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Abstract

We review the current status of research on microwave nano-oscillators that utilize spin transfer devices with point-contact geometry,

with an emphasis on the open questions that still prevent our full understanding of device properties. In particular, we examine those

aspects that might affect irreproducibility of device performance. While there is a clear picture of the general principles that underlie the

properties of the spin torque nano-oscillator, there are a number of details complicating the picture. We suggest that these details are

potentially responsible for adversely affecting uniformity of performance from device to device. These details include (1) nonlinearities,

(2) the Oersted field, (3) thermal and deterministic noise sources, and (4) non-uniformity of the spin accumulation. We suggest what role

that these details might have in determining spin torque dynamics, and suggest particular avenues of investigation that might clarify

whether or not these details are indeed responsible for device variability. This article is one of a series devoted to the subject of spin

torque in this issue of the Journal of Magnetism and Magnetic Materials.

Published by Elsevier B.V.
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1. Introduction

The development of spin torque nano-oscillators based
upon point-contact geometry [1–4] has opened a wide door
of possibilities for nanoscale magnetic devices as active
microwave components. For many years, magnetic com-
ponents have played a key role in microwave technology,
primarily in the context of passive devices, such as phase
shifters and circulators, where the permeability of the
magnetic materials is the key factor for practical applica-
tions. The spin torque nano-oscillator, on the other hand,
converts a dc electrical current into microwave signals, and,
vice versa, it can convert a microwave signal into a dc
voltage [5]. The introductory article by Ralph and Stiles in
this issue of the Journal of Magnetism and Magnetic

Materials discusses the basic physics that give rise to
- see front matter Published by Elsevier B.V.
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microwave oscillations in spin torque devices. The micro-
wave linewidth for spin torque nano-oscillators based upon
point-contact geometry is in the range of 1–10MHz,
depending on applied current and magnetic field [6].
Signals in the rf range can be even narrower [7]. Nanoscale
microwave sources with such narrow linewidth have many
potential practical applications. In Fig. 1, we show a
typical microwave emission spectrum at 13.2GHz for a
spin torque nano-oscillator that exhibits a linewidth of
7.1MHz and a peak amplitude of almost 1mV. The
possibility of a narrow-band, nanoscale microwave source
and detector has intriguing implications for technological
innovation, such as the development of a chip-scale
microwave spectrum analyzer. (We refer the reader to the
companion article in this issue of the Journal of Magnetism

and Magnetic Materials by Katine and Fullerton for a
more exhaustive discussion of possible applications for spin
torque nano-oscillators.) To this end, several efforts are
now underway to improve the performance of spin torque
nano-oscillators. For example, several groups recently
demonstrated methods to eliminate the need for an applied
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Fig. 1. Spectrum of the emitted microwave signal for a spin torque nano-

oscillator using a point contact structure.
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Fig. 2. Cross-sectional sketch of a spin torque nano-oscillator. The two

magnetic layers are labeled ‘‘active’’ and ‘‘fixed’’ by virtue of the differing

thickness and magnetic moment of the two layers; a thin, low-moment

layer has a lower threshold current for excitation of spin-torque-induced

dynamics. The trilayer structure below the point contact is of large lateral

extent, on the order of tens of micrometers. A magnetic field H is usually

applied at some angle y when studying gigahertz excitations in such

devices.
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magnetic field as part of spin torque nano-oscillator
operation [8,9]. Other barriers to practical applications
for the spin torque nano-oscillator that have yet to be
solved include the signal strength and noise performance.
However, much is still not understood about the nature of
spin torque nano-oscillator operation. Phenomenologi-
cally, we understand the essential properties, but we lack
quantitatively accurate models for the device performance
and the microwave properties. Also, there remains a great
deal of variability in device properties, both from lab to
lab, and within a single lab. While the former case suggests
that the particular fabrication process employed has a
strong impact on the physics of spin torque nano-oscillator
operation, the latter case equally suggests that the
variability of fabrication results at the nanoscale also
significantly affects device performance. To improve device
repeatability and performance, much work is required to
improve our basic understanding of spin torque nano-
oscillator operation by systematically examining how the
‘‘real-world’’ details of the spin torque nano-oscillator
device alter the essential physics. In other words, it appears
that ‘‘the devil is in the details’’ for spin torque nano-
oscillator performance. Such details include (1) a broad
range of nonlinearities, (2) the Oersted field, (3) thermal
and chaotic noise sources, and (4) spatial inhomogeneity of
the spin accumulation that drives the spin torque effect.
What follows is a brief examination of what is currently
known and not known about these four ‘‘experimental
details’’ that have yet to be adequately addressed.

