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Abstract
Experimental techniques based on the atomic force microscope (AFM) have
been developed for characterizing mechanical properties at the nanoscale
and applied to a variety of materials and structures. Atomic force acoustic
microscopy (AFAM) is one such technique that uses spectral information of
the AFM cantilever as it vibrates in contact with a sample. In this paper, the
dynamic behaviour of AFM cantilevers that have a dagger shape is
investigated using a power-series method. Dagger-shaped cantilevers have
plan-view geometry consisting of a rectangular section at the clamped end
and a triangular section at the tip. Their geometry precludes modelling using
closed-form expressions. The convergence of the series is demonstrated and
the convergence radius is shown to be related to the given geometry. The
accuracy and efficiency of the method are investigated by comparison with
finite element results for several different cases. AFAM experiments are
modelled by including a linear spring at the tip that represents the contact
stiffness. The technique developed is shown to be very effective for
inversion of experimental frequency information into contact stiffness results
for AFAM. In addition, the sensitivities of the frequencies to the contact
stiffness are discussed in terms of the various geometric parameters of the
problem including the slope, the ratio of the rectangular to triangular lengths
and the tip location. Calculations of contact stiffness from experimental data
using this model are shown to be very good in comparison with other
models. It is anticipated that this approach may be useful for other cantilever
geometries as well, such that AFAM accuracy may be improved.

1. Introduction

The dynamic behaviour of cantilever probes, including the
resonant frequencies, in atomic force microscopy (AFM)
has been widely used for practical estimations of material
properties at the nanoscale since its invention in 1986 [1–6]. In
some cases, researchers have found the dagger geometry useful
for AFM measurements. However, the dynamic techniques
have been limited for dagger-shaped cantilevers because of
the complexity of the governing equations and the boundary

3 Author to whom any correspondence should be addressed.

conditions. Unfortunately, closed-form solutions for the
natural resonances and vibrational modes of dagger-shaped
cantilevers have not been found. Thus, most investigations
related to AFM analysis for related beams are based on
numerical methods, such as the finite element method [6–8].

In this paper, the dynamic behaviour of a general dagger-
shaped cantilever with three distinct regions, shown in figure 1,
is considered. The cantilever has one region with constant
cross section and two linearly varying regions. The thickness
is assumed constant over the entire length. In addition, the
AFM tip position is allowed to be variable such that it need not
lie exactly at the end of the cantilever.
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Figure 1. Schematic of the AFM contact problem (a) and a
plan-view geometry of the dagger cantilever (b).

Because of the complexity of the governing equations
of the dagger-shaped cantilever, a power series expansion is
employed to determine the vibrational modes of the cantilever.
The convergence of the power series is shown, and the
convergence radius of the series is given. The characteristic
equation is expressed as a power series by employing all of
the boundary and continuity conditions. Thus, the natural
frequencies of the beam are derived in a straightforward
manner. The dynamic behaviour of various kinds of dagger-
shaped cantilevers with different geometries and different
contact positions may then be studied without difficulty.

One application of this analysis arises in atomic force
acoustic microscopy (AFAM) measurements [2, 5, 6]. In
this case, the measured resonant frequencies are used to
determine the contact stiffness and subsequently the material
properties of the sample. As shown below, numerical results
indicate that the power-series solution described here is
more effective for inverse analysis than the finite element
method (FEM) used previously [6]. The effectiveness of the
method is demonstrated by a very good agreement for the
wavenumbers of the system with the results of the FEM for
different geometries and different contact positions. Using the
characteristic equation, the sensitivity of the wavenumbers to
the contact stiffness is studied with emphasis on the effects of
cantilever geometry.

Section 2 introduces the basic vibration model of the
dagger-shaped cantilever. In section 3 the mode functions are
derived using a power-series expansion and the convergence
of the series is shown. In section 4 the characteristic equation
is derived and its applications are discussed. A comparison of
finite element and power-series results is given in section 5.
In section 6 the influence of geometry on the sensitivity is
investigated. Then, the application of the power series for
estimation of material properties is studied in section 7.

