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ABSTRACT

We used a set of dihedrals to perform polarimetric cal-
ibrations on an indoor RCS measurement range. We
obtain simultaneously hh, hv, vh, and vv polarimetric
data as the calibration dihedrals rotate about the line-
of-site to the radar. We applied Fourier analysis to the
data to determine the polarimetric system parameters,
which are expected to be very small. We also ob-
tained polarimetric measurements on two cylinders to
verify the accuracy of the system parameters. We de-
veloped simple criteria to assess the data consistency
over the very large dynamic range demanded by the
dihedrals. We examined data contamination by sys-
tem drift, dynamic range nonlinearities, and the pres-
ence of backﬂ ound and noise. We propose improved
measurement procedures to enhance consistency be-
tween the dihedral and cylinder measurements and to
minimize the uncertainty in the polarimetric system
parameters. The final recommended procedure can
be used to calibrate polarimetrically both indoor and

outdoor ranges.

Keywords: background, drift, measurement uncer-
tainty, polarimetric calibration, radar cross sect1011
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1. Introduction

We use a set of dihedrals to perform polarimetric cal-
ihration on an indoor RCS measurement range. We
measure polarimetric ik, hv, vh, and vv calibration
data as the calibration dihedrals rotate about the line-
of-site to the radar. The system parameters can then
be obtained by use of Fourier analysis. The details
of this theoretical procedure have been presented in
[1,2]. The validity of the polarimetric system parame-
ters can be verified by polarimetric measurements. on
cylinders, or other artifacts with known polarimetric
scattering matrices [3].

Consistency between the polarimetric components of
the data and between the dihedral and cylinder mea-
surements needs to be established using simple con-
sistency criteria (see Section 3, below).
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Only when the data satisfy these simple consistency
criteria can we have confidence that we can obtain po-
larimetric systen parameters with small uncertainties.
If data consistency cannot be established, a recalibra-
tion needs to be performed to improve the data.

Since we expect the polarimetric system parameters to
be very small, accurate measurements (with low un-
certainties) are essential. Known sources of RCS mea-
surement errors, such as system drift, dynamic range
nonlinearity, background and noise [4], and errors in
the angle of rotation [5,6] must be minimzed to obtain
system parameters with small uncertainties. Drift will
most likely be a very important measurement error on
outdoor ranges, and minimal in indoor ranges. The
other sources of errors listed can be equally important
on any RCS measurement range. Any set of polazi-
metric calibration data needs to be scrutinized with
these sources of errors in mind.- Procedures to correct
for angular errors and system drift have been studied
in [3,5,6]. These procedures can be applied to 1educe
measurement uncertainties.

The goal of this study is to develop and recommend a
polarimetric calibration procedure in detail that can
be used by both indoor and outdoor ranges.

Specifically, we ill briefly address the following:
1. Review the theory of polarimetric calibration.

Present the polarimetric calibration data to review
its essential features.

Present critera to evaluate polarimetric data con-
sistency.

Derive the polarimetric system parameters with
some estimate of uncertainty.

Consider further steps to be implemented to con-
tinue to explore and improve the calibration pro-

cedure.
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2. Theoretical Model

We use a rotating dihedral to calibrate a polarimetric
radar. The receive matrix is given by

7 T b
r o= ( »hh ’IT.L ) (1)
BANE Y
We assume reciprocity in the sense that the transmit

matrix is ¢ = 7, the matrix transpose. After normal-
ization, we can write

P o= ( 1 fh) (r))
€ 1/
where - Fal
ep=— and e = —. (3)
Thh Tov

The dihedral scattering matrix (in the high frequency

limit) is given by

—cos28 sin26 ) (4')
sin20 cos28/°

D) = kD<

where 6, with respect to the vertical, is the angle of
rotation about the line-of-sight from the radar to the
dihedral, and kp depends on the dimensions of the di-
hedral and is assumed to be known. The polarimetric
signal scattered from a dihedral is given by the matrix

