8–11 compare the atomic displacements along the
〈100〉, 〈110〉 and 〈111〉 directions for the four QD in the infinite
solid. The atomic displacements at the Ge–Si interface are
anisotropic and are larger than the reference values. The plots
show the displacements in the 〈100〉 direction trending smaller
than the MN displacements. This trend continues at larger
distances, where the displacements along 〈100〉 are smaller
than the MN values, but the displacements in 〈110〉 and 〈111〉
are larger than the MN values.

4.2. QD in semi-infinite solid

In the semi-infinite solid, the focus is on surface displacements
and strains. Surface displacements calculated for the four QD
sizes, buried at selected depths, are given in figures 12–15.

7



Nanotechnology 18 (2007) 105402 D T Read and V K Tewary

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30 35

Radial distance from centre, unit=a/4

R
ad

ia
l d

is
pl

ac
em

en
t, 

un
it=

a/
4

QD, <100>
QD, <110>
QD, <111>
Mott-Nabarro continuum

QD size C, r = 12 * (a/4)
Atomic displacements, relative to 
perfect Si lattice positions

Figure 10. Atomic displacements near the Ge–Si interface, relative
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centre for quantum dot size C in the infinite solid.
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Figure 11. . Atomic displacements near the Ge–Si interface, relative
to perfect Si lattice positions, plotted against distance from the dot
centre for quantum dot size F in the infinite solid.

The abscissas give distance from the projection of the centre
of the QD on the surface, in units of aSi/4. The ordinates
give the out-of-plane surface displacements; the direction is
outward. It can be seen from the figures that for the large
dot (e.g. 6.5 nm diameter, figure 15), and perhaps even
for smaller dots close to the surface, the patterns of surface
displacement are of a magnitude sufficient to be observed by
advanced scanned probe microscopy. The smallest QD nearest
the surface produce a different pattern of out-of-plane surface
displacement, namely a depression or indent at the centre of the
peak, figure 12. This feature gradually decreases in magnitude
as the dot size increases, and is absent in the largest dot. This
feature does not occur in the continuum approximations, which
are based on spherical QD, nor in the larger QD analysed here,
which are more nearly spherical. The particular faceted shape
of the model QD analysed is shown in figure 2. Note that no
more-spherical shape is possible at this QD diameter because
of the discreteness of the lattice.

Figures 16–19 show the behaviour of both strain energy
and diagonal components of the strain tensor for QD sizes
A and F. In all these plots, the curves labelled Mindlin–
Cheng [40] will be discussed below.
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Figure 12. Out-of-plane surface displacements plotted against
distance from the projection of the QD centre at the surface for QD
size A. Displacements along all radial directions are plotted, giving
the slight scatter in the displacements at each distance. QD depths,
positions and displacements are given in units of aSi/4.
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Figure 13. Out-of-plane surface displacements plotted against
distance from the projection of the QD centre at the surface for QD
size B. Displacements along all radial directions are plotted, giving
the slight scatter in the displacements at each distance. QD depths,
positions and displacements are given in units of aSi/4.

5. Discussion

In this paper we have demonstrated a multiscale modelling
technique for QD and other nanoscale structures in host
lattices that has four main advantages: correct treatment of
the boundary conditions, with no need to impose arbitrary
boundary conditions near the QD; efficient modelling of large
QD, by using the GF far from the QD where the strains are
small; multiscale from atomistic to continuum, with no need
for arbitrary selection of joining regions or gauge lengths
for strains; and efficient treatment of surface displacements
and strains from buried QD. We analysed near-spherical
QD because they provide a relatively simple example case.
Experimentally created and observed QD are much more
complicated than our model QD, in both shape and chemical
composition [8]. All the atomic positions calculated for any
QD would depend on its actual shape and composition. The
multiscale modelling technique described here is applicable
to any dot shape and composition, because we specify the
starting location of each individual atom in the QD and obtain

8



Nanotechnology 18 (2007) 105402 D T Read and V K Tewary

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 5 10 15 20 25 30 35 40

Radial distance, unit =a/4

S
ur

fa
ce

 d
is

pl
ac

em
en

t, 
w

, u
ni

t =
 a

/4

Depth = 40 * (a/4)
Depth = 45 * (a/4)
Depth = 50 * (a/4)
Depth = 60 * (a/4)
Depth = 70 * (a/4)

Ge dot in Si, size C
All directions in (100) plane

Figure 14. Out-of-plane surface displacements plotted against
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size C. Displacements along all radial directions are plotted, giving
the slight scatter in the displacements at each distance. QD depths,
positions and displacements are given in units of aSi/4.
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the Kanzaki forces. If more detailed observations of strain
and displacement fields for QDs of specific shapes become
available, the application of our method to those shapes is
straightforward.

