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We report the implementation of the semiclassical quantum Fourier trans-
form in a system of three beryllium ion qubits (two-level quantum systems)
confined in a segmented multizone trap. The quantum Fourier transform is
the crucial final step in Shor’s algorithm, and it acts on a register of qubits to
determine the periodicity of the quantum state’s amplitudes. Because only
probability amplitudes are required for this task, a more efficient semiclassical
version can be used, for which only single-qubit operations conditioned on
measurement outcomes are required. We apply the transform to several input
states of different periodicities; the results enable the location of peaks cor-
responding to the original periods. This demonstration incorporates the key
elements of a scalable ion-trap architecture, suggesting the future capability
of applying the quantum Fourier transform to a large number of qubits as
required for a useful quantum factoring algorithm.

Among quantum algorithms discovered up to

this time, Shor_s method for factoring large

composite numbers (1) is arguably the most

prominent application of large-scale quantum

information processing, given that efficient

factoring would render current cryptographic

techniques based on large composite-number

keys vulnerable to attack. The key component

of this algorithm is an order-finding subrou-

tine that requires application of the quantum

discrete Fourier transform (QFT) to determine

the period of a set of quantum amplitudes (1–4).

The QFT is also an essential part of quantum

algorithms for phase estimation and the dis-

crete logarithm (4). In fact, the polynomial-

time QFT is responsible for most of the known

instances of exponential speedup over classi-

cal algorithms.

Relative phase information of the output

state from the QFT is not required when ap-

plied in any of the algorithms mentioned

above; only the measured probability ampli-

tudes of each state are used. This allows the

replacement of the fully coherent QFT with

the semiclassical (or Bmeasured[) QFT (5),

in which each qubit is measured in turn, and

prescribed controlled-phase rotations on the

other qubits are conditioned on the classical

measurement outcomes. This eliminates the

need for entangling gates in the QFT pro-

tocol, which considerably relaxes the required

control of motional states for the trapped-ion

implementation. In addition, the semiclassical

version is quadratically more efficient in the

number of quantum gates when compared

with the fully coherent version (6), a bene-

fit in any physical implementation of quan-

tum computing. The coherent QFT has been

implemented in nuclear magnetic resonance

systems (7–11) but has not been demon-

strated in a scalable system (12). Here, we

describe an implementation of the measured

QFT in an architecture that can be scaled

(13, 14).

The QFT is a basis transformation in an

N-state space that transforms the state kkÀ
(k is an integer ranging from 0 to N j 1) ac-

cording to
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The action on an arbitrary superposition of
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where the complex amplitudes y
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crete Fourier transform (15) of the complex

amplitudes x
k
. For three qubits, switching

to binary notation, where k
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where E0.q
1

q
2
Iq

n
^ denotes the binary frac-

tion q
1
/2 þ q

2
/4 þ Iþ q

n
/2n. When writ-

ten in this form, it can be seen that the QFT is

the application to each qubit of a Hadamard

transformation Ek0ÀY ð1=
ffiffiffi
2

p Þðk0À þ k1ÀÞ and
k1À Y ð1=

ffiffiffi
2

p Þðk0À j k1ÀÞ^ and a z rotation

conditioned on each of the less significant

qubits, with a phase of decreasing binary sig-

nificance due to each subsequent qubit, all fol-

lowed by a bit-order reversal (4). The three-qubit

quantum circuit, without the bit-order reversal,

is shown in Fig. 1A. The simplified circuit for

the measured QFT is shown in Fig. 1B.

In the experiment, z rotations are transform-

ed into x rotations, which are more straight-

forward to implement in our system, and

rotations are redistributed to accommodate re-

quired spin-echo refocusing pulses (p rotations)

which reduce dephasing due to fluctuating mag-

netic fields (16–18), but this does not change

the basic protocol. Because of the substitution

of p/2 rotations for Hadamard operations and

our choice of conditional-rotation direction, the

coherent QFT corresponding to our measured

QFT is described by

kk1k2k3ÀY
1ffiffiffi
8

p ðk0Àj eji2pE0:k3^k1ÀÞ�

ðk0Àj eji2pE0:k2k3^k1ÀÞ� ðk0Àj eji2pE0:k1k2k3^k1ÀÞ

ð4Þ

The sign differences from Eq. 3 are unimpor-

tant, because only the probability amplitudes

of the output state are measured; the relative

phases of the output-basis states are arbitrary.

We have applied this three-qubit QFT to input

states of several different periodicities.