2. Vibration model

The atomic force microscope cantilever, shown schematically
in figure 1(a), is modelled here as a Euler–Bernoulli beam.
The plan view of the general dagger-shaped beam considered
here is shown in figure 1(b). It is clamped at one end and near
the opposite end of the cantilever a tip with small radius is
attached. The tip–sample contact is modelled here as a linear
spring. Usually, the tip is not located exactly at the end of the
cantilever. The linear boundary-value problem for this system

has different governing equations and boundary conditions for
the different regions given by the left region with constant
cross section, and the centre and the right regions with linearly
varying cross sections. The governing equation and boundary
conditions for the left region with constant cross section and
length L0 are given by [9, 10]

E I0
∂4w0(x, t)

∂x4
+ ρ A0

∂2w0(x, t)

∂t2
= 0,

w0(−L0, t) = 0,
∂w0(x, t)

∂x

∣∣∣∣
x=−L0

= 0.

(1)

The governing equation and continuity conditions for the
centre region with linearly varying cross section are given by

E I0
∂2

∂x2

[(
1 − η1

x

L1

)
∂2w1(x, t)

∂x2

]

+ ρ A0

(
1 − η1

x

L1

)
∂2w1(x, t)

∂t2
= 0,

w0(0−, t) = w1(0+, t),
∂w0(0−, t)

∂x
= ∂w1(0+, t)

∂x
,

∂2w0(0−, t)

∂x2
= ∂2w1(0+, t)

∂x2
,

∂3w0(0−, t)

∂x3
= ∂3w1(0+, t)

∂x3
− η1

L1

∂2w1(0+, t)

∂x2
.

(2)

Finally, if the weight of the tip is neglected, the governing
equation, continuity conditions and boundary conditions for
the right region are given by

E I0
∂2

∂x2

[(
1 − η2

x

L2

)
∂2w2(x, t)

∂x2

]

+ ρ A0

(
1 − η2

x

L2

)
∂2w2(x, t)

∂t2
= 0,

w2(L+
1 , t) = w1(L−

1 , t),
∂w2(L+

1 , t)

∂x
= ∂w1(L−

1 , t)

∂x
,

∂2w2(L+
1 , t)

∂x2
= ∂2w1(L−

1 , t)

∂x2
,

∂3w1(L−
1 , t)

∂x3
− ∂3w2(L+

1 , t)

∂x3
= k∗w2(L+

1 , t) = k∗w1(L−
1 , t),

∂2w2(L1 + L2, t)

∂x2
= 0,

∂3w2(L1 + L2, t)

∂x3
= 0.

(3)

In equations (1)–(3), η1 = 1 − b1/b0, η2 = 1 − b2/b1 define
the slope factors of the cantilever width. When the slopes
at both the centre part and the right part of the beam are the
same, we can also employ a single slope factor η = 1−b2/b0,
where b0, b1 and b2 are the widths for the constant part, the
tip region and the end of the cantilever, respectively. The
lengths for the left, centre and right regions are L0, L1 and L2,
respectively. E is the Young’s modulus of the cantilever, I0

and A0 are the area moment of inertia and area of the constant
cross section, respectively, and ρ is the mass density. The
additional deflections about the equilibrium position are given
by w, with w0, w1 and w2 defining the deflections for the left,
centre and right regions, respectively. Here, k∗ is the linear
contact stiffness. It should be noted that the linear contact
stiffness assumed here does not explicitly include specifics
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of the tip, such as tip radius and tip shape. Although these
aspects are critical to the AFM contact mechanics problem,
they are beyond the scope of this work, since the focus is on
the influence of the dagger-shape on the vibrational behaviour.

3. Mode functions

The general solution to equation (1) is found by seeking a
harmonic solution w0(x, t) = X (x/L0)eiωt for −L0 � x � 0.
The mode function is then given by

X

(
x

L0

)
= A

[
sin kL0

(
x

L0
+ 1

)
− sinh kL0

(
x

L0
+ 1

)]

+ B

[
cosh kL0

(
x

L0
+ 1

)
− cos kL0

(
x

L0
+ 1

)]
, (4)

where k4 = ρA0

E I0
ω2 with k as the wavenumber.

The general harmonic solution to equation (2) for the
centre region of the beam with linearly varying cross section
is found by the form w1(x, t) = Y (x/L1)eiωt for 0 � x � L1.
Substituting the harmonic solution into equation (2), a fourth-
order ordinary differential equation is derived as

(
1 − η1

x

L1

)
Y ′′′′ − 2ηY ′′′ − γ 4

1

(
1 − η1

x

L1

)
Y = 0, (5)

where γ 4
1 = k4L4

1, and the primes indicate derivatives with
respect to x/L1.