, product

M(0) = krD(8)t. (5)
Here, k is a complex constant. The matrix elements
of M are
(kkp) " Mpp = (=1 + €7) cos 20 + 2¢p, sin 20,  (6)
(kkp) ™ Myy = (1 — €2) cos 20 + 2e,sin 20,  (7)
(kkp)  Mpy = (e, —€,) cos 20+ (1 +epe,) sin 26, (8)
and
(kkp) *Myn = (€5, —€y) cos 20+ (1 +epe, ) sin26. (9)
For all polarizations, we can write
Mpq = ca,pq cOS 20 -+ 59 54 50 20, (10)
where p and ¢ are either & or v. We can use Fourier

analysis to obtain all coefficients ¢q pq and s9 ,q from
the measured data.

The ratio of the measured = = 2 Fourier coefficients
obtained from the data can be expressed in terms of
the system parameters by use of the theoretical ex-
pressions for the coefficients in eqs (6 - 9). If the drift
is not significant [3], we can solve for the polarimetric
system parameters using the expressions

82 nh 2ep, (11)

Tah = - P]
Cahh ~1+e;

and

o S20v 2€, : (12)
oy = —— = 5 2
€9 ue 1—¢

We note that these ratios are independent of all con-
stants in eqs (6 - 9), and easily yield ¢;. In general,

I+ /1+73
- 1__,..“__‘.‘]_) (13)

Eq =
T2,q

where [, = 1 and I, = —1. We obtain two parameters
for each polarization that are negative reciprocals of
each other. We always choose ¢, < 1, which is true
for RCS systems.

We can use a cylinder to verify the parameters. A
cylinder’s scattering matrix is given by
C} h 0
o (O &) w
0 0 Cu (14)
Since a cylinder is nondepolarizing, the cross-
polarization (off-diagonal) elements are 0. The po-
larimetric measurements on a cylinder are given by
(see eq (5))
Mea = rCyt. (15)
The matrix components of Mc are either of first or
second order in ¢,

C}h_+630,, €2Chn + e Con .
ju' — ( 2 h~uy L% £ . v >‘ 16
C evChi + €1Cuy Cyu + 672; Chn /° ( )

where the cross-polarimetric components are created
only by the cross-polarization of the radar.

If we correctly specify ¢;, we can recover Cp by using
the inverses »~! and ¢~1, since

Co=7r" Mt~ (17)

Uncertainties in e, will not allow us to recover the
vanishing cross-polarimetric components in Cp com-
pletely.

3. Polarimetric Calibration Data

We measured polarimetrically two 30.48 x 30.48 cm?
and 15.24 x 15.24 cm? square dihedrals, and two cylin-
ders with diameters 19.05 cm and 11.43 c¢m, and
heights 8.89 cm and 5.33 cm, respectively. These are
the widely used standard cylinders designated as ‘750
and ‘450" by the RCS measurement community. In
Figure 1 we show the real and imaginary parts of the
hh and the imaginary parts of the iv and vv measure-
ments on the larger dihedral taken at 9.3 GHz. The
copolar and cross-polar data were normalized to 1 at
# = 0° and @ = 45°, respectively. Alignment of the di-
hedrals was checked by comparing the data at 0° and
180°.

38



1.0

0.5

Re(lly)

-0.5
!

-1.0

0.02
|

0.00
|
|

Im(hv)

-0.02

1 1
T ] [ f I i
0

50 100 200 300

w

Rotation angle (degrees)

Figure 1. The real and im
mneasurements made with the large di
amplitudes of the real and imaginary parts.

When we examine the uncalibrated polarimetric cylin-
der responses we see only data points scattered around
a mean. Hence the plots (not shown) are not very re-
vealing. We take the means to be the measured values.
Drift in the data was not observed.

