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We observe a sharp threshold for dynamic phase locking in a high-Q transmission line resonator

embedded with a Josephson tunnel junction, and driven with a purely ac, chirped microwave signal. When

the drive amplitude is below a critical value, which depends on the chirp rate and is sensitive to the

junction critical current I0, the resonator is only excited near its linear resonance frequency. For a larger

amplitude, the resonator phase locks to the chirped drive and its amplitude grows until a deterministic

maximum is reached. Near threshold, the oscillator evolves smoothly in one of two diverging trajectories,

providing a way to discriminate small changes in I0 with a nonswitching detector, with potential

applications in quantum state measurement.
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A superconductor-insulator-superconductor tunnel junc-
tion is a unique electrical circuit element that can be
simultaneously nonlinear and nondissipative. The
Josephson equations parametrize the nonlinear tunnel cur-

rent I ¼ I0 sin� and voltage VJ ¼ @ _�=2e in terms of the
gauge-invariant superconducting phase difference � across

the junction and its time derivative _�. These equations
describe a nonlinear inductor with inductance LJð�Þ ¼
@=ð2eI0 cos�Þ, which can be shunted with a low-loss re-
actance [1] to form a high quality-factor (Q) anharmonic
oscillator. Coupling this Josephson oscillator to a quantum
bit (qubit) produces a state dependent shift of the resonant
frequency, thus realizing a dispersive measurement [2–4].
When probed with a small number of photons, the
Josephson oscillator is essentially harmonic and the mea-
surement does not project the quantum state out of the
qubit basis: it can, in principle, be quantum nondemolition,
and has a well characterized minimal backaction [5–9].
When driven more strongly, anharmonicity causes the
resonant frequency to vary with the amplitude of oscilla-
tion [10], enhancing the oscillator’s driven response to a
frequency shift and the predicted measurement contrast in
qubit readout. Moreover, the Josephson oscillator can also
bifurcate [11] into two metastable oscillation states, result-
ing in a projective measurement. This has been demon-
strated with the Josephson bifurcation amplifier [12] in
which the oscillator is probed with a fixed frequency drive
of varying amplitude [13,14]. The dynamical state of the
oscillator depends on the qubit state, and measurement
sensitivity arises from a sharp threshold for switching
between the two dynamical states. While such a nonlinear
oscillator has the advantage of measurement gain, the
precise nature of its backaction on the quantum system,
especially that associated with the switching process, and

the degree to which a quantum nondemolition measure-
ment is possible is still being investigated [15,16].
In this Letter, we demonstrate a measurement scheme

that still drives the Josephson oscillator to the bifurcation
regime but does not involve any switching process. Instead
of applying an amplitude modulated drive, we apply a
chirped microwave frequency drive to access a phenome-
non known as autoresonance [17]. In response to frequency
modulation, the oscillator may either phase lock to the
chirped carrier and latch to a high-amplitude oscillation
state or not lock to the drive and remain in a small-
oscillation state. These two outcomes, which can be used
as pointers for the state of a qubit, are separated in pa-
rameter space by a sharp threshold [18] that scales with the
chirp rate and is sensitive to the junction I0. Throughout its
evolution, the oscillator tracks a single basin of attrac-
tion—no switching occurs, thus avoiding any potential
backaction associated with switching dynamics and tran-
sient oscillations. We call this measurement device a
Josephson chirped amplifier (JCA). We show that the
observed threshold behavior is in excellent agreement
with both analytic theory and numerical simulations, and
estimate the possible contrast of the JCA in quantum state
readout.
In our experiment, the Josephson oscillator was formed

by an Al=AlOx=Al Josephson tunnel junction [Fig. 1(c)]
placed in the middle of a high-Q niobium half wave
coplanar waveguide resonator, with a characteristic imped-
ance Z0 ¼ 50 �, and symmetrically coupled to the 50 �
environment via capacitors Cc � 10 fF. The measure-
ments were performed in a dilution refrigerator at T ¼
20 mK; the experimental setup is shown schematically in
Fig. 1(a). Microwave excitation was applied to the resona-
tor using an HP8780A vector signal generator, frequency
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modulated with a triangle waveform to provide a linear,
phase-continuous frequency chirp with a 50 MHz span.
Typical chirp rates, � ¼ �d!=dt, ranged from �=2� ¼
1011 to 1013 Hz=s. The transmitted microwave signal, Vout,
was amplified and then demodulated (1.9 MHz IF band-
width) to find its amplitude and phase. The amplitude of

current oscillations in the resonator is given by I ¼
ð2jVoutj=Z0Þ

ffiffiffiffiffiffiffiffiffiffiffi
Q=�

p
.