A closed-form solution to equation (5) is not available.
Thus, we seek a power-series solution of the form

Y

(
x

L1

)
=

∞∑
n=0

an

(
x

L1

)n

. (6)

Substituting equation (6) into (5), the general solution is given
by

Y

(
x

L1

)
=

3∑
i=0

Hi Si

(
x

L1

)
, (7)

where Hi , i = 0, 1, 2, 3 are constants and

Si

(
x

L1

)
=

∞∑
n=0

ξin

(
x

L1

)n

.

Letting ξi(−1) = 0, the recursion relation for ξi(n+1) is found to
be

ξi(n+1) = η1
n − 1

n + 1
ξin + γ 4

1
(n − 3)!

(n + 1)!
ξi(n−3)

− η1γ
4
1

(n − 3)!

(n + 1)!
ξi(n−4), n � 3, (8)

where ξin = δin when n � 3. The convergence radius of
Y (x/L1) is R1 = 1/ |η1|. When η1 → 0, it is not difficult
to show that Y (x/L1) = A1 sin(kx/L1) + B1 sinh(kx/L1) +
C1 cosh(kx/L1) + D1 cos(kx/L1).

Similarly, the general harmonic solution to equation (3)
for the right region with linearly varying cross section is found
using the form w2 = Z (x/L2) eiωt . Substituting the harmonic
solution into equation (3), we obtain an equation similar to
equation (5). Thus, the mode function is given by

Z

(
x2

L2

)
=

3∑
i=0

Ji Ti

(
x2

L2

)
, 0 � x2 � L2, (9)

where x2 = x − L1, Ji , i = 0, 1, 2, 3 are constants and

Ti

(
x2

L2

)
=

∞∑
n=0

ζin

(
x2

L2

)n

,

where ζin = δin for n � 3.
Letting ζ i

−1 = 0, the recursion relation for ζi(n+1) is given
by

ζi(n+1) = η2
n − 1

n + 1
ζin + γ 4

2
(n − 3)!

(n + 1)!
ζi(n−3)

− η2γ
4
2

(n − 3)!

(n + 1)!
ζi(n−4), n � 3, (10)

where γ 4
2 = k4L4

2.
When η2 → 0, it can be shown that Z(x/L2) =

A2 sin(kx/L2)+B2 sinh(kx/L2)+C2 cosh(kx/L2)+D2 cos(kx
/L2). The convergence radius of Z (x2/L2) is R2 = 1/ |η2|.
Therefore, the convergence radius of the system is R =
min(R1, R2).

4. Characteristic equation and applications

The characteristic equation of the system governing
the allowable wavenumbers (and corresponding natural
frequencies) is obtained by applying the boundary and
continuity conditions, giving

	1	4 − 	2	3 = 0, (11)

where

	1 =
3∑

i=0

S ′′′
i (1)Ji A, 	2 =

3∑
i=0

S ′′′
i (1)Ji D,

	3 = 	5 − L3
1k∗

E I0
J0A, 	4 = 	6 − L3

1k∗

E I0
J0D,

and

	5 = (1 − η1)

3∑
i=0

S ′′′
i (1) Hi A + 2

(
(1 − η1)

η2L1

L2
− η1

)

×
(

L1

L2

)2

J2A − 6 (1 − η1)

(
L1

L2

)3

J3A,

	6 = (1 − η1)

3∑
i=0

S ′′′
i (1) Hi D + 2

(
(1 − η1)

η2L1

L2
− η1

)

×
(

L1

L2

)2

J2D − 6 (1 − η1)

(
L1

L2

)3

J3D,

(12)

where the constants Hi A , Hi D , Ji A and Ji D (i = 0, 1, 2, 3) are
given in the appendix.

We define the effective rectangular stiffness of the
cantilever as kc0 = 3E I0/ (L0 + L1)

3. Then, the stiffness
of the dagger-shaped cantilever is defined as the shear load
needed at the contact position for a unit displacement at the
same point. This expression is given by

kc = kc0

1 + α
, (13)
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where

α =
(

L1

L1 + L0

)3(
3
∫ 1

0

(1 − x)2

(1 − η1x)
dx − 1

)
,

=
(

L1

L1 + L0

)3[ 3

2η3
1

(
η1 ln (1 − η1)

4 + 3η2
1 − 2η1

+ η2
1 ln

1

(1 − η1)
2

+ ln
1

(1 − η1)
2

)
− 1

]
.