Our intent is to encourage more detailed and precise
experimental measurements of such displacements and strains
around QD and more refined multiscale models. The first step
in this program would be to compare experimental results to a
set of model results; the results given in the present manuscript
are suitable for such a comparison. Such a comparison may
well show that additional calculations, for different QD shapes,
are needed. Such calculations can be done with the method
given in this manuscript, but are outside the scope of the
present study.

5.1. Atomic displacements compared to reference cases

5.1.1. Infinite solid. Atomic displacements calculated here
were compared to the isotropic continuum solution of Mott
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Figure 16. Normal strain components on the surface above QD size
A, buried at a depth 20 (aSi/4). The strain component εzz is plotted
along all radial directions to show the near-isotropy. Note the local
extrema in the multiscale model values for all strain components at
about 8 units from the centre.
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Figure 17. Strain energy density on the surface above QD of size A,
for several depths. All curves are plotted along all radial directions,
to show the degree of anisotropy. Note the local extrema in the
multiscale model values for all depths.

and Nabarro (MN) in figures 7–11. In all cases, the present
results agree qualitatively, but not quantitatively, with the MN
values. The differences in the results arise from the differences
in the basic mathematical descriptions of the solid. The
continuum, isotropic description of MN captures the general
features, while the multiscale approach captures the effects
of the anisotropic crystal lattice and the atomic interactions.
The MN solution provides helpful reference values for the
displacements both within and outside the QD.

5.1.2. Semi-infinite solid. Mindlin and Cheng (MC) [40]
gave an expression based on isotropic continuum elasticity
for surface displacements near an inclusion in a semi-infinite
solid. This solution provides a reference case for the surface
displacements calculated here. It has the general form of a
peak located at the projection of the QD centre on the surface.
Figure 20 shows ratios of surface displacements calculated
here to MC values for QD size F, plotted against distance from
the projection of the centre of the QD on the surface for several
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radial distances. The curves lie near a value of 1, indicating
broad agreement between the present solution and the MC
result. However, the present results are less than the MC values
directly above the QD, even for QD size F. The MC results have
no indent at the centre of the peak, in contrast to the present
results for the smaller dots.

The usefulness of the Green’s function in describing
anisotropic semiconductors has been discussed in detail in the
literature [28, 41–43]. The elastic anisotropy of the Si and
Ge produces the visible scatter of the curve in figure 20 for
depth = 50(aSi/4). However, at the radial distance where this
anisotropy becomes visible, the absolute value of the surface
displacement, shown in figure 15, is well below its maximum
value. Only the flanks of the peak have noticeable anisotropy,
while the peak itself is essentially symmetric.

Strains and strain energy densities at the surface of a
semi-infinite Si solid above a buried Ge QD were plotted in
figures 16–19, along with curves given by the MC solution.
As for the displacements, the agreement between the present
results and the MC solution is qualitative only. The reasons
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Figure 20. Out-of-plane surface displacements, w, relative to the
Mindlin–Cheng solution for QD size F.

are as before: the isotropic continuum description captures
general features, but not details for the particular materials
modelled. The strain and strain energy density values show
the same qualitative agreement with the MC solution as the
displacements did. The local minimum at the origin in the
magnitudes of all the normal strain components and the strain
energy density for QD size A, see figures 16–17, are striking
deviations of the present results from the MC solution. The
differences between the present results and the MC solution
can be attributed to:

(i) the discrete structure of the lattice in and around the QD;
(ii) the exact shape of the QD, which is rhombohedral in our

model and is spherical in the MC solution; and
(iii) the assumption of isotropy in the MC model, in contrast

to our multiscale model that accounts for full elastic
anisotropy.

5.2. Previous calculations for Ge–Si

Calculations of the displacements around Ge–Si QD of various
types have been reported previously in the literature. The
closest in spirit to the present work is that of Makeev and
Madhukar [17]. Their fully atomistic calculation used a
different interatomic potential, and they reported results in
terms of stresses and strains. Their MD calculation included
a free surface, but without modifying the potential at the
surface, as was done for example by Vashishta et al [44] for
GaAs surfaces, and without allowing the surface to reconstruct.
Their extraction of stress and strain values from atomic
displacements required a choice of the definitions used. Here
we treat the surface in the continuum approximation, using the
continuum GF as the asymptotic limit of the LGF. No choices
of definitions need be made in taking this limit. Our atomistic
treatment extends much further into the substrate. The present
results, like those of [17], reproduce the general scaling of
the previous elasticity solutions by Mott and Nabarro [39] and
Mindlin and Cheng [40]. These results all show that the free
surface above a Ge QD in Si is displaced out of plane, in a
direction away from the QD, meaning that the QD produces a
broad peak on the surface.

The present results indicate that small, faceted QD placed
below the free surface would have a distinctive feature if
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Table A.1. Parameters for the MEAM interatomic potential used here. Esub in eV, rnn in ångstroms, remainder dimensionless. The
nomenclature is the same as in [30].