First, we provide a brief review of the device structure
under discussion. The spin torque nano-oscillator consists
of unpatterned magnetic multilayer of the general five-
layer pseudo-spin-valve structure, NM/FM/NM/FM/NM,
where NM is a non-magnetic conductor, and FM is a
magnetic conductor, but with the addition of a nanoscale
electrical contact that is made to the upper surface of the
multilayer (see Fig. 2). The pseudo-spin-valve is patterned
into a large area, rectangular mesa, that is usually tens of
micrometers on a side. The ferromagnetic layer closest to
the surface with the point contact is generally chosen to be
as thin as possible; since the resultant torque that drives the
dynamics is actually the difference between the spin torque
and the damping torque, reducing the net damping torque
by reducing the magnetic volume directly under the
electrical point contact improves the efficiency of the
device. In other words, the thinner the magnetic layer in
question, the less current that is required to overcome the
damping torque. Thus, it is usually assumed that the thin
layer closest to the contact is the ‘‘active’’ layer, whereas
the other, thicker layer, is considered a ‘‘fixed’’ layer that
acts as a source of spin accumulation in the non-magnetic
conductive spacer between the two FM layers. When
dynamics are induced in the active layer, the magnetore-
sistance of the device becomes time varying, thereby
generating a microwave signal. By fabricating appropriate
broadband interconnects to the final structure, the
resultant microwave signal can be detected and studied.
The microwave signals emitted by point contact struc-

tures can vary in frequency from hundreds of MHz to
32GHz [4]. The frequency of emission is a function of the
strength and angle of the applied magnetic field, as well as
the dc current. The frequency generally increases with
applied magnetic field because the magnetic oscillations are
precessional in nature: The larger the net effective magnetic
field, the greater the torque acting on the spins, and the
higher the frequency of precession. The slope of frequency
vs. field is 28GHz/T when the applied **field is at 401 to
the film normal, and roughly18GHz/T when the applied
field is at 101 from the film normal [6]. For a given applied
field, the frequency is maximal when the field is applied in
the plane of the device [4]. The slope of frequency vs.
current can be as high as 1GHz/mA when the field is
applied at 101 from film normal [6]. The physics behind the
dependence of frequency on current are discussed later in
this article. At present, it is assumed that fields larger than
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what have been applied so far will result in even greater
frequencies than what have been measured to date, and
that the measured maximum frequency is simply limited by
the bandwidth of the interconnecting microwave instru-
mentation. Higher frequency emissions should be detect-
able through the use of proper cabling and connectors such
as 1mm connectors, which are capable of carrying signals
up to 110GHz.

Low-frequency rf signals with extremely narrow line-
widths are observed when a weak magnetic field of less
than 4 kA/m (50Oe) is applied in the film plane [7]. Signals
with 10 nW power and linewidths as narrow has 580 kHz
have been observed in this geometry. The frequency is a
weak function of applied field, with a slope of only
200MHz/T. The rf oscillations are non-sinusoidal in
character, with substantial emissions at higher harmonic
frequencies. The mode structure for these low-field modes
is believed to originate from the spin-torque-induced
oscillations of a vortex-like magnetic structure, which is
formed by the Oersted field near the contact [7]. The low
frequencies of the microwave emissions, as well as the
weak dependence of frequency on field, are characteristic
signatures of magnetic vortex resonance [10]. Further
discussion of the role of the Oersted field in the dy-
namics for point contact structures can be found later in
this article.

Accompanying the microwave electrical emissions from
point contact structures are spin wave emissions in the
active magnetic layer [2,11–13]. These co-excited spin
waves, which have been predicted by theory [13] and
indirectly detected in dual contact experiments [2,11,12],
propagate away from the point contact into the surround-
ing magnetic film. In the dual contact experiments, the
radiation of spin waves between two point contacts formed
out of the same pseudo-spin-valve structure leads to the
phase locking of the two nano-oscillators [2,11]. The ability
to lock multiple nano-oscillators using non-electrical
means is a unique property of spin torque nano-oscillators
based upon point-contact geometry. The structure of the
excited spin wave modes is discussed in more detail later in
this article.

Microwave emissions are also observed in nanopillars
structures, where the active magnetic layer is patterned to
the same size as the electrical contact [14–17]. While the
frequency range that is accessible to nanopillar nano-
oscillators is comparable to that for nanocontacts, it is
generally found that the room temperature linewidths for
the nanopillars geometry are significantly broader (on the
order of hundreds of MHz) [16], though the linewidths are
comparable to those of point-contact devices when
measured at cryogenic temperatures [15,16]. The possible
origin for the larger room temperature linewidth in
nanopillars devices is discussed in detail later in this article.
However, peaks with linewidths of 10MHz have been
observed in nanopillars devices at room temperature when
using dc currents in excess of 3mA [17]. These narrow
linewidth modes are associated with dynamics excited in
the thicker fixed layer in the nanopillars structure, which
generate significantly weaker microwave signals than
modes associated with excitations of the thinner active
layer [17]. Low-frequency modes associated with the vortex
core resonance in the thick fixed layer have also been
observed in nanopillars [9].