If η1 = 0, α = 0, then kc = kc0, and the cantilever has a
constant cross section to the left of the tip. If η1 = 1, α =
1
2 ( L1

L1+L0
)3 and kc = kc0/[1 + 1

2 ( L1
L0+L1

)3]. In this case, the
width of the cantilever at the position of the tip is zero.

By using equation (13), the characteristic equation (11)
may be rewritten as

	1	6 − 	2	5 = 3L3
1k∗

(L0 + L1)3(1 + α)kc
(	1 J0D − 	2 J0A) .

(14)
The characteristic equation (14) may be simplified for several
important cases:

Case 1. When k∗ = ∞, the contact point is a pinned
connection. The characteristic equation then becomes

J0A	4 − J0D	3 = 0. (15)

Case 2. For many dagger-shaped cantilevers, the tip is
located very near the end of the cantilever such that L2 = 0.
The characteristic equation can then be simplified as

	1	4 − 	2	3 = 0, (16)

where

	1 =
3∑

i=0

S ′′
i (1)Hi A, 	2 =

3∑
i=0

S ′′
i (1)Hi D ,

	3 =
3∑

i=0

(
(1 − η1)S ′′′

i (1) − k∗L3
1

E I0
Si(1)

)
Hi A,

	4 =
3∑

i=0

(
(1 − η1)S ′′′

i (1) − k∗L3
1

E I0
Si(1)

)
Hi D .

(17)

Case 3. When η1 = η2 = 0, the cross section of the
cantilever is constant. Equation (14) then is simplified as

2k3 E I0

k∗ [1 + cos k(L0 + L1 + L2) cosh k(L0 + L1 + L2)]

+ [cosh k(L0 + L1) sin k(L0 + L1)

− sinh k(L0 + L1) cos k(L0 + L1)]

× (1 + cos kL2 cosh kL2)

− (cosh kL2 sin kL2 − sinh kL2 cos kL2) = 0. (18)

This result is the same as the exact one given elsewhere [11].
This special case shows that the power series converges to the
appropriate exact solution.

The main applications of the characteristic equation in
AFM can be divided into three parts. First, the resonant
frequencies of the cantilever can be predicted when the
geometry of the system and the contact stiffness k∗ (or k∗/kc)
are known. Second, the contact stiffness k∗ (or k∗/kc)
can be determined for a given geometry from the measured

Table 1. Wavenumber—contact stiffness relation using the
power-series for η = 0.

k∗/kc k1 L k2 L k3 L k4 L k5 L

0 1.875 10 4.694 09 7.854 76 10.9955 14.1372
0.1 1.918 91 4.696 99 7.855 38 10.9958 14.1373
1 2.213 50 4.723 40 7.860 97 10.9978 14.1382
10 3.167 65 5.001 12 7.918 96 11.0185 14.1479
102 3.829 81 6.404 15 8.587 42 11.2559 14.2523
103 3.917 04 7.007 66 10.012 0 12.8599 15.0795
∞ 3.926 60 7.068 58 10.210 2 13.3518 16.4934

Table 2. Wavenumber—contact stiffness relation using the
power-series for η = 0 and L2 = 2.7 µm.

k∗/kc k1 L k2 L k3 L k4 L k5 L

0.1 1.919 11 4.696 67 7.85 524 10.9957 14.1372
1 2.215 71 4.720 14 7.859 65 10.9971 14.1378
10 3.194 33 4.974 81 7.905 59 11.0114 14.1436
102 3.896 35 6.452 98 8.501 09 11.1815 14.2071
103 3.986 00 7.130 76 10.178 7 12.9775 15.3428
∞ 3.995 70 7.192 75 10.389 0 13.5847 16.7797

resonant frequencies. Third, the characteristic equation can be
employed to design the optimum geometry of the cantilever
with the largest sensitivity to changes in contact stiffness.
These applications are discussed in sections 6 and 7. In the
following section, the power-series method is compared with
a finite element solution.

