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ABSTRACT.  Electromagnetic-acoustic measurements of resonant frequencies of induction-hardened 
steel shafts were used in an inverse calculation to determine parameters of the radial variations in the 
shear constant and density, including the effects of material variations and residual stress.  Parameters 
determined for the profile of the shear constant were consistent with independent measurements on cut 
specimens and estimates of the acoustoelastic contribution.  The profiles determined for material 
variations were close to those of the measured hardness. 
 
 

INTRODUCTION 
 
     Over the past decade, efforts at establishing nondestructive methods for the 
determination of case depth in induction-hardened or carburized steel have included 
innovative electromagnetic-acoustic resonance (EMAR) techniques applied to cylindrical 
specimens.  Johnson, Auld, and Alers [1] and Johnson and Alers [2] demonstrated that 
changes in the frequencies of axial-shear resonant modes are strongly correlated with case 
depth.  The correlation of the destructively determined case depth with the frequency of 
one selected mode of a series of 63 induction-hardened automotive shafts was shown to 
have a standard deviation of 0.13 mm, which is on the order of the uncertainty in the 
destructive measurement itself [2].  As originally suggested by Johnson, Auld, and Alers 
[1], the systematic dependence of the penetration depth of axial-shear displacements also 
can be used to determine parameters of the profile through inversion of the measured 
frequency shifts without employing an empirical correlation.  Hirao, Ogi, and Minami [3] 
successfully pursued this approach on induction-hardened shafts using a perturbation 
formulation that approximated the radial profiles of the shear constant and density as abrupt 
steps.  Their results for the case depth determined from the resonant frequency of a single 
mode agree within 0.1 mm with destructive measurements.  In the current report, we 
proceed beyond the work of Hirao, Ogi, and Minami [3] to explore the use of EMAR 
measurements for determining the width of the transitional region, in addition to the case 
depth in cylindrical specimens.  We also introduce terms in the calculation that seek to 
approximate the effects of stress on the shear constant and density.  To enable the 
determination of several parameters of the profiles, the inversion is performed using the 
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resonant frequencies of a series of modes.  The use of more than one mode also eliminates 
the need to accurately measure the diameters of specimens. 
 
EXPERIMENTAL TECHNIQUE 
 
     An EMAR transducer was employed with an array of twenty-six magnets of alternating 
polarity arranged around the circumference of a cylindrical specimen [1, 4].  A solenoid 
coil inside the array of magnets surrounded the specimen.  A capacitor in parallel with the 
coil was used to bring the frequency of the electrical LC resonance into the range of the 
measurements and increase the magnitude of the currents in the coil during generation and 
detection.  The coil was driven with a sinusoidal tone burst having a duration of 1-3 ms.  
This induced eddy currents in the specimen, produced Lorentz forces with the periodicity 
of the magnets, and excited axial-shear resonances with the same periodicity [1].   
     Approximate resonant frequencies were determined  by monitoring the amplitude of the 
resonant ringdown while scanning the frequency.  More accurate frequencies then were 
determined from linear fitting of the phase versus time following excitation at a frequency 
near each resonance [5].  Uncertainties in the final values are on the order of 1 part in 105. 
     Conventional resonant ultrasound spectroscopy (RUS) was used in conjunction with 
Ritz analysis to determine elastic constants of parallelepiped specimens.  These 
measurements employed contacting piezoelectric transduction.  
 