2. Nonlinearities

Until the last decade, the study of nonlinear dynamics in
ferromagnetic systems was centered primarily on the
microwave-pumped response in micrometer-thick yttrium
iron garnet (YIG) films. Several reasons account for this
concentration of effort on the part of the nonlinear
dynamics community. First, the nonlinear properties of
ferromagnetic materials at microwave frequencies are
dominated by the coupling between the uniform ferromag-
netic resonance (also known as ‘‘the FMR mode’’) and the
spinwaves at either a degenerate frequency (the ‘‘second-
order’’ or ‘‘four-magnon’’ process) or half of the FMR
mode frequency (the ‘‘first-order’’ or ‘‘three-magnon’’
process) [18]. This coupling, which is sometimes referred
to as ‘‘the Suhl instability’’, limits the power absorbed by a
ferromagnet when pumped at the FMR mode; at
sufficiently high power, well below the geometrical satura-
tion point (i.e., the excitation level at which the effective
longitudinal component of the magnetization is zero), all
additional pump power is diverted into the production of
degenerate frequency spin waves [19]. This premature
saturation effect effectively limits the excitation amplitudes
to a level that is one to two orders of magnitude below the
saturation point [20]. Second, the pump power at which
such nonlinear effects occur is proportional to the intrinsic
damping of the material. Since YIG has the lowest
damping of any known ferromagnet (aE0.0001), it is a
natural choice for such nonlinear studies (though the effect
has been observed in metallic films.) Finally, the existence
of nonlinearly coupled spin wave modes necessarily
requires substantial film thickness such that there is a large
density of states for magnetostatic backward volume wave
(MSBVW) modes. (The MSBVW modes have a wavevec-
tor that is parallel to the average magnetization direction.
Due to dipole field effects, the group velocity for the
MSBVW is negative at low wavenumbers [21].) In other
words, for somewhat complicated reasons that go beyond
the scope of this paper, the in-plane component of the
dipole–dipole coupling fields must be sufficiently large to
give rise to degenerate and half-frequency magnon modes.
Given all of these technical reasons, substantial effort has
gone into the study and application of nonlinear dynamics
in thick YIG films [22]. This state of affairs changed
substantially with the advent of the spin torque nano-
oscillator.
With the spin torque nano-oscillator, a high current

density injected into an unpatterned thin-film structure
through a lithographically defined point contact gives rise
to spatially non-uniform precessional oscillations of the
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magnetization that can have very large amplitudes,
approaching geometrical saturation. While the details of
the excitation distribution in the active magnetic layer(s)
are still the subject of intense study, most researchers
generally believe that the excitations are a maximum
directly under the point contact, and that spin waves of
some form may or may not propagate away from the
contact region, depending on the details of the spin wave
band structure, the nonlinear dependence of the excitation
frequency on excitation amplitude, and the equilibrium
magnetization direction. In Fig. 3, we show micromagnetic
simulation results that display isotropic spin wave genera-
tion in the case of a point contact structure with a
saturating magnetic field applied perpendicular to the film
plane. (The Oersted field, to be discussed later in this
article, has been ignored for this particular calculation.)
The formation of such magnetic excitations in such a
device can be understood in terms of the negative
‘‘effective’’ damping that spin torque gives rise to; once
the current density directly under the point contact is
sufficiently large, the total effective damping (intrinsic
damping plus radiative spin wave damping plus spin
torque) in some finite region of the active material is zero,
precessional oscillations of the magnetization sponta-
neously arise as a result of the induced instability. As
mentioned earlier in this article, the oscillations are
measured via the giant magnetoresistance dependence of
the voltage across the device on the relative orientation of
the magnetization in the two ferromagnetic layers: when
the magnetization between the two layers is parallel,
resistance is minimum, and when it is antiparallel, the
resistance is maximum. Between these two extremes, the
resistance follows a cosine dependence on relative angle
of the magnetization in the two layers. Depending on
the current density, the amplitude of these magnetic
Fig. 3. Micromagnetic simulation snap-shot of steady-state spin wave

generation in a point-contact geometry. The image portrays a region of the

active magnetic layer of 2.4-mm diameter at a particular instant in time.

The contact is 80 nm in diameter, located at the center of the displayed

disk. A saturating magnetic field is applied perpendicular to the film plane.

The amplitude is proportional to one of the in-plane components of

magnetization. The resultant spin waves have a frequency of 4.4GHz

(courtesy of Mark Hoefer).
oscillations can be quite large, even approaching geome-
trical saturation. Thus, a variety of nonlinear phenomena
are both predicted and observed in the case of the spin
torque nano-oscillator.
Slonczewski [13] provided the first calculations of the

threshold current for spin wave generation in a point-
contact geometry. We start with the Landau–Lifshitz
equation and include the Slonczewski torque term:

q ~M
qt
¼ � g

�� ��m0 ~M � ~Heff þ
a

Ms
ð ~M � ~Heff Þ

� �� �
þ b ~M � ð ~M � m̂fixÞ, (1)

where g is the gyromagnetic ratio, m0 is the permeability of
free space, a is the dimensionless Landau–Lifshitz damping
parameter, Ms is the saturation magnetization, b is the spin
torque coefficient, m̂fix is a unit vector pointing in the
direction of the ‘‘fixed’’ layer magnetization, and the
effective field ~Heff is given by