The qubits comprise two states of the ground-

state hyperfine manifold of 9Beþ: the state
kF 0 1, m

F
0 j1À, labeled k0À, and the state kF 0

2, m
F
0 j2À, labeled k1À. These states are sep-

arated in frequency by 1.28 GHz. Rotations

Rðq; fÞ 0 cos
q
2

I j i sin
q
2

cos f sx j

i sin
q
2

sin f sy ð5Þ

are performed by means of two-photon

stimulated-Raman transitions (19, 20). Here,

q is the rotation angle, f is the angle of the
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rotation axis from the x axis in the xy plane

of the Bloch sphere (17), I is the identity

operator, and s
x

and s
y

are the usual Pauli

spin operators. The beryllium ions are con-

fined in a linear radio-frequency Paul trap

(21), similar to that described in (18). This

trap contains six zones, and the ions can be

moved between these zones, together or sep-

arately, by means of synchronized variation

of the potentials applied to the trap_s control

electrodes. State determination is made by

projection of the qubit state with the use of

resonance fluorescence (19) (an ion in the k1À
state fluoresces, whereas an ion in the k0À state

does not). Measurement results were record-

ed, and laser pulses were applied by means of

classical logic to implement conditional op-

erations. The QFT protocol proceeded as de-

picted in Fig. 2A, with ions located in the

multizone trap as shown in Fig. 2B.

Five different states were prepared to test

the QFT protocol (Table 1). These states have

periods of 1, 2, 4, 8, and approximately 3.

The three-qubit state space consists of eight

states, labeled k000À, k001À, I, k111À in binary

notation and ordered lexicographically. The

periodicity is derived from the recurrence of

the quantum amplitudes in a superposition of

these eight states.

The period 1 state was generated by ap-

plying the rotation R(p/2,–p/2) to all three ions

in the initial state k111À. The period 2 state

was generated from k111À by physically sepa-

rating ion 3 from ions 1 and 2, applying a

rotation R(p/2,–p/2) to ions 1 and 2, and then

bringing all three ions back together. Similar-

ly, the period 4 state was created by applying

the rotation R(p/2,–p/2) to only the first ion

after separating it from ions 2 and 3. The pe-

riod 8 state was simply the state of the ions

after initialization, k111À.

The most obvious (approximate) period 3

state in this eight-state space is k000À þ k011À þ
k110À (here and in the following, we omit

normalization factors). Because this state_s
periodicity is not commensurate with the state

space, the addition of the next (in a sequence

of three) basis state k001À to this superposition

also results in an approximate period 3 state,
ky

3
¶À 0 k000À þ k011À þ k110À þ k001À. We

used a cyclic permutation of ky
3
¶À; in partic-

ular, adding 3 (mod 8) to each state produces
ky

3
À 0 k011À þ k110À þ k001À þ k100À. This

state is the tensor product of k01À
1,3

þ k10À
1,3

(ions 1 and 3) with k0À
2
þ k1À

2
(ion 2). Starting

from k111À, this state can be prepared by en-

tangling the outer two ions (ions 1 and 3) with

a geometric phase gate embedded between

two rotations—R(p/2,p/4) and R(3p/2,p/4)—

applied to all three ions (21, 22). This was

followed by a rotation R(p/2,jp/2) to all three

ions. This state was produced with a fidelity of

approximately 0.90 (resulting from the reduced

fidelity inherent in multi-qubit entangling op-

erations compared with single-qubit rotations).

Each experiment began with Doppler cool-

ing and Raman-sideband cooling to bring the

ions to the ground state of all three axial vi-

brational modes of the trapping potential and

optical pumping to prepare the three ions in the

internal state k111À (13, 23). The aforemen-

tioned input states were then prepared as de-

scribed above. For each input state, several

thousand implementations of the QFT were

performed, each involving: (i) rotation of ion 1,
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Fig. 2. Circuit for the QFT and locations of the ions in the multizone trap during protocol execution.
(A) The semiclassical QFT (5) as implemented in this Report. The double lines denote classical
information. The closed circles on control lines denote rotation conditional on ‘‘1’’; the open circles
denote rotation conditional on ‘‘0.’’ The initial conditional rotation of qubit 1 ensures that it is in
the nonfluorescing state when the second ion is measured [the second ion is measured in the
presence of the first ion, which contributes negligibly to the fluorescence signal during the second
measurement (25); refer to ‘‘Second qubit measurement’’ in (B)]. This circuit, up to some irrelevant
phases, can be obtained from that in Fig. 1B through conjugation of rotations and reordering of
some operations. (B) The locations of the ions in the multizone trap structure during the QFT
protocol as a function of time. Separation of ions and refocusing operations are performed in zone
6, and all other qubit operations are performed in zone 5.

