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conductivity of 107 S/m. Stability conditions for varying amplitudes
of the excitation are shown in Table IV. Some of the entries in the
Ay/(tmaxAt) column are less than 1 since Umax 1S computed with
Hmin While Apiy is computed from fimax. Comparing Tables III and
IV it is clear that both the high conductivity and the nonlinearity
of the magnetic material contribute to the necessity of reducing the
time-step size below the Courant limit.

V. CONCLUSIONS

Application of FDTD to a material with both high conductivity and
nonlinear magnetic characteristics has been demonstrated. In order to
obtain stability, the current density term in the FDTD equation must
be calculated from the most recent electric field value, and the time
step must be reduced well below the Courant limit. The effects of the
high conductivity and nonlinearity of the magnetic material on the
time step were investigated, with the result that both parameters affect
the time-step size but that the nonlinearity is the more important,
especially at relatively large field amplitudes. With the time step
reduced sufficiently, FDTD provided extremely accurate results for
transient transmission through a highly conductive nonlinear magnetic
sheet as compared with previously published results.
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Correction Factor for Nonplanar
Incident Field in Monopole Calibrations

J. Randa

Abstract—In calibrating monopole antennas, the length of the antenna
can be comparable to the separation distance. In that case, there is a
significant variation in both the magnitude and the phase of the incident
field along the length of the antenna under test. This paper presents an
expression for a correction factor to account for this effect. We evaluate
the correction factor for some representative cases and present some
guidelines for when this factor should be taken into account. The effect
can exceed 1 dB in some practical cases.

The basic idea of monopole calibrations at the National Institute
of Standards and Technology (NIST) on an open-area test site [1] is
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to use a transmitting monopole to generate a known electromagnetic
field at the site of the antenna under test (AUT) and to measure the
output of the AUT when it is exposed to this known field. The AUT
is supposed to be far enough away from the transmitting antenna
that the field incident on the AUT can be treated as a plane wave
with constant magnitude and phase along the length of the receiving
monopole. If the separation distance is not large enough, the incident
field is not constant along the length of the AUT, and this introduces
an error into the determination of the antenna factor. We shall call this
the “nonplanarity” error. This paper evaluates that error and derives a
correction factor to eliminate it. There is also another proximity effect,
of course, that of the mutual impedance between the two antennas. We
expect that the effect of the mutual impedance would be comparable
to the nonplanarity error, with the relative importance of the two
depending on the frequency, separation distance, and antenna lengths.
We do not treat the mutual interactions in this paper; that effect will
be addressed at a later date.

The procedures for monopole calibrations on an open-area test site
are given in [1]. A representation of the relevant geometry is given
in Fig. 1. The = component of the electric field produced by the
transmitting antenna at a distance d from the antenna at a height =
above the ground plane is given by [2]
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where .3 is the wave number, /7 is the height of the transmitting
antenna, and we have assumed a sinusoidal current distribution,
I"(:) = [f sin[3(hy — 2)]/sin(.3h1), where I{ is the terminal

or base current of the transmitting antenna. The open-circuit voltage
at the base of the receiving monopole is given by [2]
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where ]R(:) is the current distribution in the receiving antenna, and
h g is its height. Assuming a sinusoidal current distribution and using
(1), we obtain
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For large distance (hr/d and kgr/d small) the incident field is
approximately constant, and V5 then reduces to
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where 1% is the effective length calculated for a sinusoidal current

distribution. The central question for present purposes is the differ-
ence between (3) and (4) and how that difference affects the antenna
factor calculated for the AUT.
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Fig. 1. Geometry of test setup for monopole calibrations.

Fig. 2. Frequency dependence of correction factor for d = 15 m.

For a uniform incident field E'™°, the measured antenna factor
(') is obtained from
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where 150 is the measured voltage into a 50 2 load, Z.. is the
receiving antenna’s impedance in ohms. We will not need the value
for Z.,¢ since it will not enter into the effect we calculate. Equation
(5) assumes a constant incident field E1"° along the length of the
antenna. To relate the quantities measured at finite separation to what
would be measured under the idealized conditions assumed in (5),
we define a correction factor
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with V.7 (d) given by (3) and V() given by (4). The true antenna
factor is then obtained from the measurements by
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where 15, (meas) is the measured received voltage, and F is
calculated from (6). Since ™™ varies along the length of the AUT,
there is some ambiguity about where E'*° should be evaluated in
(6) or (7). It is important to note, however, that the E1"° cancels in
the expression for the antenna factor, (7), and therefore the choice
of where to evaluate E'" does not affect the result for the antenna
factor, provided that the correction factor has E."¢ evaluated at the
same point as it is in the antenna factor, (7). In NIST calibrations,
it is evaluated half-way up the monopole, : = hr/2. Choice of a
different point at which to evaluate £ would change the value of
the correction factor, but it would also change the value of E" in
(7), leaving the (corrected) antenna factor unchanged. Using V2 from
(3) and E™¢ = E.(: = hgr/2) from (1), we can then evaluate the

Fig. 3.  Frequency dependence of correction factor for hg = 5 m.

Fig. 4. Correction factor in plateau region as a function of separation

distance.

correction factor given by (6). (The integral in (3) can be evaluated
by standard numerical methods, such as the Romberg routine of [3].)