We first measure the oscillator in steady state [Fig. 2(a)].
From the microwave transmission,Pout, at low power in the
linear regime we measure !0=2� ¼ 1:615 64 GHz and
infer a quality factorQ ¼ 27 500� 1000. TheQ is limited
by coupling to the 50 � environment and is within 10% of
its predicted value Q ¼ �=4Z2

0!
2
0C

2
c. When the drive

power exceeds a critical value Pc ¼ �148 dBm, the os-
cillator response bifurcates into two branches [11]. From
the measured Pc we estimate the junction critical current
I0 ¼ 0:61� 0:04 �A; this value is consistent with room
temperature dc resistance measurements on cofabricated
junctions. The stated uncertainties are dominated by cryo-
genic variations in the attenuation of the coaxial lines
attached to the resonator. Additionally, the observed power
at which bifurcation occurs at different drive frequencies
agrees well with theory [1] using the measured values of Pc

and Q.
Having characterized its parameters, we proceed to

excite the oscillator with a chirped microwave drive.
Figure 2(c) shows the resonator response to a downwards
frequency chirp at the rate of �=2� ¼ 5� 1011 Hz=s. At
low power the amplitude of oscillations initially increases
as the chirp passes through !0. However, as the chirp
progresses towards lower frequencies, the resonator decou-

ples from the drive and rings down to rest. For a stronger
drive amplitude the response of the resonator changes
dramatically: as the chirp passes through !0, the resonator
phase becomes locked to the drive and its amplitude grows
with time. A threshold for phase locking can be seen in
Fig. 3, which shows the normalized amplitude of current
oscillations, I=I0, as a function of frequency and drive
power for a fixed chirp rate. In region 1, at low powers,
no phase locking is observed and the junction current
grows only in the vicinity of !0. Above a critical drive
power, Pc in Fig. 3, the resonator remains phase locked and
its amplitude continues to grow up to a deterministic
maximum, set either by damping (region 2) or by I0
(region 3). The existence of a threshold for phase locking,
which obeys a universal scaling law, was first observed in
the context of non-neutral plasmas [19]; our work is the
first observation of this transition in a microelectronic
circuit operating at GHz frequency and mK tempera-
ture—5 orders of magnitude higher in frequency and lower
in temperature than Ref. [19].
We proceed to briefly analyze the threshold phenome-

non (a detailed analysis will be given elsewhere). The
dynamics of a Josephson junction, ac biased through a
resonant cavity near its resonance, can be modeled by the
equivalent series RLC circuit shown in Fig. 1(b) [1,20],
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FIG. 2 (color online). (a) Transmitted power Pout in steady
state, measured with a network analyzer. Input powers are
�155:5 to �123 dBm at 2.5 dB step. (b) Simulated in-phase
and quadrature components of current oscillations for detuning
ð!�!0Þ=2� ¼ 0:5 MHz and drive power ramped in time from
�126 to �120 dBm. A and B label the low- and high-amplitude
attractors, and � is the phase mismatch. (c) Response of the
resonator to a chirped drive, �=2� ¼ 5� 1011 Hz=s, at Pin ¼
�126 dBm (blue, dark) and �120 dBm (red, light).
(d) Simulated quadratures of the current in a chirped resonator
with the same parameters as the data in (c). The simulation was
terminated at !=2� ¼ 1:6106 GHz.

λ/4 λ/4
CcCc

20 mK

-3 dB,
filter

-20 dB,
filter

atten. 4, 0.7, 0.05 K

Signal
Generator

Function
Generator

FM
ADC

trig

Local Oscillator(a)

(b)

Vd

Reff C L
LJ(δ)

isolators  4, 0.05 Kfilter 0.7 K

HEMT amplifier +35 dB  4 K

I-Q Demod.