~Heff¼
: ~H0 �Mzẑþ

D

g_m0Ms
r2 ~M, (2)

where D is the exchange parameter (typically on the order
of 6.4� 10�37 Jm2, or 4meVnm2). We are ignoring
crystalline, surface, or any other induced anisotropy
because the active magnetic layer is usually formed from
a magnetically soft polycrystalline alloy. We are also
ignoring any non-local in-plane component of the dipole
fields due to gradients of the in-plane magnetization. It has
been shown that the in-plane dipole fields are relatively
insignificant when the active magnetic layer is on the order
of 5 nm or thinner [23].
In Eq. (1), the spin torque coefficient b is given by

b¼:
J_g�

2M2
sde

yðrn � rÞ, (3)

where J is the current density, _ is Planck’s constant
divided by 2p, e is the spin torque efficiency (with 0oeo1),
d is the free layer thickness, e is the electron charge, y(r��r)
is the Heaviside step function, and r� is the contact radius.
We then consider the high-symmetry case with an applied
magnetic field that saturates the magnetization in a surface
normal direction. Given the high symmetry of the
geometry, radial units may be employed, and we obtain
the following linear approximation of the Landau–Lifshitz
equation in dimensionless form:

i
qm

qt
ffi ð ~r

2
� ðh� 1ÞÞmþ iðað ~r

2
� ðh� 1ÞÞ þ jyÞm, (4)

with the normalizations

m¼
:
ðMx=MsÞ þ iðMy=MsÞ; h¼

:
H=Ms,

~r
2
¼
: 1

r
q
qr

r
q
qr

� �
; r¼: r=‘ex,

‘ex¼
: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D=_oM

p
; oM¼

: gm0Ms,

t¼: oMt; and j¼
:
½ð_�Þ=ð2M2

sem0dÞ�J.
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In this simplified form, we readily see that Eq. (4) is very
similar to the Schrödinger equation, but with an additional
imaginary term due to damping and spin torque.

If we assume a steady state, standing wave solution
within the contact of the form mðr; tÞ ¼ ~mðrÞe�iot, then the
second term in Eq. (4) results in a complex frequency o,
i.e., the mode either grows or decays exponentially with
time. In the absence of current, Im(o)o0, and the solution
decays with time. At a critical current density jcrit such that
Im(o) ¼ 0 for ror�, a stable linear solution exists. The
linear mode stability criterion is therefore

jcrit ¼ � a Re
~r
2
m

m

 !
þ Im

~r
2
m

m

 !( )
þ aðh� 1Þ

 !
,

for rorn. (5)

Slonczewski solved Eq. (4), assuming a stable solution, in
terms of Bessel and Hankel functions, resulting in eigen-
values for the critical current and the onset frequency in the
limit of a-0. (The eigenvalues are derived by matching the
solution and its derivative at the contact radius.) From his
result, we obtain Imð ~r

2
m=mÞ � �1:86=r2

n
; and Reð ~r

2
m=mÞ

� �1:43=r2
n
, to the zeroth order in a. Substituting these

two approximations for the real and imaginary parts of the
Laplacian back into Eq. (5), we obtain the following
approximate critical current for the threshold of spin wave
generation:

jcrit ¼
1:86

r2
n

þ aðh� 1þ hexÞ

� �
, (6)

where hex ¼ 1:43=r2
n
is the exchange field associated with

the excited spin wave mode. The first term in Eq. (6)
describes the effective damping torque due to spin wave
radiation away from the contact. The second term
describes the intrinsic damping torque. For typical experi-
mental parameters (aE0.01, 1oho2, r�E20 nm, ‘exE
6 nm), we find that r2

n
aðh� 1Þ � 0:1, such that Eq. (6) is to

a good approximation simply jcrit � 1:86=r2
n
; the critical

current is determined primarily by the loss associated with
spin wave radiation away from the point contact, and
depends only weakly on the intrinsic damping. This is to be
contrasted with the case of nanopillar excitations, where
spin wave radiation does not affect the critical current
threshold. Once the critical current is exceeded in the case
of nanocontacts, stabilization of the spin wave amplitude
to a finite value occurs as a result of nonlinearities, as we
shall now describe.

First and foremost, the nonlinearity of the spin torque
nano-oscillator is manifested most obviously by the
dependence of the oscillation frequency on the injected
current level. Both red-shifting (df/dIo0) and blue-shifting
(df/dI40) behaviors have been observed [4]. Such non-
linearity can be coarsely understood in terms of the
dependence of the FMR stiffness fields on the excitation
amplitude. For example, if the magnetization in equili-
brium (zero current) is pointing perpendicular to the plane
of the device owing to the application of a substantial
perpendicular magnetic field, the local demagnetizing field
will decrease with increasing excitation amplitude. This in
turn results in an increase in the total magnetic field
(applied field plus demagnetizing field,) thereby driving up
the precession frequency. Such behavior has indeed been
observed experimentally with point-contact devices in the
perpendicular geometry, as shown in Fig. 4, where we
present previously published data for the current depen-
dence of the frequency for the emitted microwave signals.
Here, we see that the situation giving rise to nonlinear

