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ABSTRACT

In this paper we discuss several applications of calibration comparison in on-wafer measurement. This technique can be
understood as an abstraction of the well-known two-tier deembedding scheme used in test-fixture characterization. The
applications presented here include the assessment of accuracy of a given on-wafer calibration with respect to a
benchmark calibration, the compensation for substrate permittivity in probe-tip calibration, the determination of
characteristic impedance in planar transmission line structures, and multiport calibration.

INTRODUCTION

The calibration comparison method for on-wafer calibrations [1] is based on two-tier calibration [2] and determines two
matrices (the "error boxes") relating the two on-wafer calibrations. Typically, these matrices represent the relationship
between a first- and a second-tier calibration. Once these matrices have been determined, several important quantities can
be derived that quantify the systematic differences between the two calibrations. Most important are changes in the
reference plane position and reference impedance, but also worst-case measurement deviations of any calibration relative
to a benchmark calibration can be calculated [1]. For example, [1] shows how to determine an upper bound for | S; - S°;,
where S; and S’°; are the S-parameters of any passive device measured by the benchmark calibration and the calibration
under investigation, respectively. This allows the differences between calibrations using different types of standards to be
quantified.

TEST-SET DRIFT AND INFLUENCE OF SUBSTRATE PERMITTIVITY
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Fig. 1. Worst-case differences between calibrations performed between multiline TR probe-tip calibrations

with identical artifacts as a function of elapsed time. (From [3].)
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performed with artifacts built in virtually identical geometry but on different substrates. Fig. 2 shows the upper bounds

on [S; - §* for ij € {11,12,21,22} for calibrations performed on lanthanum aluminate, silica, and sapphire substrates
when compared against a benchmark calibration performed on a GaAs wafer. Plotted in dotted lines is the bound for two
nominally identical GaAs calibrations performed at the beginning and end of the experiments, which is a measure for
instrument drift and contact errors (cf. Fig. 1). [5] also shows that the systematic differences of Fig. 2 due to different
substrate permittivity can be compensated for by modelling the end effects at the CPW lines as a small shunt capacitance
at the probe tip. Fig. 3 shows that, after compensating for the differences in the shunt capacitances, accuracies similar to
the GaAs benchmark calibration can be achieved on all the different substrates investigated.
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Fig.2. The bounds for differences between measurements
of passive devices using calibration on different substrates.

(From [5]).
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Fig. 3. The bounds of Fig. 2 after applying the substrate
permittivity compensation described in [5].

CHARACTERISTIC IMPEDANCE DETERMINATION

Another important application of the calibration comparison method is the determination of the characteristic impedance
Z, of planar transmission lines printed on lossy substrates [6]. Z, can be found even when contact-pad capacitance and
conductance are large. The method begins with the performance of a multiline TRL probe-tip calibration [4] in a set of
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Fig. 4. Characteristic impedance of 1 um wide lines built in
different metal levels of a 0.25 pm CMOS technology. (From

[71)
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easily characterized reference lines. The reference
impedance of this calibration is set to 50 Q, and its
reference plane is moved back to a position close to the
probe tips. A second-tier multiline TRL calibration in
the transmission lines of interest determines the error
boxes relating it to the 50 Q probe-tip calibration.
Reference [6] suggests a different treatment of the error
boxes determined by [1], which is insensitive to contact
pad parasitics and is well suited for determining the
characteristic impedance on lossy substrates.

Fig. 4 shows the measured characteristic impedance of
1 pm wide lines built in the second and fifth metal level
of a six-metal-level 0.25 um CMOS technology [7]. The
measurement is compared against the quasi-analytic
calculations of [8] and shows excellent agreement over
the whole frequency range of 40 GHz.



MULTIPORT CALIBRATION

Finally, we demonstrate how two-tier deembedding [2] can be used to implement a multiport calibration scheme with a
minimum number of inline calibrations. Here, we use the error boxes determined by calibration comparison to map
measurements corrected with respect to one calibration onto measurements calibrated with another calibration. Most
important in the context of multiport calibrations is the change in reference plane location, but changes in the reference
impedance can also be accounted for. We use the 4-port setup introduced in [9] to illustrate the procedure (see Fig. 4).
The switch configuration shown in Fig. 4 connects port one of the analyzer to the south probe and port two to the north
probe. The east and west probes are each terminated in 50 Q.

In the multiport calibration and measurement procedure of [9], two-port calibration standards are first connected between
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Fig. 4. Four-port measurement system schematic of [8].
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