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Abstract. We summarize two experiments on the creation and manipulation of multi-particle en- 
tangled states of trapped atomic ions - quantum dense coding and quantum teleportation. The tech- 
niques used in these experiments constitute an important step toward performing large-scale qoan- 
turn information processing. The techniques also have application in other areas of physics, provid- 
ing improvement in quantum-limited measurement and fundamental tests of quantum mechanical 
principles, for example. 
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INTRODUCTION 

Efforts to experimentally realize the elements of quantum information processing (QIP) 
in the ion-trap system have been largely motivated by the proposal of Cirac and Zoller 
[I]. Although a long-term objective of this research is the implementation of large-scale 
QIP, the techniques used have more immediate and general application. For example, the 
tools required for QIP have been used to investigate issues of decoherence in quantum 
systems [2] and to test the fundamental principles of quantum mechanics [3, 4, 51. 
Experiments have also demonstrated potential improvements in frequency metrology 
[61. 

The ion-trap scheme satisfies the main requirements for QIP as outlined by DiVin- 
cenzo [7]: (1) a scalable system of well-defined qubits, (2) a method to reliably initialize 
the quantum system, (3) long coherence times, (4) the existence of universal gates, and 
(5) an efficient measurement scheme. Most of these requirements have been demon- 
strated experimentally, and emphasis has now shifted towards issues of scalability and 
the demonstration of fundamental QIP protocols. Here, we focus on experiments carried 
out at NIST but note that similar work is being pursued at Aarhus, Almaden (IBM), 
Hamburg, Hamilton (Ontario, McMaster Univ.), Innsbruck, Los Alamos (LANL), Uni- 
'versity of Michigan, Garching (MPI), Oxford, and Teddington (National Physical Lab- 
oratory, U.K.). We begin with a brief account of the essential elements for trapped -ion 
QIP. This discussion is followed by an summary of two recent experiments carried out 
at NIST. 
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COHERENT QUBIT MANIPULATION 

The key to the implementation of quantum gates between ions is the ability to couple 
the internal qubit states with their external modes of motion. In the 9~e+experiments 
at NIST, two laser beams are used to drive two-photon stimulated-Raman transitions 
between the two ground-state hyperfine levels ( 1) = IF = 2 , m ~  = -2) and I T) E IF = 
1 ,mF = -I),  which are separated in energy by the hyperfine splitting ~ / 2 7 r  - 1.25 
GHz. A detailed account of the resulting interactions can be found in [8], [9] and [lo]. 
Here we summarize the salient features. 

Since the Raman laser beams have a large detuning from any allowed transition, 
any excited states can be adiabatically eliminated in a theoretical description of tran- 
sitions, and the interaction is that of a two-level system with an effective field, E e f f  = 
Eocos(ki- o t  + $). Here o and $ are, respectively, the relative frequency and phase of 
the two Raman beams, and k is the component of the difference k-vectors for the two 
Raman beams associated with the motion for the selected mode. We take 2 = zo(a +a+),  
where a and at are the lowering and raising operators for the harmonic oscillator of the 
selected motional mode (frequency o,), and zo E Je is the spread of the ground 
-state wavefunction. When the relative detuning of the Raman beams is close to o o  the 
effective Hamiltonian describing the coupling between the motional and internal states 
of the qubit is given, in the interaction picture, by ( A  = 1) 

where we have made use of the rotating-wave approximation [8]. Here, fi is the two- 
photon Rabi rate, o+ = I T)(J I, 7 - kzo is the Lamb-Dicke parameter, and D ( a )  = 
exp(aat - a*a)  is the displacement operator. In the Lamb-Dicke limit (q << 1) the 
Hamiltonian can be further simplified by expanding the displacement operator to first 
order in q. Although we have neglected terms associated with AC stark shifts from the 
Raman beams, their polarizations can be chosen so as to eliminate these effects [9]. 

For certain choices of 61, HI is resonant and the spin can be efficiently coupled to 
the motion. For example, when w = oo - o, the Hamiltonian gives rise to transitions 
I L;n) o I T;n - 1). These are usually called "red-sideband" transitions and are an 
essential part of sideband laser cooling [I I]. When o = a), HI .v no+ei$ + h.c. and 
transitions no longer involve the motion ( I  1;n )  * I t ; n ) ) .  These "carrier" transitions are 
used to perform single-qubit rotations 

R(8,$) = cos(0/2)1+ isin(8/2) cos($)o, +isin(O/2) sin($)oy, . (2) 

where I is the identity operator, ox, oy, and o, denote the Pauli spin matrices in the 
{ 1 T), 1 I) ] basis ((1 I r (1, O), (L 1 r (0, I)), 8 is proportional to the duration of the 
Raman pulse, and $ is the relative phase of the Raman beams as indicated above. 