THEORY 
 
     Because of the direction and periodicity of the forces, the EMAR transducer couples 
primarily to resonant shear modes with displacements in the axial direction, thirteen 
periods around the circumference, and radial variations in phase and amplitude that are 
dependent on the frequency.  For the most strongly excited modes, the axial variations in 
phase and amplitude are small relative to the azimuthal and radial variations, so that the 
displacements are closely approximated by those of pure axial-shear modes [6]: 
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where θ is the azimuthal angle, ẑ is the axial unit vector, a is the radius of the cylinder, r is 
the radial coordinate divided by a, v is the shear velocity, n is an integer, and Jn is the 
Bessel function of order n.  The allowed values for η are determined by the boundary 
condition of zero stress at the surface [6].  For n = 13, the first ten values of η are 
14.928374, 19.883224, 23.819389, 27.474340, 30.987394, 34.414546, 37.784379, 
41.113512, 44.412455, and 47.688253. 
     Hirao, Ogi, and Minami [3] and Hirao and Ogi [7] have presented a perturbation 
equation for the fractional shift in frequency resulting from small radial variations in the 
shear constant µ and density ρ.  Here, we present a slightly revised version of  this equation,  
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which differs in the corrected factor of 2 (instead of 4) dividing the first term in the 
numerator.  In this equation, µ0 and ρ0 are the shear modulus and density at the center of the 
cylinder. ∆µ( r ) and ∆ρ( r ) are the shifts in shear modulus and density relative to µ0 and ρ0.  
∆ω is the shift in resonant frequency of an axial-shear mode relative to that of an isotropic 
cylinder with shear modulus and density equal to µ0 and ρ0. 
     If measurements are performed of the shifts in axial-shear frequencies of a case-
hardened shaft relative to an isotropic unhardened shaft, Eq. (2) can be incorporated in a 
nonlinear fitting routine to determine parameters for specified functional forms of ∆µ( r ) 
and ∆ρ( r ).  If a particular relationship between the hardness and µ and/or ρ (in the simplest 
case, a proportionality) is assumed, then the shape of the hardness profile can be inferred. 
 
SPECIMENS 
 
     The specimens investigated in this study are sections of automotive drive shafts.  The 
material is fine-grained hot-rolled SAE 1050 steel with a composition (in weight percent) 
of 0.48-0.55 C, 0.9-1.1 Mn, 0.15-0.30 Si, 0.3 Al, <0.050 S, <0.04 P, <0.10 Ni, <0.12 Cr, 
<0.05 Mo, and <0.18 Cu.  As depicted in Fig. 1, each specimen has a short section where 
grooves have been machined around the circumference and a set of longitudinal splines at 
one end.  The original shaft from which each specimen was cut extended 3 cm beyond the 
end with the splines and 21 cm beyond the other end of the specimen.  The EMAR 
transducer was centered on the 69-mm-long region with a diameter of 23.8 mm.  
     Two induction-hardened specimens were studied with EMAR.  Microficial hardness 
measurements of the end of each specimen without the splines were supplied by the 
manufacturer, and these were converted to the more familiar Rockwell-C scale.  The radii 
of the transitions in hardness were approximately 7.5 mm (specimen B417) and 6.0 mm 
(specimen B560).  Another specimen, B500, was annealed to remove the hardening and 
served as a reference for the shifts in frequencies of the hardened specimens.  The use of a 
reference having the same geometry as the induction-hardened specimens also compensates 
for slight shifts in frequency that arise from the axial dependence of the modal 
displacement patterns.  Small rectangular parallelepipeds were cut from the core and outer 
region of similar induction-hardened specimens to determine elastic constants and density 
of fully hardened and soft material using RUS.  
 