Z Z

/2
Z

H

H

H/2/4

H Hadamard transform

Measurement

A
Controlled rotation
around axis byA

1

2

3

3

2

1

Z Z

/2
Z

H

H

H/2/4

|ϕ 

|ϕ 

|ϕ 

|χ

|χ

|χ

A

B

π

π π

θ

π

π π

Fig. 1. Circuits for the quantum Fourier transform (QFT) of three qubits. (A) The QFT as composed
of Hadamard transforms and two-qubit conditional phase gates (4). The gate-labeling scheme
denotes the axis about which the conditional rotation takes place and, below the axis label, the
angle of that rotation. The k8iÀ and kciÀ are the input and output states, respectively, of qubit i. The
most significant qubit corresponds to i 0 1. This circuit produces the QFT in reverse bit order, so in
practice, the qubits are simply read out in reverse order (4). (B) The semiclassical (or ‘‘measured’’)
QFT (5). The double lines denote classical information. This circuit can be implemented by means
of a single classically controlled quantum operation on each qubit. The protocol is preceded by
state preparation (Table 1) of the quantum state to be transformed.
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(ii) measurement of ion 1, (iii) rotation of

ion 2 conditional on the measurement of ion 1,

(iv) measurement of ion 2, (v) rotation of

ion 3 conditional on the first two measure-

ments, and (vi) measurement of ion 3. Each

experiment required approximately 4 ms af-

ter initial cooling, optical pumping, and state

preparation.

The measured output-state probabilities af-

ter application of the QFT algorithm are shown

in Fig. 3 along with the theoretically expected

probabilities for the five different input states.

The data generally agree with the theoretical

predictions, although the deviations from the

predicted values are larger than can be

explained statistically and are due to system-

atic errors in the experiment. These systematic

errors are associated with the state preparation

(not associated with the QFT protocol) as well

as with the separate detections and conditional

rotations of the three ions (intrinsic to the QFT

protocol). The first, second, and third ions

were measured approximately 1.2 ms, 2.4 ms,

and 3.5 ms after the beginning of the algo-

rithm. Dephasing due to slow local magnetic-

field fluctuations, though mitigated by the

refocusing (spin-echo) operations, grows as a

function of time during each experiment; the

chance that an error occurs because of dephasing

grows from approximately 5% for the first ion to

approximately 13% for the third ion.

Even with these systematic errors, the re-

sults compare well with theory, as can be

shown by examining the squared statistical

overlap (SSO) Ederived from the statistical

overlap of (24)^ of each set of data with the

associated predictions. Here, we define the

SSO as g 0 (S
j 0 0
7 m

j
1/2 e

j
1/2)2, where m

j
and e

j

are the measured and expected output-state

probabilities of state k jÀ, respectively. This is

an effective measure of fidelity without regard

for relative output phases. The lowest mea-

sured SSO for the five prepared states is 0.87,

suggesting that peaks can be reliably located

to determine periodicities as required for Shor_s
factorization algorithm. To verify the reliability

of the protocol for this task, one should com-

pare the experimental and theoretical values of

the measurement probabilities of the output

states where peaks are located. For the period 2

state, the measured probability for the output

state k4À 0 k100À (the measurement outcome

sufficient to determine the periodicity as 2),

was 0.538, an 8% difference from the expected

A

B

C

D

E
Fig. 3. Results of the semiclassical QFT.
Measured probability of each output state
occurring after the application of the protocol
is shown along with the expected transform
output. Each plot contains data from 5000
experiments. The SSO g is a measure of
transform accuracy. Uncertainties quoted for
the SSO are statistical and do not include
systematic errors. (A) to (E) are the QFTs for
ky1À, ky2À, ky3À, ky4À, and ky8À, respectively.
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the QFT protocol. The QFT at each phase is based on 2000 experiments. (B) The
expected probability plotted in the same manner. (C) The SSO g as a function of
preparation phase. Error bars represent 1s statistical uncertainties only.
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value of 0.5. For the period 3 state, the sum of

the measured probabilities for output state k3À 0
k011À and state k5À 0 k101À (the states corre-

sponding to the most correct periodicity) was

0.301, a 29% difference from the expected val-

ue of 0.426. Notably, the preparation fidelity

of this state was not as high as for the others.