dynamics via spin torque is inherently different from that
observed in the case of FMR. In particular, energy from
the exciting current is coupled directly to spin waves via the
non-uniformity of the excitation current (and, thereby, the
concentration of the spin accumulation near the contact).
However, the nature of the excited spin wave modes and
their dependence on the experimental parameters, includ-
ing applied field strength, applied field angle, current
magnitude, contact size, and the magnetic moment density
of the active layer remains largely unknown. Particularly
lacking is any information concerning the spatial distribu-
tion of the excited spin wave modes. While there is
experimental evidence that spin waves are indeed gener-
ated, and that the excited spin waves can even act as a
means for the coupling of contiguous spin torque nano-
oscillators in a shared trilayer structure [2,11,24], we do not
know how the spin wave radiation from a given contact is
spatially distributed. Nor do we know how the spin wave
modes propagate when their amplitude is in the strongly
nonlinear regime, or even whether stable modes exist in this
regime. While it has been predicted that the excited spin
waves are localized about the point contact in the case of a
red-shifting nonlinearity (so-called localized spin wave
‘‘bullet’’) [25], these predictions have not yet been directly
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confirmed. Even here, there are clear distinctions with the
nonlinearities associated with high-power FMR of micro-
meter-thick YIG films; the active layers in the spin torque
nano-oscillator structure are generally less than 5 nm thick,
precluding the existence of a significant density of MSBVW
modes. Instead, the resultant nonlinearities are due
predominantly to the local dipole–dipole interactions
(i.e., the demagnetizing field) and the exchange interaction.
The latter case is worth elaborating further.

Consider the case where a magnetic field H is applied
perpendicular to the film plane of a magnitude sufficient to
saturate the magnetization in the film normal direction. If
we expand the Landau–Lifshitz equation (including the
Slonczewski torque term) to second order in excitation
magnitude |m|, we obtain a complex Ginzberg–Landau
equation [26]:

i
qm

qt
¼ fð ~r

2
� ðh� 1ÞÞ þ iðað ~r

2
� ðh� 1ÞÞ þ jyÞ

þ
1

2
½�jmj2 � i jy� aðh� 2Þð Þjmj2

þ ðm ~r
2
mn þ 2ð1þ iaÞj ~rmj2Þ�gm. (7)

While Eq. (7) appears complicated, we can identify the role
of the primary nonlinearities by considering the case of
zero spin torque and zero damping. In this case, Eq. (7)
simplifies to

i
qm

qt
¼ ð ~r

2
� ðh� 1ÞÞ �

1

2
jmj2

�

þ
1

2
ðm ~r

2
mn þ 2j ~rmj2Þ

�
m. (8)

The last two terms within the curly brackets on the right-
hand side of Eq. (8) are nonlinear corrections for the
exchange interaction. We should note that the appearance
of such a nonlinearity in the case of the complex
Ginzberg–Landau equation is highly unusual; such terms
do not appear in the usual derivation of the Ginzber-
g–Landau equation when using the slowly varying envel-
ope approximation under conditions of weak nonlinearity,
as is usually done in nonlinear optics [27].

Let us assume, in a slowly varying envelope approxima-
tion, that m has the approximate form ~m expðikrÞ expðiOtÞ
for rb1, where k¼: k‘ex, O is the normalized mode fre-
quency, and ~m is the slowly varying envelope function with
a characteristic length scale much greater than 1/k.
Substituting our assumed solution into Eq. (2) and dividing
out common factors, we obtain the nonlinear dispersion
relation:

Offi k2 þ ðh� 1Þ þ 1
2
a2 � 1

2
a2k2, (9)

where a¼
:
jmj. The first term in Eq. (9) is due to linear

exchange, the second is due to the net internal magnetic
field (applied field plus demagnetizing field), the third is due
to the nonlinearity of the demagnetizing field, and the last
is due to nonlinear exchange. If we ignored the nonlinearity
due to exchange, our nonlinear dispersion relation would
be that for the nonlinear Schrödinger equation (NLSE)
[28]. A well-known result for NLSE is that, if dk=da40 for
a constant O, a localized ‘‘soliton’’ solution is possible: the
so-called ‘‘Lighthill criterion.’’ [29] When the Lighthill
criterion is satisfied, the larger the amplitude of the enve-
lope function, the shorter the wavelength of the sinusoidal
component. Also, when the amplitude falls below a
threshold value, the wavenumber becomes imaginary; the
wavepacket has evanescent tails that bound the wavepack-
et. For the present case, in the absence of the exchange
nonlinearity, the last term in Eq. (9) (i.e., the term that
gives rise to a blue shift in frequency with increasing
amplitude) is of the wrong sign to support a soliton
solution. However, if we account for nonlinear exchange,
solving for k in terms of a in Eq. (9), we find that dk=da40
is possible, but only for O41. As to whether this is a
sufficient condition for exchange-induced localization is
not entirely clear, but the possibility that such a novel
localized nonlinear ‘‘exchange’’ wave solution exists at high
frequencies in magnetic nanostructures certainly warrants
further investigation.
Tiberkevich and Slavin [30] recently proposed that the

Gilbert damping should also manifest a nonlinearity in the
limit of large excitation amplitudes. The proposed non-
linear Gilbert damping takes the form

a ¼ aG 1þ q1

q ~M=qt
�� ��2
o2

MM2
0

 !
, (10)

where q1 is the phenomenological nonlinear damping
coefficient on the order of unity. Introducing such a
nonlinearity is necessary in order to fit spin-transfer-
induced oscillation data for a nanopillar structure when
using a macrospin-based theory including dipole-induced
nonlinearity. It is argued that such nonlinearity is a
reasonable expectation for any physical damping mechan-
ism, but there exists no ab initio theory for such
nonlinearity. We should emphasize that the nonlinearity
expressed in Eq. (10) is in practice a very subtle effect. In
the case of conventional FMR with a soft NiFe alloy
(Ni80Fe20), we can estimate that the increase in damping
due to the proposed nonlinearity is only 0.5% for a large
pump field of 480A/m (6Oe) at 9GHz (80 kA/m applied
field), at which the excitation amplitude is approximately
20% of geometrical saturation, equivalent to 121 of
angular rotation. (This assumes that the Suhl instability
is ineffective, as is the case when one is measuring a very
thin film of less than 10 nm.)
Kambersky and Patton [31] have developed a compre-