We note that, for each ion, we are free to choose $ = 0 for the first pulse by us- 
ing the unitary transformation I T) -t ei@I t ) ,  I J.) -+ I J.). However, all subsequent op- 
erations must be referenced to this choice. For example, consider a simple two-ion 
experiment in which we apply two pulses corresponding to R(a/4,0). Before apply- 
ing the second pulse we alter the trapping potential so that the second ion moves an 



amount Sz such that kSz = n. For the first ion, the net operation is given simply by 
R(n/4,O)R(a/4,0) = R(x/2,O). However, for the second ion, the additional phase shift 
due to the ion movement results in R ( a / 4 , ~ ) R ( ~ / 4 , 0 )  = I. Thus, the net effect is a 
n/2-pulse on the first ion only. In this way we can implement individual qubit rotations 
without the need for individual laser beam addressing [3, 12, 13, 141. 

At the beginning of a typical experiment, laser cooling initializes the qubits to the 
ground states of their relevant collective motional modes [ l  I], and they are each optically 
pumped to their internal state I J,). Detection of the internal state is achieved through 
state-dependent resonance fluorescence measurements[3], which efficiently distinguish 
1 J,) (bright) from I T) (dark). 

ENTANGLEMENT 

A fundamental requirement for quantum computing is an entangling operation. A num- 
ber of such operations have been investigated in the ion-trap system. The CNOT gate as 
proposed by Cirac and Zoller [I] has been demonstrated by the Innsbruck group [15]. A 
CNOT and R-phase gate, between the motion and spin qubit for a single ion, have been 
realized at NIST [8, 16,171. Also, using the scheme suggested by Sorensen and Molmer 
[18, 191 and Solano et al. [20], a gate between two spin qubits was realized [12, 211. 
A gate that has proven very robust and experimentally flexible in a number of recent 
experiments [6, 13, 141 is the phase gate reported in [lo]. 

When the Raman beams, as discussed above, have a relative detuning close to a mode 
frequency (o, fa), the effective Hamiltonian for a single ion in the interaction picture 
is given by 

Here we have taken the Lamb-Dicke limit and kept only the near-resonant terms. As be- 
fore we have neglected stark shifts as they can be eliminated with an appropriate choice 
of polarizations. Also, for our particular implementation, we have Q1 = -2QT [9, 101. 
As discussed in [9, 101, this Hamiltonian describes the off-resonant sinusoidal forcing 
of the ion with a spin-dependent force amplitude and originates from the dipole force 
induced by the Raman beams. We note that the phase @ can no longer be transformed 
away and depends on the ion's position. In the two-ion phase gate discussed in [lo] the 
ions are separated by a distance such that the Raman beam phase difference between the 
two ions is a multiple of 2a. In, this case the Hamiltonian for the two ion system takes 
the simple form 

where' iZD is the total driving force on the two ions. This Hamiltonian can be easily 
integrated and after a time 2n/S yields the transformation 

I TT) --+ I TT), I TJ) -+ ei@l Tl), I 1T) -+ ei@l LT), I Ll) -+ I ll), 
where @ = - I Q ~ ~ ~ ~ / S .  Experimentally we set 6 and t so that = -7r/2. 



Although we have restricted our discussion to two ions we note that the phase gate 
can be applied in more general situations. Indeed it has been successfully applied in 
three ion experiments [6, 131 and can potentially be applied when a different species 
is present, as in sympathetic cooling experiments [22]. Additionally, the phase gate is 
robust against small amounts of heating (provided the Lamb-Dicke limit is satisfied). 
Indeed, even when one of the motional modes has a thermal energy as large as f i  = 1, the 
gate still has a fidelity as high as 0.9 [I 31. Also the phase gate does not require individual 
addressing, is carried out by a single pulse, and does not require the use of an additional 
internal state. These features have made the phase gate the entangling operator of choice 
for our.recent experiments. 

QUANTUM DENSE CODING 

Quantum dense coding [23] enables the communication of two bits of classical inforrna- 
tion with the transmission of a single qubit. Two parties, Alice and Bob, each hold one 
qubit of a maximally entangled pair that has been previously prepared and distributed. 
With this as a starting point, Bob applies one of four possible unitary operations (each 
identified with the states of two classical bits) to his qubit and then transmits it to Al- 
ice. Once received, Alice performs a Bell-state measurement on the two qubits. From 
the outcome of this measurement Alice can deduce unambiguously which of the four 
operations Bob used and the corresponding classical bits of information. 