5. Comparison of the FEM and power series

Although the convergence of the power series has been
shown, its effectiveness still needs to be tested. Therefore,
a comparison of the power series solution with the FEM and
the exact solution is necessary. The power series converges
very quickly for small η. When η = 0, by employing 22
terms, we can obtain the exact wavenumbers for different
values of contact stiffness. With an increase of η, more terms
are needed. When η → 1, 100 terms are needed for an
uncertainty of 0.2%. To get even more accurate results, 1400
terms are used for the computation in the power series, and
200 elements are employed in the FEM. Details of the FEM
are given elsewhere [6].

First, we consider a rectangular cantilever (η1 = η2 =
η = 0) for which L0 = 102 µm, L1 = 54 µm, L2 = 0.
The results obtained by the power series, shown in table 1, are
identical to the exact results [11] for all values of k∗/kc to six
significant digits.

Next, a rectangular cantilever with three regions is consid-
ered to verify the effectiveness of the power series proposed.
Thus, we let η1 = η2 = η = 0, L0 = 102 µm, L1 = 51.3 µm,
L2 = 2.7 µm. In the computation, 22 terms are used in the
power series. The results shown in table 2 are also identical
with the exact ones [11] to six significant digits.

Next, a typical dagger-shaped cantilever with the contact
at one end of the cantilever is tested. To avoid the singularity
associated with the zero stiffness of the cantilever at the contact,
we choose η = 0.99 and L0 = 102 µm, L1 = 54 µm, L2 = 0.
The results are shown in table 3. The maximum difference
relative to the FEM results is 0.0011%.
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Table 3. Comparison of wavenumbers calculated using the
power-series (PS) and the FEM for η = 0.99, L0 = 102 µm,
L1 = 54 µm and L2 = 0.

k∗/kc k1 L k2 L k3 L k4 L k5 L

PS 0 2.217 95 5.308 22 8.569 23 11.705 39 14.8471
FEM 2.217 92 5.308 20 8.569 18 11.705 30 14.8470

PS 10 3.423 27 5.886 51 8.840 04 11.858 27 14.9415
FEM 3.423 41 5.886 65 8.840 09 11.858 24 14.9414

PS 102 3.833 40 6.762 13 9.747 22 12.667 27 15.5845
FEM 3.833 42 6.762 18 9.747 32 12.667 39 15.5846

PS ∞ 3.894 94 6.984 94 10.167 8 13.332 64 16.4759
FEM 3.894 93 6.984 92 10.167 8 13.332 59 16.4759

Table 4. Comparison of the wavenumber calculated using the
power-series and the FEM for η = 0.99, L0 = 102 µm,
L1 = 50 µm and L2 = 4 µm.

k∗/kc k1 L k2 L k3 L k4 L k5 L

PS 10 3.482 75 5.869 36 8.780 37 11.7783 14.8458
FEM 3.482 95 5.875 11 8.795 97 11.8086 14.8930

PS 102 3.941 40 6.917 79 9.863 26 12.6602 15.4254
FEM 3.941 71 6.919 50 9.871 65 12.6909 15.4919

PS 103 4.002 77 7.165 89 10.390 6 13.5864 16.7335
FEM 4.002 86 7.166 28 10.391 4 13.5879 16.7369

PS ∞ 4.009 75 7.194 69 10.452 8 13.7022 16.9283
FEM 4.009 76 7.194 74 10.453 0 13.7028 16.9297

Finally, a general dagger-shaped cantilever is considered.
The contact is assumed to be close to the end of the cantilever.
Letting η1 = 0.916 667, η2 = 0.448 98, (η = 0.99), L0 =
102 µm, L1 = 50 µm, L2 = 4 µm. We use 1400 terms in the
power series to obtain a more accurate result. The results are
shown in the table 4. The maximum error is 0.097%.

These examples show that the results by the power series
method are very close to those obtained from the finite
element method with an error sufficiently small for practical
implementation.