hensive theory for magnon–electron damping in metals,
which was recently expanded on to be fully quantitative for
the transition metals (Fe, Ni, and Co) [32]. The magnon-
electron theory is exciting because it correctly predicts both
the magnitude and the temperature dependence of the
damping for the transition elements. However, the non-
linear extension of magnon–electron theory in the limit of
large amplitude excitations has not been done. In either
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case, nonlinear modification of the Gilbert damping
coefficient should have little effect on spin torque nano-
oscillator operation as long as the excited mode structure
takes the form of radiating spin waves, because the energy
loss from the contact region due to spin wave radiation
dominates the intrinsic Gilbert losses. If, however, the
excited mode is localized, the role of the Gilbert damping,
including any nonlinearity, becomes important. This is
seen, for example, in the numerical simulation results of
Consolo et al. [33] where the critical current for a localized
bullet mode increased by more than a factor of two when
nonlinear damping was included in the calculation,
whereas the critical current for the so-called ‘‘linear’’ mode
was hardly affected.
x

y

-60 nm +60 nm

-60 nm

+60 nm

Fig. 5. Vector field map of magnetic field in proximity to a point contact,

including both the Oersted field and an in-plane applied field of 72 kA/m

(900Oe). The point contact diameter of 40 nm is indicated with the dotted

line. A current of 7.75mA is flowing through the contact, perpendicular to

the film surface. We have approximated the Oersted field as that for an

infinitely long wire. While the x-component of the net magnetic field is

non-zero and positive everywhere in the film plane, thus precluding the

formation of a magnetic vortex, there is still a sharp field minimum, as well

as a maximum, at the edges of the contact. Exactly how the presence of

such spatially localized extrema affects the dynamics induced via spin

torque is not yet understood.
3. The Oersted field

Compounding the complexity of the spin torque nano-
oscillator problem is the question of the Oersted fields
produced by the current flow. For a wire of a 20 nm radius
carrying 10mA of current, the Oersted field is E80 kA/m
(1000Oe) at the surface of the wire. While the current flow
in the point-contact geometry is not exactly that for a wire
of infinite extent, the infinite wire approximation happens
to provide a reasonable order of magnitude estimate [23].
Thus, the Oersted field is clearly not a minor perturbation
in this problem. How the Oersted field exactly affects the
dynamics remains an open question. In the case where a
saturating magnetic field is applied perpendicularly to the
device plane, the Oersted field clearly establishes a static
vortex magnetization pattern. When spin torque is taken
into account, we expect a mode with helical symmetry, i.e.,
the phase of the magnetization precession changes by 1801
when reflecting about a point at the center of the point
contact. However, micromagnetic simulations [34], using
the NIST micromagnetic code OOMMF [35], show that
this vortex wave is unstable in the presence of any
symmetry-breaking perturbations, such as the slight mis-
alignment of the applied field from perfectly normal to the
device plane or the corrugation of the simulated system by
the Cartesian finite element grid. This example highlights
the need to treat all analytical models for the spin torque
nano-oscillator skeptically, especially when the models
require a high degree of symmetry to make the problem
tractable. Incorporation of the many experimental details
that reduce the symmetry of the problem appears to be a
necessary step in formulating an accurate model of
magnetization dynamics in spin torque nano-oscillators.

We already have some idea how the Oersted field can
substantially impact dynamics in point-contact geometry.
For example, as previously described in the Introduction,
the Oersted field can nucleate a vortex structure in a
continuous film where the vortex core undergoes rf
oscillations due to spin torque in weak applied in-plane
field [7]. Unfortunately, micromagnetic simulations are not
yet able to properly model such vortex core dynamics in an
unrestricted film given the numerical restrictions on the size
of the modeled domain.
When sufficient magnetic field is applied in the film plane

to exceed the Oersted field at the edge of the contact, the
superposition of the Oersted field and the applied field
results in a spatially varying local magnetic field with a
sharp minimum in magnitude at the edge of the contact
where the Oersted field is opposed to the in-plane field. A
vector field map is shown in Fig. 5 for just such a case,
where the contact size is 40 nm in diameter, the in-plane
applied field in the +x direction is 27 kA/m (900Oe), and
the current flowing through the contact is 7.75mA. Under
these conditions, the x-component of the magnetic field is
positive everywhere in the film plane, precluding formation
of a magnetic vortex. Note the clear field minimum at (0,
20 nm) and maximum at (0, �20 nm). We expect that such
an inhomogeneous field distribution, while lacking in the
symmetry necessary to form a vortex, will nevertheless
severely impact the magnetization dynamics induced by
spin torque for such a geometry. For example, it is possible
that such a minimum in the spatial field distribution could
give rise to a localized excitation mode in much the same
manner that the superposition of a transverse applied field
and the demagnetizing field at the edge of a magnetic strip
gives rise to a localized edge mode [36]. This would be a
purely linear mechanism for localization of spin-torque-
induced excitations, in contrast to the nonlinear process
proposed by Slavin and Tiberkevich [25]. Whether such a
localized Oersted mode can be excited by spin torque in a
pseudo-spin-valve configuration is not yet clear.
The Oersted field plays a less important role in

nanopillars spin torque nano-oscillators [15]. This is to be
expected because the demagnetizing fields at the edges of
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the nanopillars have a far greater influence than the
Oersted field on the internal field distribution in a
nanomagnet.