Altogether 18000 data points were collected for each
artifact. The diliedrals were rotated 10 times, and
each rotation lasted 3 minutes. The cylinders were sta-
tionary during the 30 minutes of data acquisition. The
correct sinusoidal dependence of each polarimetric di-
hedral measurement is easily verified from eqs (6-9).
Imaginary parts of the dihedral data are significantly
noisier due to the low signal level at all angles. The
actual dihedral response of each polarimetric compo-
nent is given by eq (10), after the corresponding c2.pg
and 9 pq cofficients have been determined by Fourier
. Because the dihedral is rotating and the
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aginary parts of the hh and the imaginary parts of the hv and v
hedral. These are normalized data showing the relative

background is stationary, the contribution of the back-
ground to the Fourier coefficients is greatly reduced,
and the Fourier analysis significantly reduces the con-
tribution of noise. Still, noise in the jmaginary data
will propagate an uncertainty into the imaginary parts
of ¢,. The low level signals received from the cylin-
der are also noisy. The actual cylinder responses are
taken to be the mean of the 18000 data points, thereby
minimizing the effects of noise.

In Figure 2 we show the relative amplitudes (dB) of
naxima and minima of the measurenents on the di-
hedrals and cylinders. We include the corresponding
theoretical values: one channel for each artifact is nor-
malized to the measurements. The dynamic range of
the data we intend to analyze exceeds 40 dB. We de-
sive to determine and verify very small polarimetric
system parameters using these data: obviously we are
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Figure 2. The sequence (z coordinate) of relative max-
ima and minima (dB) of uncalibrated dihedral and
cylinder measurements and the normalized theoreti-
cal values. Labels indicate polarization and rotation
angles, ¢ is cylinders. * marks the smaller artifacts.

placing very stringent requirements of accuracy on the
RCS measurement system. We can quickly come to
some qualitative conclusion about the data. We can
compare only relative amplitudes between theory and
Ineasurement, since the uncalibrated measurements
reflect the channel amplifications, which are not nec-
essarily the same. To obtain the theoretical values for
the cylinders, we used the ¢q obtained with the large
dihedral.

In Figure 2 we can spot immediately some data in-
consistencies. For example, we examine the relative

- cross-polar measured and theoretical amplitudes for

the cylinders. They are not in agreement, possibly in-
dicating cross-polar contamination with some extra-
neous signal. This implies that we will not be able to
verify that the system parameters obtained from the
dihedral measurements will greatly reduce the cylin-
ders’ cross-polar response.

4. Polarimetric Consistency Criteria

In Figure 2, we saw an example of data set incon-
sistency; the relative cylinder measurements and the
corresponding relative theoretical values do not agree.

In our complex data set we must demand consistency
over a large dynamic range and also within the set of

artifacts used to determine polarimetric system pa-
rameters. Only a consistent data set will produce sys-
tem parameters with reasonable uncertainties.

We need to develop criteria (that are relatively easy
to implement) to demonstrate data set consistency.
Only then does it make sense to proceed to analyze
the data to determine the system parameters. A very
powerful diagnostic tool is the ratio of the measured
cross-polar to copolar products [3],

My Moy,
(0, €p ) = —— . 18
Xn ( ’EP’Q) ﬂif/lh,l\'fq_,u ( )
Xm(0: €pq) is independent of channel-path amplifica-
tions and the properties of the dihedral; it depends
only on the system parameters €pq- Once we deter-
mine ¢, , (see Section 5 below), then we can form the
ratio y,
= xmbiepg) o (19)

Xe(8, Ep,q)

where X is obtained from the right sides of egs (6 -
9).

Xr

In Figure 3 we show y, for ten rotations for the large
and small dihedrals, respectively. The rotations are
delineated by vertical broken lines. The first rotation
data of the large dihedral (top) seem to satisfy the
requirement in eq (19) very well; there is an easily
observable deviation from 0 dB as the measurement
sequence continues beyond the first rotation. For the
small dihedral (bottom) we observe that the last three
rotations best satisfy eq (19). Thus, the first rotation
of the large dihedral and the last three rotations of
the small dihedral provide consistent data sets. We
observe phase variations in xr around 0 in both cases.
This is not surprising, since we are comparing unfil-
tered to filtered data. We expect the phase devia-
tions to decrease after the data has been filtered by
use of Fourier analysis to eliminate noise, background
and any stationary extraneous signals that might be
present.

A similar analysis can be performed by use of the
cylinder data. We will not do this here due to space
limitations, but will present the results at the confer-
ence. We note that eq (18) can be also used to monitor
drift by evaluating the numerator and denominator at
different points in the measurement sequence.