6. Influence of geometry on sensitivity

6.1. Sensitivity of the wavenumber to contact stiffness

For the AFAM technique, it is important to know how the
frequencies vary with the contact stiffness. Thus, the concept
of sensitivity was introduced [12]. To determine the sensitivity
of the system to changes in the contact stiffness, we define the
sensitivity as the change in the flexural wavenumber kL to the
contact stiffness [12]. Letting p = k∗/kc, then equation (11)
becomes

δ(kL)

δp
= −L

	1	4,p − 	3,p	2

	1,k	4 + 	4,k	1 − 	2,k	3 − 	3,k	2
, (19)

where 	i,v = ∂	i
∂v

, i = 1, 2, 3, 4 and v = p, k.
Since k4 = ρA0

E I0
ω2, we can define the dimensionless

frequency as ω̃ = (kL)2. Therefore, the sensitivity of
frequency in dimensionless form can be expressed as

s = δω̃

δp
= −2kL2 	1	4,p − 	3,p	2

	1,k	4 + 	4,k	1 − 	2,k	3 − 	3,k	2
,

(20)

where

	1,k =
3∑

i=0

(
Hi A,k S ′′

i (1) + Hi A S ′′
i,k(1)

)
,

	2,k =
3∑

i=0

(
Hi D,k S ′′

i (1) + Hi D S ′′
i,k(1)

)
,

	3,k =
3∑

i=0

(
(1 − η1)S ′′′

i (1) − k∗L3
1

E I0
Si(1)

)
Hi A,k

+
3∑

i=0

(
(1 − η1)S ′′′

i,k(1) − k∗L3
1

E I0
Si,k(1)

)
Hi A,

	4,k =
3∑

i=0

(
(1 − η1)S ′′′

i (1) − k∗L3
1

E I0
Si(1)

)
Hi D,k

+
3∑

i=0

(
(1 − η1)S ′′′

i,k(1) − k∗L3
1

E I0
Si,k(1)

)
Hi D,

	3,p = −3

(
L1

L

)3 3∑
i=0

Si(1)Hi A,

and

	4,p = −3

(
L1

L

)3 3∑
i=0

Si(1)Hi D ,

(21)

where

Hji,k = ∂ Hji

∂k
, S ′′

i,k = ∂S ′′
i

∂k
,

S ′′′
i,k = ∂S ′′′

i

∂k
, i = A, D; j = 0, 1, 2, 3.

The sensitivity of the first four modes is shown in figures 2–
4. For the three different types of cantilever geometries
considered, the dimensionless frequencies as a whole become
smaller with the increase of the slope factor η. When η =
0, that is, the cantilever has a constant cross section, the
sensitivities of the first four frequencies reach a maximum.
With the increase of the slope factor η, the sensitivities of the
first four frequencies decrease compared with that at η = 0.
At η = 1−, the sensitivities arrive at a minimum.

When η = 0, the cantilever is rectangular, with the
sensitivity shown in figure 2. Although the sensitivities
decrease as a whole with the increase of contact stiffness,
the sensitivities of the second and third frequencies increase
slightly and then decrease quickly. When k∗/kc < 10.08,
the first frequency is more sensitive than the second and third
ones. When k∗/kc � 10.08, the second frequency becomes
more sensitive than the first one. When k∗/kc � 25.38, the
third frequency is more sensitive than the first one.

However, when η is close to 1, as shown in figure 2,
such as η = 0.99, the sensitivities never increase with an
increase of contact stiffness for all the frequencies. Instead,
they drop quickly with an increase of the contact stiffness.
When k∗/kc < 15.129, the first frequency is more sensitive
than the second and third ones. When k∗/kc � 15.129, the
second frequency becomes more sensitive than the first one.
When k∗/kc � 29.06, the third frequency is more sensitive
than the first one. Finally, when k∗/kc � 50.640, the fourth
frequency is more sensitive than the first one. If this contact

1586



Dynamic behaviour of dagger-shaped cantilevers for atomic force microscopy

– 3 – 2 – 1 0 1 2 3 4
Contact stiffness   Log(p)

S
en

si
tiv

ity

           η=0     
 η=0.99  

Mode1 

Mode1 

Mode2 

Mode2 

Mode3 

Mode4 

Mode3 

Mode4 

– 8.5

– 8

– 7.5

– 7

– 6.5

– 6

– 5.5

Figure 2. Sensitivity of the frequencies to the contact stiffness for
different slope factors.

– 5 – 4 – 3 – 2 – 1 0 1 2 3 4

– 8.2

– 8

– 7.8

– 7.6

– 7.4

– 7.2

– 7

– 6.8

– 6.6

– 6.4

– 6.2

Contact stiffness Log(p)

S
en

si
tiv

ity

           L
2
/L

0
=4/102      

           L
2
/L

0
=0          

           L
1
/L

0
=44/102     

          η=0.99           

Mode1 

Mode2 

Mode3 

Mode4 

Figure 3. Sensitivity–contact stiffness relation for different values
of L2.