4. Noise sources

The effects of thermal fluctuations on the performance of
spin torque nano-oscillators are currently a subject of both
theoretical and experimental investigation. Thermal fluc-
tuations are a possible candidate to explain the linewidths
measured in all spin-torque-based oscillators, whether they
are based on nanocontacts or nanopillars. Kim et al. [37]
using a macrospin approximation for the dynamics in the
spin torque nano-oscillator, have derived the following
equation for the linewidth:

Do ¼ G0
kBT

E0

� �
1þ

N

Geff

� �2
" #

, (11)

where G0 is the damping expressed in frequency linewidth,
N¼
:
do=dA is the nonlinear frequency shift ðA¼

:
ðMs �

MzÞ= 2MsÞ, E0 is the average oscillator energy, and Geff is
an effective damping that takes into account nonlinearities
in both the positive Gilbert-like damping and the
‘‘negative’’ damping induced by the spin torque [37]. The
appeal of Eq. (11) rests in part on the simple intuition that
thermal fluctuations of the magnetization while precessing
causes both phase noise and amplitude noise, the latter
being converted to some extent into additional phase noise
due to the nonlinear frequency shift (i.e., the last two terms
in Eq. (9)). However, the appropriate evaluation of E0

would seem to be an important part of the problem. Kim et
al. [37,38] argue that a reasonable approximation for E0 is
simply E0 ¼ ðo=gÞMsV eff , where

V eff ¼ ðEtot=ElocÞpr2
n
d. (12)

In Eq. (12), Etot is the total energy of the excited spin wave
mode (or modes), Eloc is the energy of the spin wave modes
immediately under the point contact, r� is the contact
radius, and d is the active magnetic layer thickness. In other
words, the effective mode volume scales with the ratio of
total magnetic energy to that fraction of energy located
immediately under the contact. The claim is made in
Ref. [37] that this explains the striking discrepancy in
linewidth between the point contact spin torque nano-
oscillator when an unpatterned trilayer structure is used,
and the room-temperature linewidth obtained with nano-
pillars structures, which are typically two to three orders of
magnitude broader [37].

Why this fraction Etot/Eloc determines the effective mode
volume is not yet clear, nor is it clear whether Eq. (12) is a
general result for any given mode distribution, or whether
it pertains only to the case of isotropically radiating spin
waves. In particular, since Eq. (11) was derived using a
macrospin approximation, it appears that the validity of
Eq. (11) for the case of extended modes (i.e. spin waves in
an extended medium) has not yet been clearly demon-
strated. What is clear is that Eqs. (11) and (12) actually
imply that linewidth for the spin torque nano-oscillator
oscillations should scale quadratically with the intrinsic
damping if non-localized spin waves are generated, since
the effective mode volume (i.e., Etot) for a radiating spin
wave will also scale in inverse proportion to the damping
constant of the material in question. (Because the
characteristic decay length for excited spin waves propa-
gating into the surrounding magnetic medium scales as 1/a,
the effective mode volume, and therefore the total mode
energy Etot, is also proportional to 1/a.) Thus, we might
expect that incorporation of low damping materials into
spin torque nano-oscillators might greatly improve the
noise performance. On the other hand, if Eqs. (11) and (12)
are a general result, the implication is that the noise
performance should also depend strongly on the mode
structure. For example, if the mode is a spin wave ‘‘bullet’’,
we would expect the noise performance to be particularly
poor since the mode energy would be localized under the
point contact. Then there is the inverse dependence on
the power of the excitation; for a given mode volume, the
oscillation linewidth should scale inversely with the
squared amplitude. A clear demonstration of this predic-
tion is still needed.
However, all noise predictions based upon Eqs. (11) and

(12) warrant some skepticism, given the nature of the
approximations and/or assumptions used in deriving
Eq. (11) (i.e., the macrospin approximation that ignores
any propagation/retardation effects in the problem) and
Eq. (12) (i.e., the assumption that thermal noise for a freely
propagating mode in a lossy medium is uniformly
distributed over the volume that the mode occupies).
A more general theory that naturally includes spatial non-
uniformity of the magnetization (as opposed to an ad hoc

calculation of effective mode volume) seems to be required.
However, a micromagnetic approach to the linewidth
problem is probably beyond the capability of even the
latest computation tools; given that experimentally mea-
sured linewidths are on the order of 1–10MHz [1],
simulation periods as long as 1 ms are required to obtain
sufficient statistics for an accurate estimation of linewidth.
Assuming a simulation time step of 1 ps [39], such a
calculation requires as many as 106 time steps, and if each
time step requires only 1 s of actual computation time
(probably a gross underestimate), such a simulation would
run as long as 280 h for a single data point!
The experimental picture with regard to linewidth