200 nm

(c)

2Vin Vout

cryostat

FIG. 1 (color online). (a) Schematic of the experimental setup.
Input microwave lines are attenuated and filtered at the indicated
temperature stages of the cryostat. Isolators provide a total of
80 dB isolation in the relevant frequency band. (b) Series RLC
model of the resonator. (c) Scanning electron micrograph of the
junction.
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where ~L � Lþ LJð0Þ � �Z0=2!0 ¼ 7:74 nH, C �
2=�Z0!0 ¼ 1:25 pF, and !2

0 ¼ 1= ~LC. The effective loss

due to external loading is Reff ¼ �Z0=2Q, and the effec-

tive drive amplitude is Vd ¼ Vin

ffiffiffiffiffiffiffiffiffiffiffi
�=Q

p
where Vin ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Z0Pin

p
is the amplitude of the incident wave referred to

a matched load. From Kirchoff’s voltage law we obtain an
equation of motion for the charge ~qðtÞ ¼ R

Iðt0Þdt0 in the

circuit. Defining the nonlinearity ratio 2a ¼ LJð0Þ= ~L, and
the dimensionless time � ¼ !0t, charge q ¼
ð!0

ffiffiffiffiffiffi
2a

p
=I0Þ~q, and drive � ¼ ð ffiffiffiffiffiffi

2a
p

= ~LI0!0ÞVd, and ex-
panding the voltage drop across the junction to second
order in I=I0, the equation of motion in the weakly non-
linear regime [19] becomes

€qð1þ _q2=2Þ þ qþ � _q ¼ � cos�d; (1)

where � ¼ 1=Q, �d ¼ !0t� �t2=2 is the phase of the
chirped drive, and the derivatives are with respect to �.

Transforming to a chirped frame rotating with the drive
[where Eq. (1) reduces to the Duffing model [1]], and
neglecting fast oscillating terms, we cast Eq. (1) into an
equation for the complex variable � ¼ A expði�Þ, where
A is proportional to the amplitude of qð�Þ, and � is the
phase mismatch between qð�Þ and the drive:

i
d�

d~�
þ ðj�j2 � ~�þ i	=2Þ� ¼ �: (2)

Here ~� ¼ �1=2�=!0, 	 ¼ !0�
�1=2=Q, and � ¼

�!3=2
0 ��3=4=8. Equation (2), with the initial condition

� ¼ 0 at ~� ! �1, admits two asymptotic solutions at
~� ! þ1: a solution decoupled from the drive for�<�cr,
in which � grows quadratically with time, and a phase-
locked solution, � ¼ const, for �>�cr.

In the absence of damping [21] the transition between
the two solutions of Eq. (2) occurs for �0

cr ¼ 0:41. When
damping is present, �cr increases and becomes dependent
on the damping: �crð	Þ ’ �0

crð1þ a	þ b	2Þ for 	 � 1,
with coefficients a ¼ 1:06 and b ¼ 0:67 found
numerically.
Combining the definitions above for� and �, we find the

critical drive amplitude for phase locking:

Vcr
d ¼ 8

ffiffiffiffiffiffiffiffiffi
2e

@!0

s
ð ~LI0Þ3=2�3=4�cr: (3)

The scaling law Vcr
d / �3=4 is exact only in a lossless

resonator. For finite dissipation, 	 / ��1=2 and corrections
to this law enter through �crð	Þ.
To compare the observed value of the phase-locking

threshold, Vcr
d , to the theory outlined above, we first note

that the probability of phase locking, Plock, obtained from
averaging the response from 5000 frequency sweeps,
grows from zero to one over a finite range of drive ampli-
tudes. A typical phase-locking probability ‘‘s curve’’ is
plotted in the inset of Fig. 4 as a function of Vd for�=2� ¼
2� 1012 Hz=s, where we define the threshold at Plock ¼
0:5. We measured Vcr

d as a function of chirp rate, and the

results are plotted in Fig. 4 (h). We also performed nu-
merical simulations of the fully nonlinear equation of
motion for ~qðtÞ in the series RLC model of Fig. 1(b),
without further approximations, and using experimentally
determined parameters. We simulated both a resonator
with Q ¼ 27 500 and a lossless one. The results of the