– 4 – 3 – 2 – 1 0 1 2 3 4
Contact stiffness  Log(p)

S
en

si
tiv

ity

          L
1
/L

0
=50/102    

          L
1
/L

0
=70/82     

          L
2
/L

0
=4/102        

          η=0.99         

Mode1 

Mode2 

Mode3 

Mode4 

– 8

– 7.8

– 7.6

– 7.4

– 7.2

– 7

– 6.8

– 6.6

– 6.4

– 6.2

Figure 4. Sensitivity for different ratios L0/L1 for η = 0.99.

stiffness controlling the order of the sensitivity is called the
critical contact stiffness, it becomes larger with the increase of
the slope factor, and the sensitivity becomes more important
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Figure 5. Relation between the first wavenumber and slope factor
for different contact stiffnesses.

because the varying ranges of the contact stiffness become
larger compared with that of a rectangular one.

Next, the behaviour of the sensitivity for different contact
positions is studied. With the slope factor of η = 0.99,
the sensitivity of the first four modes for both L2 = 0 and
L2 = 4 µm is shown in figure 3. Although the sensitivity of
the different modes is almost the same for different values of
L2 at small contact stiffness, it decreases more quickly with
increasing L2. The critical contact stiffness decreases with a
small increase in the length L2.

Finally, we investigate the influence of the ratio L1/L0 on
the sensitivity, which is shown in figure 4. The sensitivity for
all the modes increases with a decrease of L1/L0. The critical
contact stiffness increases with the decrease of L1/L0.

6.2. Relation between wavenumber and slope factor

For small contact stiffness k∗/kc, the frequencies or
wavenumbers shown in figures 5–7 were observed to increase
with the increase of the slope factor η. However, when
the contact stiffness is greater than some critical value, the
wavenumbers are seen to have a peak at a value of η < 1.
That is, they do not increase monotonically with an increase
of slope factor η for a given value of contact stiffness. They
initially increase until reaching a maximum, then decrease,
approaching the results for η = 1. This interesting behaviour
was observed for the first several wavenumbers.

In order to clarify this result, the values of p and η

that correspond to the maximum wavenumber are plotted in
figure 8 for the first three modes using the same geometry as in
figures 5–7. For a given contact stiffness k∗/kc these maxima
do not always occur as η → 1, but change with k∗/kc. For
a fixed k∗/kc, the maximum wavenumbers occur at a critical
slope factor called ηcr, which has the value of 1 when the
contact stiffness is less than a critical value. Then it decreases
with the increase of the contact stiffness. For example, when
p � 40, the first wavenumber always has its maximum for the
rectangular case (η → 1). However, with increased contact
stiffness, ηcr becomes smaller, as shown in figure 8. For the
second and third wavenumbers, the situation is similar, but the
minimum contact stiffness for this wavenumber is larger.
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Table 5. Comparison of results from atomic force acoustic microscopy (AFAM) measurements using the power-series (PS) and the FEM.

Model PS FEM

Reference Glass Si Average Glass Si Average

M(n = 1) (GPa) 83 ± 2 131 ± 5 107 ± 4 86 ± 2 136 ± 5 109 ± 5
M(n = 3

2 ) (GPa) 84 ± 2 120 ± 6 102 ± 5 87 ± 4 125 ± 6 105 ± 6
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Figure 6. Relation between the second wavenumber and slope
factor for different contact stiffnesses.
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Figure 7. Relation between the third wavenumber and slope factor
for different contact stiffnesses.

7. Application of power series for determining
material properties

The accuracy of the power series was shown in table 5 with a
good agreement with finite element results. Most importantly,
the power-series method provides a direct inversion of
frequency data to contact stiffness without iteration. The power
series is now applied to estimate material properties of a thin
film of niobium (Nb) by AFAM.