Representative results for the correction factor as a function of
frequency are shown in Figs. 2 and 3. Fig. 2 plots results for
various lengths of the receiving monopole for a fixed separation
distance (15 m), whereas in Fig. 3 we have fixed hr (5 m) and
plotted the correction factor for selected distances. As expected, the
correction factor is larger for longer receiving monopoles and for
smaller separation distances. As a function of frequency the correction
factor is constant at low frequency, rises to a small peak as frequency
increases, and then falls off quite rapidly. Although we have not
proved it analytically, in all our numerical evaluations we have found
that the peak (or shoulder) occurs at the frequency for which the
free-space wavelength is equal to 10 times the separation distance,
fpr = ¢/(10d), where ¢ is the speed of light. Although it is not shown
in the figure, as the frequency approaches the resonant frequency of
the transmitting antenna, the correction factor in decibels becomes
negative. This just reflects the fact that the weighted average of
the incident field along the AUT has become less than its value
at = = hgr/2. The magnitude of F' remains small, however. (We
assume that the transmitting antenna is not used at frequencies above
its first resonance.)

Since the correction factor is approximately constant over a wide
range of frequencies, it is natural to ask how the plateau height (the
low-frequency value in Figs. 2 and 3) varies with distance. Fig. 4
plots the correction factor, evaluated at 500 kHz, versus distance for
various antenna lengths. From this figure we can infer a pair of useful
guidelines. The plateau value of the correction factor is less than 1 dB
for separation distances greater than twice the height of the receiving
monopole, d > 2hr. and it is less than 0.5 dB for d > 3hr. The
length of the transmitting monopole has a relatively small effect once
d > 2h g, as can be seen from the results for two different values of
hr for hg = 5 m in Fig. 4.
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How these results are to be used will depend on the accuracy
desired in a given measurement. If one adheres to the rule that
d > 2hg or 3hg, then the error due to nonplanarity will be less
than 1 dB or 0.5 dB, respectively, even if the correction factor is
ignored. (This assumes that E'" in (5) is evaluated at = = hr/2,
as was done above.) A better approach is to keep d > 2h g or 3hp
and to include the correction factor in the calculation of the antenna
factor, (7). That should eliminate virtually all nonplanarity error.
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Improvements to an Electromagnetic Near-Field Sensor for
Simultaneous Electric and Magnetic Field Measurement

Miles E. G. Upton and Andrew C. Marvin

Abstract—A sensor for simultaneous electric and magnetic field mea-
surement has been described by Kanda, which relies upon measuring the
voltage across precisely matched loads at opposite sides of a loop antenna.
This paper describes a modification to the theory to take account of
unmatched loading of the loop. Measured results of wave impedance over
a 10400 MHz range demonstrate the accuracy of the modified theory as
well as highlighting a novel calibration technique.

1. INTRODUCTION

In his 1984 paper 1] and a subsequent 1988 paper [2], Kanda
described a sensor for simultaneous electric and magnetic field
measurement. This sensor is capable of measuring the polarization
ellipses of the field vectors in the near field region, as well as the
instantaneous Poynting vector. The sensor uses an electrically small
loop terminated with two identical loads at diametrically opposite
points. In practice, however, it is difficult and often inconvenient
to use precisely matched loads to terminate the loop, especially
when the sensor is to be used over a wide frequency band. In this
correspondence paper, we will be developing Kanda’s original theory
to take account of unmatched loop loading. The aim is to develop
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equations relating electric and magnetic field to the voltages measured
across the (unmatched) impedances of the loop.

Experimental data will be presented for the measurement of
induction-field transverse wave impedance, comparing results ob-
tained using the modified and unmodified theories. For practical
reasons, the loop in free space of the original theory will be
substituted by a half-loop above a ground plane, although this does
not alter the essence of the modifications. The experimental data will
be compared with that from an alternative sensor described in [3],
which will establish the accuracy of the technique.

II. MODIFICATION TO KANDA’S THEORY

The mathematical theory of the single loop sensor is covered in
[1] for the matched load case, and this can be modified as follows to
take account of unmatched loads on the outputs of the loop. Consider
the equation given in [1] for the current at any point around a loop
loaded at opposite points

I{(o) =2abEyu(o) — I(0)Z;. v(0) — I(m) Zw(o) [

where o is angular position arounvd the loop, 1(0) and I(7) are the
currents through the two loads, EY is the incident field, b is the loop

radius and

—j £ cos

o) = =2 (&_’_;fl(()so) 2
72y \ ao @
—J 1 2cos¢

(o) = —J<_ n Cos c)) 3)
TI'Z() @y 251
—Jj (1 2cos 0

A = —|— - . 4

“ (O) TI'Z() ((I() a1 > ( )

It is assumed in these latter equations that components of the loop
current of higher order than | are insignificant due to the electrical
smallness of the loop. The variable f, relates the incident field (E})
to the current induced in the loop by the magnetic field and similarly
fi relates EY) to the current induced by the electric field (see [1] for
a fuller explanation). aq is related to the input admittance of the loop
for magnetic loop current by
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ay is related to the admittance for the electric dipole current by

E— (6)
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The first term on the right-hand side of (1) is derived from the
incident field on the loop, whereas the second two terms are related
to the currents flowing through the two load impedances at © = 0
and o = «. Substituting unmatched load impedances (Z; and Z>) in
(1) and solving for the currents through the two loads gives

1(0) = 2abE{u(0) — I(0)Z,0(0) — I(7) Zyw(0) (7
I(7m)=2nbEgu(r) — I(0)Zyv(r) — I{(w)Zw(w) 8)

Adding (7) and (8) and substituting (2)—(6) gives

100) + I(7) = 47bES foYy — 21(0) 21 Yy — 21(x) ZoYy  (9)
w 20021 + 201(7) 2.
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