Our implementation of the dense-coding protocol is illustrated in Fig. 1, and a de- 
tailed account is given in [14]. First, the ions are cooled to the ground state of both axial 
modes of motion and optically pumped to I 11). The ions are then prepared in a maxi- 
mally entangled state by applying a ~/2-pulse (R(z/2, -7r/2)), followed by the phase 
gate as outlined above. This leaves the ions in the state I @ + )  = I - Y)nl L)A + I +Y)BI T)A, 
where I + Y) = I f )  + il J,) and I - Y) = iJ f) + 1 5) are the eigenstates of oy (oyl & Y) = 
& I  f Y)). (For convenience of notation, we omit normalization factors.) Next, one of the 
four operations I, ox, a,, or o, is applied to ion B by use of the individual addressing 
technique discussed earlier (encoding step). This operation takes initial state, I @ + ) ,  to 
one of the four Bell states {I@*), IY*)) where la*) = I - Y)BI L)A & I  +Y)nl f ) ~ ,  and 
IY*) = / + Y)BI .1)* & 1 - Y)BI f)A. Finally, a Bell-state measurement is performed by 
applying the phase-gate and a x/2-pulse (R(n/2,  -w /2 ) )  before individually detecting 
each ion. We note that the final phase-gate and n/Zpulse effects a basis transforma- 
tion (decoding step) from the Bell-state basis {I@*), IY*)) to the measurement basis 
{I T T ) ,  I J T ) ,  1 TL) ,  I LL)). Ideally the four measurement outcomes, I t t) ,  I Lt), 1 t L), and 
I 11) can be unambiguously associated with the operators ox, o,, o,, and I respectively. 
Experimentally, imperfections result predominately from the two phase-gate operations 
and the individual addressing operation. The average fidelity associated with all four op- 
erations is 0.85(1). We also estimate a channel capacity of 1.16(1), which exceeds the 
maximum classical result of 1. 
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FIGURE 1. Schematic diagram of the dense-coding implementation using atomic qubits. In the top 
part of the figure, relevant trapping zones used in the experiment (not to scale) are numbered. To facilitate 
individual detection of the qubits, qubit B (left) is measured and then transferred to a non-fluorescing 
state, followed by detection of qubit A (right). 

QUANTUM TELEPORTATION 

Quantum teleportation [24] provides a means to transport quantum information effi- 
ciently from one location to another, without the physical transfer of the associated 
quantum-information carrier. This is achieved by using the non-local correlations of 
previously distributed, entangled qubits. Teleportation is expected to play an integral 
role in quantum communication [25] and quantum computation [26]. In~plementation 
of quantum teleportation is therefore an important benchmark for comparison of QIP in 
other physical systems. Our demonstration [13] is also important as it incorporates most 
of the techniques necessary for scalable QIP in an ion-trap system [8,27]. 

Previous experimental demonstrations have been implemented with optical systems 
that used both discrete and continuous variables [28], and with liquid-state nuclear 
magnetic resonance [29]. Our demonstration [13] and that of the Innsbruck group [30] 
are the first demonstrations of teleportation using atomic qubits. Aside from obvious 
differences in the experimental implementations the basic protocol is the same [241. 
Alice is in possession of a qubit (here labelled 2) rhat is in an unknown state I y) 2 - a1 T 
)2 + j3 1 L)2. In addition, Alice and Bob each possess one qubit of a two-qubit entangled 
pair that we take to be a singlet IS) 1,3 - ( T)I 1 1 )3 - I 1) 1 ( T)3. Therefore, Alice possesses 
qubits 1 and 2, while Bob holds qubit 3. The initial joint state of all three qubits is 

This state can be rewritten using an orthonormal basis of Bell states IYk) (k=1,2,3,4) 
for the first two qubits and unitary transformations {Uk) acting on ( ~ y ) ~  (= a1 7)3 +PI  .1 
)3)  SO that I@) l ~ k ) 1 , 2 ( ~ ~ 1 ~ ) 3 ) .  A measurement in the ~e11-state basis ( 1 ~ ~ )  1,2) 

by Alice then leaves Bob with one of the four possibilities ukl~)3. Once Bob learns 
of Alice's measurement outcome (through classical communication), he can recover 
the original unknown state by applying the appropriate unitary operator u;' to his 
state U k l y ) 3 .  We note that Alice's Bell-state measurement can be accomplished by 
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FIGURE 2. Schematic diagram of the teleportation implementation using atomic qubits. Ions are 
numbered left to right as indicated at the top. In step 1, we prepare the outer ions in the singlet state 
and the middle ion in an arbitrary state. Steps 2-4 constitute a Bell-state measurement on ions 1 and 
2, teleporting the state of ion 2 onto ion 3, up to unitary operations that depend on the measurement 
outcomes. In step 5 the conditional operations are applied, recovering the initial state. Interspersed are 
spin-echo pulses that protect the state from dephasing due to fluctuating magnetic fields but do not affect 
the teleportation protocol. 