There are additional criteria that can be used to
quickly evaluate data integrity. Theoretically, the huv
and vh responses are equal for the dihedrals and cylin-
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Figure 3. x,(#,

ders, as seen in eqs (8), (9)) and (16). The radar
measurement systeni was configured so that the cross-
polar channel amplifications are not equal. In practice
this is usually the case. It follows that throughout
the measurement sequence, the ratio of the hv to ©h
measurements should be a constant equal to the ratio

-Afh v Rh. v

= 20
j"[-uh R-vh ' ( )

where R,y are the constant channel-path amplifica-
tions. These ratios evaluated for the dihedrals and
the cylinders should agree. Contamination by drift,
noise and target-background interactions can be eas-
ily monitored this way.

We can also check the copolar ratios. For the dihe-
drals,
ﬂ‘l[lzh _

A'i[uv B

and for the cylinders,

B
R,

+ O(e;), (21)

€q) amplitudes (dB) for the large (top) and small dihedrals for 10 rotations.

Mpn Ry Chr

ﬂfL"( - RL,L CL’L ()( )

(22)

The cylinder’s copolar ratio can be computed from the
matrix elements in eq (16), where we must use the
€pq Obtained with the dihedrals. Ideally the copolar
channel-path amplification ratios in eqgs (21-22) are
equal. Hence, the consistency between the dihedral
and cylinder measurements can be monitored. Data
with significant problems will not reproduce the the-
oretical ratio in eq (22). We will show more detailed
results using egs (20 - 22) at the conference.

5. Polarimetric Data Analysis

We analyze each polarimetric measurement made on
the large dihedral to obtain the n = 2 Fourier coef-
ficients, as required by eq (10). We then equate the
ratios of these coefficients to their theoretical ratios,
as in egs (11) and (12), and obtain €p.q USING eq (13).
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Figure 4. The polarimetric system parameters €pg
obtained in 10 rotations with the large dihedral.

In Figure 4 we plot the €, , for 10 rotations. The
initial rotation is identified with double circles. We
observe a change in one direction on the real axis as a
function of rotation. This is.similar to the deviations
from 0 dB seen in Figure 4. This could be due to a
positive accumulation of angular errors. We can show
from eq (6) that at 45°,

SMyq = £2(1 — €2)36 (23)

which is essentially real. Since the M, (45°) = 2¢q,
an error in the real part of the measurement will lin-
early propagate into Re(e,). Further data analysis is
needed to establish this interpretation. For each pair
of €, 4 We can use eq (17) to verify that the cross-polar
cylinder measurements can be substantially reduced.

We saw in Figure 2 that the cylinder’s cross-polar re-
sponse may be contaminated. We tried to reduce the
cylinder’s cross-polarization matrix elements, but we
obtained a reduction by only a few dBs. We do not
expect that contaminated cross-polar data will be in-
verted using eq (17). Consider a simple rmodel to illus-
trate: (1) assume error-free copolar calibrations and
€p,q, 211d asswme that the cross-polar channels are cal-
ibrated with IV = I'g + v, wlhere I'g is error-free and
0y is the error in the calibration constant. Then, egs
(15-17) show that the cross-polar ratios of the inverted
calibrated cylinder matrix will not vanish, but will be

ﬁ Mepq

24
T R+ O(e) (24)

For large v, at low signal levels, the inversion in eq
(17) will completely fail.

G. Future Efforts

Cwrrently, the small system parameters €, 4 we seek
can be determined only with large uncertainties. This
problem needs to be addressed explicitly to reduce these
uncertainties. We plan to develop further consistency
tests to verify polarimetric data integrity. We plan to
make measurements on larger cylinders to increase the
cross-polar signals to reduce noise and the influence of
low-level extraneous signals. We will explore ways to
correct data that are known to be inconsistent, and
explore the implications of eq (19) in depth. Our final
objective is to recommend a set of calibration pro- -
cedures to calibrate polarimetric indoor and outdoor
measurement ranges repeatably and with small uncer-
tainties.
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