RESULTS 
 
     Ritz analysis of RUS measurements performed on the parallelepiped specimens 
determined shear constants for waves polarized in the axial direction to be 82.10 ± 0.05 
GPa in the unhardened material and 78.9 ± 0.2 GPa in the hardened material.  This 
corresponds  to  a  fractional  difference  of   (-3.9 ± 0.3)�10-2   relative  to  the  unhardened  
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FIGURE 1.  Section of an induction-hardened automotive drive shaft. 
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material.  The Young moduli were detemined to be approximately 211 GPa in the 
unhardened material and 204 GPa in the hardened material, and the Poisson ratio was 
determined to be approximately 0.29 in both specimens.  More detailed results from the 
RUS measurements will be presented elsewhere.  The measured densities were 7.709 ± 
0.001 g/cm3 for the hardened material and 7.835 ± 0.002 g/cm3 for the unhardened 
material, corresponding to a fractional difference of (-1.61 ± 0.03)�10-2. 
     The discussion presented here of EMAR measurements and inverse calculations will 
focus on specimen B417 and return to specimen B560 only for final results.  Intermediate 
results for the two specimens are qualitatively similar. 
     Measurements of the fractional shift in resonant axial-shear frequencies of specimen 
B417 relative to the reference specimen B500 are shown in Fig. 2.  The systematic increase 
in ∆ω/ω0 with increasing mode index is a result of the displacements extending more 
deeply into the specimen at higher frequencies [1] and the shear modulus being higher in 
the unhardened core. 
     To extract information on the radial variations of ∆µ/µ0 and ∆ρ/ρ0 from the 
measurements shown in Fig. 2, general functional forms must be assumed.  We begin by 
assuming that these profiles have the form of simple displaced hyperbolic tangents: ∆µ{1 + 
tanh[(r-B)/W]} and ∆ρ{1 + tanh[(r-B)/W]}, respectively.  Figure 2 shows the result of 
Gauss-Newton fitting using such functions in Eq. (2).  An adjustable constant also is added 
to Eq. (2) to compensate for slight differences in radius, temperature, µ0, and ρ0 of 
specimens B417 and B500.  The spatial profiles corresponding to the fit in Fig. 2 have B = 
7.11 mm, W = 0.15 mm, ∆µ = -1.57�10-2, and ∆ρ = 1.64�10-3.  The value obtained for B is 
to be compared with a value of 7.45 mm for the radius determined by directly fitting the 
hardness measurements (described below).  The value for ∆µ is of the same order of 
magnitude as the fractional difference of -3.9�10-2 between hardened and unhardened 
parallelepiped specimens determined from the RUS measurements.  However, the value for 
∆ρ is an order of magnitude smaller and opposite in sign to the value of –1.6�10-2 
determined from RUS.  
     The small positive value obtained for ∆ρ indicates that the general form of the assumed 
profiles is incorrect.  In fact,  residual stress  can be expected  to have a significant effect on 
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FIGURE 2.  Fractional shift in axial-shear resonant frequencies of B417 relative to B500 and a fit of these 
data to Eq. (2) assuming displaced hyperbolic tangent profiles for µ and ρ. 
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both µ and ρ.  Prask and Choi [8] performed neutron diffraction measurements on a similar 
induction-hardened steel specimen having a diameter of 40 mm and a case depth of 
approximately 4 mm.  Their results show that axial, azimuthal (hoop), and radial stresses 
are each lower at the surface than at the center.  The magnitudes of the changes in these 
stress components were found to be approximately 900 MPa, 1300 MPa, and 200 MPa, 
respectively. 
     For the purposes of estimating the effects of stress, we neglect the radial component and 
assume the axial and hoop components are equal.  With a 1100 MPa drop in axial and hoop 
stresses between the center and the surface, the stress-induced component of ∆ρ/ρ0 is 
estimated to be 5�10-3.  Using third-order elastic constants measured by Smith, Stern, and 
Stephens [9] and expressions for the acoustoelastic effect presented by Toupin and 
Bernstein [10], the stress-induced component of ∆µ/µ0 is estimated to be 2�10-2.  Note that 
the stress-induced changes are opposite in sign to those associated with microstructural 
differences in hardened and unhardened material, which are reflected in the measurements 
on parallelepiped specimens. 
     To approximate the effects of residual stress, additional terms are added to the functions 
used for the profiles: 
 

,tanh1tanh1
2

2
2

1

1
1

0
�
�

�
�
�

�
��
�

	



�

� 
����

�

�
�
�

�
��
�

	



�

� 
���

�

W
Br

W
Br

��

�

�             (3) 

 

.tanh1tanh1
2

2
2

1

1
1

0
�
�

�
�
�

�
��
�

	



�

� 
����

�

�
�
�

�
��
�

	



�

� 
���

�

W
Br

W
Br

��

�

�   (4) 