FIG. 4 (color online). Comparison of the experimental (h)
critical drive voltage versus chirp rate to Eq. (3), with (solid
line) and without (dashed line) dissipation. Also shown are
values for the critical drive from simulations of the fully non-
linear equation of motion for the equivalent RLC circuit, for a
lossless resonator (�) and for Q ¼ 27500 (+). Inset: Probability
of phase locking versus drive amplitudes near threshold at
�=2� ¼ 2� 1012 Hz=s, evaluated over a 0.5 MHz frequency
band centered at 1.6095 GHz. Solid line is a sigmoidal fit.
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FIG. 3 (color online). Normalized amplitude of current oscil-
lations in the resonator as a function of drive power and fre-
quency, with the frequency swept downwards at a rate of
5� 1011 Hz=s. The arrow indicates the critical power Pc for
phase locking.
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simulations and the predictions from Eq. (3) with (solid
line) and without (dashed line) damping are also plotted in
Fig. 4. We observe excellent agreement between experi-
ment and theory if damping is included. Note that this is
not a fit—all parameters are fixed to their experimentally
determined values. Moreover, the agreement of Eq. (3)
with the fully nonlinear simulations confirms the validity
of the weak nonlinearity assumptions made in the threshold
analysis, and reflects the result that phase locking occurs at
small oscillation amplitudes [17].

From the measured width of the phase-locking threshold
we can estimate the potential sensitivity of the JCA, where
as a benchmark we consider detecting a 1% variation in I0,
a typical signal associated with the transition between the
ground and excited state of a superconducting ‘‘quantro-
nium’’ qubit [22]. The discrimination power of the device
can be estimated from the fractional change in critical
current, �I0=I0, that will shift the ‘‘s curve’’ by an amount
equal to the threshold width: �I0=I0 ’ 2�Vcr

d =3V
cr
d from

Eq. (3). For the data in the inset of Fig. 4, and defining the
width �Vcr

d for 0:27< Plock < 0:73, we find �I0=I0 ¼
9:6� 10�3. The 1% variation in I0 (6.1 nA for our device)
can be resolved with �46% contrast; the ultimate sensi-
tivity of the JCA requires an understanding of the depen-
dence of the threshold width on noise, both classical and
quantum. For this chirp rate of 2� 1012 Hz=s, a single
measurement can be accomplished in less than 10 �s.
Significantly faster chirp rates and shorter measurement
times are in principle possible.

The dynamics associated with operating the amplifier
with a frequency-modulated (FM) drive versus an
amplitude-modulated (AM) drive are quite different. In
Figs. 2(b) and 2(d) we show the calculated in-phase and
quadrature phase components of I=I0 for AM and FM
drives, respectively. In the AM case, for detuning !<
!0, the system can switch from a low-amplitude oscillation
attractor (A) to a high-amplitude oscillation one (B), with
significant phase oscillations associated with the switching
as shown in Fig. 2(b). In contrast, the trajectories shown in
Fig. 2(d) for a chirped drive indicate that the system
smoothly tracks the evolution of the high-amplitude attrac-
tor without spurious oscillations of the phase. Another
feature of the JCA is that we can potentially perform
quantum measurement with very few photons (near !0),
but ‘‘latch’’ and record the signal with a large number of
photons at a final frequency !<!0, so that minimal
fidelity is lost due to noise in the measurement electronics.

In summary, we have observed that a high-Q resonator
embedding a Josephson junction subject to a chirped drive
exhibits a transition to phase locking with a sharp threshold
that can be used for detecting small changes in I0. This
device—the Josephson chirped amplifier—provides a new
route for nonlinear, dispersive quantum measurement, and
a test bed for nonequilibrium quantum statistical mechan-

ics in a rotating frame with time-dependent frequency. We
studied the dependence of the critical drive on the chirp
rate and found excellent agreement with both theory and
simulations. The phase-locked, highly excited state, and
the associated phase-locking threshold are a robust feature
of chirped nonlinear oscillators, and should be observable
in any system with low loss and weak nonlinearity: elec-
trical, mechanical, or photonic, for example. Finally, we
note that another approach to observing these phase-
locking effects is to modulate the resonant frequency of
the oscillator in the presence of a harmonic drive; a can-
didate technology for such tuning was recently demon-
strated in Ref. [23] in the context of variable coupling
elements for qubits.
The authors thank R. Vijayaraghavan, V. Manucharyan,

and J. Clarke for useful discussions. Financial support was
provided by the Office of Naval Research under Grant
No. N00014-07-1-0774 (O.N., I. S.), UC Berkeley
Chancellor’s Faculty Partnership Fund (I. S.), the
Hellman Family Faculty Fund (I. S.), the U.S.-Israel
Binational Science Foundation under Grant No. 2004033
(L. F., J.W.), and the U.S. Department of Energy under
Grant No. DE-FG02-04ER41289 (J.W.).

[1] V. E. Manucharyan et al., Phys. Rev. B 76, 014524
(2007).

[2] E. Il’ichev et al., Phys. Rev. Lett. 91, 097906 (2003).
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