AFAM is usually employed to determine the material
properties at the nanoscale by measuring the resonant
frequencies of a cantilever contacting at the end with the
material. Using the measured resonant frequencies under both
free and contact conditions, information for both the elastic
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Figure 8. Dependence of the maximum wavenumber on contact
stiffness and slope factor for the first three modes.

properties of the cantilever and the sample can be extracted
directly from the characteristic equation,

k∗ = (L0 + L1)
3(1 + α)kc

3L3
1(	1 J0D − 	2 J0A)

(	1	6 − 	2	5). (22)

A reference material is usually employed in the
experiment to eliminate experimental uncertainties [2, 6].
These experiments have shown that the elastic properties of
the reference sample, namely its indentation modulus M ,
should be similar to that of the test material. For an isotropic
material, M is related to Young’s modulus E and Poisson’s
ratio ν by M = E/

(
1 − ν2

)
. In this experiment, the first

reference material is a (001) single-crystal silicon (Si) wafer
with indentation modulus MSi = 161 GPa. The second one
is a borosilicate crown glass disk with indentation modulus
Mgl = 85 ± 3 GPa [6].

The computation for the indentation modulus of the test
materials are based on the following equations [5]:

E∗
test = E∗

ref

(
k∗

test

k∗
ref

)n

, (23)

1

E∗
test

= 1

Mtip
+

1

Mtest
, (24)

where n is the parameter of the contact model. For Hertzian
contact n = 1.5, and for flat-punch contact n = 1.

To determine the indentation modulus of a Nb film sample
from the resonant frequency measured previously, we use
both the power-series and finite element methods for Hertzian
contact (n = 1.5) and flat-punch contact (n = 1), respectively.
The results are shown in table 5. It can be seen that the
indentation modulus using the power series approach is slightly
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lower than that obtained by the FEM. The maximum difference
is 4%. However, it is still very close to that obtained by the
finite element method. Therefore, the power series can be
employed in the estimation of material properties with an error
that is sufficiently small. Most importantly, the results are
obtained without iteration, as is necessary with the FEM [6].

8. Summary

In this paper, a power-series approach has been presented
for studying the dynamics of AFM cantilevers. The power
series can be effectively employed in the computation for the
dynamic analysis of any kind of dagger-shaped cantilever with
different slope factors. The computation error is acceptably
small with the error controlled by the number of terms used in
the expansion. It was shown that fewer terms are needed when
the slope factor of the width is small.

For the dagger-shaped cantilever, the sensitivities of all
the frequencies or wavenumbers to the contact stiffness change
with the slope factor. In general, the higher the slope, the lower
the sensitivity. Low-order frequencies are more sensitive to
the small contact stiffness. With the increase of the contact
stiffness until critical values, the sensitivities of different
frequencies will change.

The example results presented here represent only a
few of the many applications of the power-series method.
The ability of this method for direct inversion of resonant
frequency measurements into contact stiffness values is clearly
a major advance over other methods, such as the finite element
method, developed for AFM beams with non-uniform cross
sections. The development of this general solution will create
new opportunities for AFAM experiments involving a greater
variety of cantilevers beyond those (rectangular) currently used
for AFAM. The benefits to the greater material science and
engineering research community are expected to be substantial.
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Appendix

To simplify equations (13), the following notation is used.

H0A = sin kL0 − sinh kL0,

H0D = cosh kL0 − cos kL0,

H1A = kL1(cos kL0 − cosh kL0),

H1D = kL1(sinh kL0 + sin kL0),

H2A = − (kL1)
2

2
(sin kL0 + sinh kL0),

H2D = (kL1)
2

2
(cosh kL0 + cos kL0),

H3A = − (kL1)
3

6
(cos kL0 + cosh kL0)

+ η1
(kL1)

2

6
(sin kL0 + sinh kL0),

H3D = (kL1)
3

6
(sin kL0 − sinh kL0)

+ η1
(kL1)

2

6
(cosh kL0 + cos kL0), (A.1)

J0A =
3∑

i=0

Hi A Si(1), J0D =
3∑

i=0

Hi D Si(1),

J1A = L2

L1

3∑
i=0

Hi A S ′
i(1), J1D = L2

L1

3∑
i=0

Hi D S ′
i(1),

J2A = 1

2

(
L2

L1

)2 3∑
i=0

Hi A S ′′
i (1),

J2D = 1

2

(
L2

L1

)2 3∑
i=0

Hi D S ′′
i (1),

J3A = − 1

K ′′
3 (1)

2∑
i=0

Ji AT ′′
i (1), and

J3D = − 1

K ′′
3 (1)

2∑
i=0

Ji DT ′′
i (1).
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