One other set of input states was created to

demonstrate that the semiclassical QFT pro-

tocol is sensitive to relative input phases. All

the states of Table 1 had amplitudes (of the

basis states in the superpositions) with the

same phase. We also prepared a period 3 state

with a relative phase between some states in

the superposition. By incrementing the phase

of the three uniform rotations used in the

creation of the period 3 state with respect to

the operations in the QFT protocol by a phase

f
R
Ethat is, R(q,f) Y R(q,f þ f

R
)^, we can

create the state

ky3ðfRÞÀ 0 k001À þ eifR k011À þ

k100À þ eifR k110À ð6Þ

The relative phase between pairs of basis

states in this superposition leads to a Fourier

transform that depends on f
R
. The measured

probabilities of the eight output states are

plotted in Fig. 4A along with the theoretical

values in Fig. 4B. The level of agreement can

be seen in Fig. 4C, a plot of the SSO as a

function of preparation phase.

These results demonstrate that for small

state-spaces, the QFT can be performed semi-

classically with a signal-to-noise level suffi-

cient for period-finding in quantum algorithms

by means of a system of trapped-ion qubits.

Even with input state infidelities as large as

0.10, as in the period 3 state created here, the

measured QFT had substantial SSO with the

theoretical prediction for the correct input state.

Furthermore, the effect of the incommensu-

rability of state periodicity with state space is

diminished as the size of the state space in-

creases. Peaks due to similar incommensurate

periodicities will be easier to locate in larger

state spaces (compared to the case of a period 3

state in an eight-state space). Extension of the

technique described here to larger quantum

registers (13, 14) is a function only of trap-

array size and involves a linear overhead in ion

separation and movement. The main source of

intrinsic error in our implementation was qubit

dephasing resulting from magnetic-field fluc-

tuations. Use of first-order magnetic field–

independent qubit transitions (13) can mitigate

this problem and lead to a high-fidelity method

for implementation of the QFT, a necessary

step toward large number–factorization appli-

cations of quantum computing.
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Picometer-Scale Electronic
Control of Molecular Dynamics

Inside a Single Molecule
M. Lastapis, M. Martin, D. Riedel, L. Hellner, G. Comtet, G. Dujardin

Tunneling electrons from a low-temperature (5 kelvin) scanning tunneling
microscope were used to control, through resonant electronic excitation, the
molecular dynamics of an individual biphenyl molecule adsorbed on a
silicon(100) surface. Different reversible molecular movements were selec-
tively activated by tuning the electron energy and by selecting precise
locations for the excitation inside the molecule. Both the spatial selectivity
and energy dependence of the electronic control are supported by spec-
troscopic measurements with the scanning tunneling microscope. These
experiments demonstrate the feasibility of controlling the molecular
dynamics of a single molecule through the localization of the electronic
excitation inside the molecule.

New concepts have recently emerged in which

molecules on surfaces are considered as nano-

machines in themselves (1). However, the use

of a single molecule as a functionalized nano-

machine will require the ability to power and

control numerous dynamic processes at the

atomic scale. Resonant electronic excitation

that activates a specific reversible movement

of the molecule appears to be the most prom-

ising method for controlling the operation of

such a molecular nanomachine. Indeed, electron-

ic excitation has, a priori, several advantages

over other methods, such as vibrational excita-

tion (2–4) or direct scanning tunneling micro-

scope (STM) tip-molecule contact (5). In

particular, electronic excitation should enable

the molecule to be excited into far-from-

equilibrium conformations, resulting in very

rapid, efficient, and more easily controllable

molecular dynamic processes. Such electronic

control has been possible only at the macro-

scopic level for a collection of molecules (6–8).

We will show that electronic excitation and

the ensuing reversible dynamics can be con-

trolled not only at the single-molecule level but

Table 1. Periodic states prepared to test the semiclassical QFT protocol. Numbers in parentheses
indicate experimental uncertainty.

Periodicity State (normalization omitted) Preparation fidelity

1 ky1À 0 k000À þ k001À þ k010À þ Iþ k111À 0.98(1)
2 ky2À 0 k001À þ k011À þ k101À þ k111À 0.98(1)

È3 ky3À 0 k001À þ k011À þ k100À þ k110À 0.90(2)
4 ky4À 0 k011À þ k111À 0.98(1)
8 ky8À 0 k111À 90.99(1)

Laboratoire de Photophysique Moléculaire, Bâtiment
210, Université Paris-Sud, 91405 Orsay, France.
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