transforming from the bas i s . { l~~)  1,2) into the measurement basis { I  TI), 1 I f ) ,  1 f l ) ,  1 11 
)) as in the dense-coding experiment. 

Our implementation of the quantum teleportation protocol is illustrated in Fig. 2 and 
a more detailed account can be found in [13]. Briefly, we first prepare the ions in the 
state 8 ( .1)2 in two steps. First a phase gate is combined with individual rotations 
to produce the state (1 11) 1,3 - i( TT) ,3) 8 1 1)2. Then an individual addressing operation 
is used to produce from the state 1 11)1,3 - il tt)l,3. For the state (S)lV3 @ I L)2, 
ions 1 and 3 are in the singlet state, which is invariant to a global rotation. Therefore 
an arbitrary global rotation R(0,qb) 1,2,3 applied to all three ions rotates the middle ion 
without affecting the outer two. In this way we can prepare the state I@) of Eq. 5 
for any a and p. To teleport the state of ion 2 to ion 3 we first implement a Bell- 
state measurement on ions 1 and 2. This is achieved by applying the phase gate and a 
nl2-pulse (R(n/2,0)) to ions 1 and 2 before individual detection. As in the quantum 
dense-coding protocol, the phase gate and ~12-pulse effect a basis transformation from 
the Bell-state basis to the measurement basis. The teleportation is then completed by 
applying unitary operations on ion 3, conditioned on the measurement outcomes on 
ions 1 and 2. In our implementation these unitary operators are simply a n/2-pulse 
(R(n/2, ~ 1 2 ) )  followed by the operators ox, oy, I ,  o, for the measurement outcomes 
I I?) 1 1.1) 1 17) 1 1.1) respectively. In the experiment additional spin-echo 
pulses R(n, (PSE) are used to prevent dephasing due to variations in the ambient magnetic 
field on a time scale longer than the duration between pulses [lo, 131. Inclusion of 
these pulses does not fundamentally change the teleportation protocol; however, for 



qSE = z/2, we must reorder the operations following the z/2-pulse, R(n/2, n/2), to 
I, o,, ox, o, respectively. 
By teleporting a range of states (1 T), I J.), I T) f I I), 1 T) f iJ 1)) we can infer an average 

fidelity over the entire Bloch sphere of 0.78(2). This exceeds the upper bound of 213 for 
any classical protocol, which doesn't use entanglement[31]. Although teleportation has 
been demonstrated in other systems, our demonstration incorporates teleportation into 
a simple experiment in such a way that it can be viewed as a subroutine of a quantum 
algorithm; a Ramsey experiment on two spatially-separated qubits. Furthermore, our 
demonstration incorporates most of the important features required for large-scale quan- 
tum information processing using trapped ions [8,27]: We (a) reliably select qubits from 
a group and move them to separate trap zones while maintaining their entanglement, (b) 
manipulate and detect qubits without the need for strongly focused laser beams, and (c) 
perform quantum logic operations conditioned on ancilla measurement outcomes. 

CONCLUSIONS AND FUTURE OUTLOOK 

The experiments discussed here demonstrate the use of entanglement as a resource in 
a manner that is scalable to many qubits. The two protocols are somewhat complemen- 
tary: dense-coding communicates two bits of classical information by transmitting one 
qubit, whereas teleportation communicates one qubit of information by transmitting two 
classical bits. The success of the latter may seem a bit surprising since, in general, it 
takes an infinite amount of classical information to characterize a qubit superposition 
state. Yet, with the added resource of prior shared qubits from an entangled pair (with 
their intrinsic quantum correlations), only two classical bits are required to transmit the 
qubit state. 

Although large-scale quantum information processing is still in the distant future, 
experiments such as the ones described here are key ingredients to achieving scalability. 
If the fidelity of these protocols can be improved sufficiently, large -scale quantum 
computation is, in principle, possible [32]. Therefore, future work will be devoted 
to reduction of technical noise, which currently limits operation fidelity, and to the 
construction of ion-trap arrays [8,27] that can provide the necessary scalability. 
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