Parameter

Interaction Esub (eV) rnn (Å) α A β(0) β(1) β(2) β(3) t (0) t (1) t (2) t (3)

Si–Si 4.63 2.35 4.87 0.84 3.6 5.5 5.5 4.5 1.0 5.6 8.9 −2.50
Ge–Ge 3.85 2.45 4.98 0.92 4.2 5.5 5.5 3.9 1.0 4.4 6.7 −1.20
Si–Ge 4.24 2.401 4.92 NA

observed by scanned-probe microscopy, that is, an indent or
dimple on top of its displacement peak. This dimple diminishes
as the QD radius increases from 4 to 12 aSi/4, and is not
reported in [17]. This feature is somewhat similar to the result
of Zhang et al [45]. Zhang et al report a minimum strain
directly above their QD centre for a near-surface buried dot,
that is, depth is less than the dot half-width. They found
high surface strains in a nearly rectangular locus directly above
the perimeter of their buried rectangular QD, which formed a
direct one-to-one projection of the perimeter of their QD onto
the specimen surface. Our results, figure 12, are far-field, since
the depth is 2.5 times the dot diameter. Our (relatively) high
surface displacements, and also high strains, form a nearly
circular locus with a diameter of about 3.5a, where a is the
lattice parameter. However, the perimeter of our QD forms a
square of side

√
2a in the x–y plane, with its vertices at the

〈100〉 directions. In addition, the top side of our smallest QD
actually has the form of a square pyramid (as does the bottom
side). Thus, the locus of maximum strains and displacements
in the surface is not a simple projection of the QD shape, and
this locus has a diameter different from the QD size. Both the
strain energy at the surface and the hydrostatic strain, given as
the trace of the strain tensor, reveal similar patterns of spatial
dependence. A key point is that the hydrostatic strain at the
surface is tensile [17], in contrast to the strain in the infinite
solid near the QD.

Tersoff et al [46] gave a simple model for estimating the
tendency for self-alignment of an added layer of QD on top of
an existing layer, based on the surface strains. They said that
the favoured growth should ‘reduce the mismatch’. We have
calculated surface strains and strain energy densities. These
are shown in figures 16 and 17 for two QD. The strains at the
surface are all tensile. The Ge atom is larger than the Si atom,
so a Ge atom incorporated into a tensile strain field should
reduce the mismatch. If we consider the larger QD, figure 17,
we see that the maximum of tensile strain is directly above the
QD. The situation is different for the small QD, for which the
strain energy and strain components are plotted in figure 16.
In this situation, the maximum strain is not directly above the
existing QD, but is offset.

So, based on the model of [46], one would suspect
that growth of vertical arrays should break down, or be less
favoured, for very small QD close to the surface. For the
QD modelled here, the crossover size to the behaviour where
vertical growth is favoured is complete by a dot diameter
of 6.5 nm (65 Å). However, the numerical mismatch in
figure 16 between the maximum and the central minimum,
though numerically significant within the present model, may
not be large enough to support this conclusion for real cases.
As pointed out by Tersoff et al [46], accurate predictions
of QD array formation would require more sophisticated

computations; these could be calculations of the elastic
interaction energy between dots or of the elastic energy release
rate [47], which are beyond the scope of the present paper.
The curves in figures 16 and 17 are sensitive to the shape
of the QD. Our results for polyhedral QDs should serve as a
good approximation for the {105}-faceted QDs, similar to those
analysed by Daruka et al [13] in the InAs/GaAs system. The
behaviour may be different for pyramidal and other shapes. For
example, the stress field from a {101}-faceted pyramidal island
falls off as 1/h for small values of h, where h is the depth of
the quantum dot below the free surface [48]. Our results will
not be, therefore, applicable to these QDs.

5.3. Limitations of the method

We used an empirical interatomic potential function. An ab
initio treatment of the atomic interactions would remove the
necessity for assuming an interatomic potential. We treated the
surface in the harmonic approximation, without considering
surface reconstruction and without altering the interatomic
potential.
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Appendix. Numerical values for force calculations

The interatomic force constant matrices [49] for first and
second neighbours in a perfect Si lattice are written as follows:

Φ(0; 1, 1, 1) = −
(

α β β

β α β

β β α

)
(A.1)

Φ(0; 2, 2, 0) = −
(

μ ν δ

ν μ δ

−δ −δ λ

)
(A.2)

where the atomic coordinates are written in units of a/4.
The force constants are evaluated numerically from the
MEAM potential using the parameters given in table A.1.
For this potential, the force constants are zero beyond the
second neighbours. Numerical values of the constants in
equations (A.1) and (A.2) are given below in units of
104 dynes cm−1:

α = 19.512, β = 15.510, λ = 0.576,

μ = −1.325, ν = −1.377, δ = 1.628.

These constants are used in the calculation of the perfect lattice
Green’s function for a supercell consisting of 106 unit cells or
2 × 106 Si atoms using the Fourier transform technique [25].
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