 
The first term in each of these expressions is intended to represent the contribution from 
variations in phase and microstructure, and the second is intended to represent the 
contribution from residual stress.  Because of the large number of adjustable parameters, 
the use of Eqs. (3) and (4) in Eq. (2) leads to a number of unrealistic local minima for 
∆ω/ω, and constraints must be imposed in the fitting algorithm.  The constraint that we 
have employed involves first performing the calculation with ∆µ1 fixed at the value 
obtained from the RUS measurements, -3.9�10-2, and then using the parameters obtained 
from this calculation as initial guesses in a calculation that allows ∆µ1 to vary.    
     Figures 3 and 4 show the results of such a calculation for specimens B417 and B560.  
These figures also show direct least-squares fits of the hardness data to a displaced 
hyperbolic tangent, ∆h{1 + tanh[(r-Bh)/Wh]}+H0, where ∆h, Bh, Wh, and H0 are adjustable 
parameters.  To enable comparisons of the profiles, the y-axes are scaled such that 0 on the 
right axis matches H0 on the left axis, and 1 on the right axis matches ∆h + H0 on the left 
axis.  The values obtained for the parameters of Eqs. (3) and (4) are presented in Table 1.  
From the direct fits of hardness, values obtained for B417 are Bh = 7.45 mm and Wh = 0.71 
mm, and values obtained for B560 are Bh = 5.98 mm and Wh = 0.84 mm. 
     In several respects, the results of the inverse calculations presented in Table 1 are 
consistent with expectations.  Since the first terms in Eqs. (3) and (4) represent the effects 
of material differences, it is reasonable to expect that these terms will have approximately 
the same radial dependence as the hardness. Consistent with this assumption, B1 and W1 
determined by the inverse calculation are close to the values obtained from the direct fit of 
hardness; B1–Bh is -0.38 mm for B417 and 0.14 mm for B560.  One should note, again, that 
the hardness was measured in a region that is different than that of the acoustic excitation.  
Therefore, the differences in B1 and Bh may reflect actual differences in case depth in the 
two  regions.   The fact that  W2 is determined  through  inversion  to be  greater  than W1  is 
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FIGURE 3.  Specimen B417.  Hardness measurements, a direct fit of the hardness, and the results of an 
inverse calculation using measured frequencies in Eqs. (2)-(4). 
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FIGURE 4.  Specimen B560.  Hardness measurements, a direct fit of the hardness, and the results of an 
inverse calculation using measured frequencies in Eqs. (2)-(4). 
 
TABLE 1.  Parameters determined by fitting the frequency shifts of specimens B417 and B560 to Eq. (2) 
with the profiles of Eqs. (3) and (4). 
 

 B417 B560 
∆µ1 -3.91�10-2 -3.35�10-2 
∆µ2 2.62�10-2 2.50�10-2 
∆ρ1 1.14�10-2 2.44�10-2 
∆ρ2 -8.11�10-3 -1.65�10-2 
B1  (mm) 7.07 6.12 
W1 (mm) 0.92 0.95 
B2  (mm) 6.99 6.38 
W2 (mm) 1.36 1.21 
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consistent with the results of Prask and Choi [8], which show a broader transition for the 
stress than the hardness.  The values obtained for ∆µ1 are consistent with the expectation 
from RUS measurements, and fact that this parameter is found to be somewhat lower for 
B560 than for B417 may be a result of slight hardening of the core of B560, which is 
suggested by the direct fit of the hardness (Fig. 4).  The values obtained for ∆µ2 are close to 
our estimate of 2�10-2 for the acoustoelastic contribution.   
     Although all of the parameters for the dominant terms in the fit [both contributions to 
∆µ/µ0 in Eq. (3)] are consistent with expectations, parameters obtained for the profiles of 
∆ρ/ρ0 are still implausible.  The signs of the values of ∆ρ1 and ∆ρ2 obtained for both 
specimens are opposite to those expected from the measurements on parallelepipeds and 
the estimated effect of stress.  Therefore, the assumed functional forms of the profiles 
remain, in some respect, inaccurate.  One factor that has not been incorporated in the model 
is the difference in acoustoelastic coefficients of the hardened and unhardened materials.  
 
CONCLUSION 
 
     This report presents the first inverse calculations seeking to determine hardness profiles 
from simultaneous fitting of the frequency shifts of a series of resonant axial-shear modes, 
including the effects of variations in material (microstructure and phase) and residual 
stress.  The calculations convincingly determine contributions to the spatial profile of µ 
arising from variations in material and stress.  The profile determined for material 
variations closely approximates that of the hardness. 
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