supports the notion that the situation is far more
complicated than any present simple theory would suggest.
For example, Rippard et al. [6] found that linewidth varies
significantly with changing applied field strength, applied
field angle, and applied current, as shown in Fig. 6. In
general, it was found that the narrowest linewidths were
obtained at an applied field angle of 101 (relative to the film
normal) and moderate applied fields of 0.6–0.9 T, though
there are regions in the parameter space of current and field
strength where the linewidth broadens significantly to
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Fig. 6. Experimental point contact data from Ref. [6] showing the

dependence of frequency, measured linewidth in (A), and predicted

linewidth in (B) on current and applied magnetic field strength for an

applied field angle of 101 from surface normal. The linewidth prediction in

(B) assumes that the linewidth was the result of uncorrelated fluctuations

in field and current, with rms values of 0.8 kA/m (10Oe) and 1 mA,

respectively. The prediction is in reasonable agreement over much of the

data, especially where the frequency gradients in field and current are at

local maxima. Used with permission of the authors.
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values in excess of 100MHz [6]. The details of why this is
the case are not yet clear, though it was found that larger
linewidths are correlated with portions of parameter space
where the variation of frequency with current and/or field
is particularly large. In particular, it is found that the
frequency jumps discontinuously along well-defined lines in
parameter space, and that the linewidth is significantly
enhanced along these lines of discontinuous frequency.
A similar result was obtained for nanopillars [15]. This
suggests that a variety of modes can be simultaneously
excited in point contact structures, and that competition
between modes can be another source of linewidth
and noise.

Kim et al. [37] explain the minimum average linewidths
at 101 by resorting to Eq. (11). The nonlinear frequency
shift N undergoes a sign change for sufficiently large
applied fields at approximately 101. For smaller angles, the
frequency shift is positive (i.e., the frequency increases with
increasing current) and for larger angles, the frequency
shift is negative. The reason for the positive frequency shift
at small angles is discussed earlier in this article. The
negative frequency shift at larger applied field angles, as
succinctly explained by Krivorotov et al. [15] is understood
in terms of highly elliptical precessional motion, which
occurs when a significant component of the time averaged
magnetization lies in the film plane; for such highly
elliptical orbits, the rate of magnetization change
dj ~Mj=dt is a relatively weak function of oscillation
amplitude, whereas the orbital path length is a stronger
function of increasing amplitude. The net effect is for the
precession frequency to necessarily decrease with increas-
ing amplitude of motion. Thus, for a sufficiently large
applied field, there is an applied field angle where the
nonlinear frequency shift is zero, thereby minimizing
Eq. (11). However, we should point out that the linewidth
vs. field angle data presented in Fig. 6A, in Ref [6] is the
average linewidth obtained over a large range of dc currents
and applied field magnitudes, whereas the values calculated
by Kim et al. are for specific values of field (0.9 T) and
current (9mA) [37]. While the smallest average linewidths
were indeed experimentally observed for a field angle of
101, this does not imply that the nonlinear frequency shift is
negligible at this angle for all values of field and current.
Indeed, there are positions in the (H,I) plane shown in
Fig. 6 where df/dI exceeds 1GHz/mA.
Another issue to consider is the fact that many sources of

broken symmetry are associated with a realistic spin torque
nano-oscillator. The Oersted field breaks the isotropic
azimuthal symmetry. The application of a canted magnetic
field breaks the orientation symmetry of the sample plane.
Any defect in the magnetic layer breaks the radial
symmetry. Thus, it becomes apparent that the magnetiza-
tion dynamics operate in a space with many degrees of
freedom, as opposed to the two degrees of freedom usually
considered in conventional FMR or for a macrospin
model. When we then include both dipolar and exchange
nonlinearities in the problem, we begin to question whether
the magnetic trajectory of the precessional excitation
necessarily forms a closed, steady-state orbit. Indeed,
micromagnetic simulations suggest [16,34] that the orbits
have qualities akin to ‘‘attractors’’ in chaos theory [40].
That is to say, the orbits are not quite periodic. (By
‘‘periodic’’ we mean that all degrees of freedom return to a
well-defined initial state after some finite duration.)
Instead, we observe that the orbits tend to occupy a
particular volume in phase space, and that the orbit
appears to suffer from some degree of purely deterministic
‘‘noise.’’ Given the large number of numerical degrees of
freedom for such micromagnetic simulation, with thou-
sands of finite element cells, and given the types of non-
linearities that affect the dynamics, such a tendency
towards something like chaos in spin torque nano-
oscillator dynamics would not be surprising. If such
micromagnetic simulations are accurate (which is itself an
ongoing subject of debate), the linewidth of the spin torque
nano-oscillator microwave emissions may not be strictly a
function of thermal fluctuations, but may also have
properties that reflect the dimensionality of chaotic motion
about an attractor. Put another way, we may usually
assume that thermal fluctuations for a classical periodic
oscillator ‘‘knocks’’ the system away from the steady-state
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Fig. 7. Schematic of contributions to spin torque due to non-uniform

magnetization and non-uniform spin accumulation. (A) Spin from the

longitudinal ‘‘sea’’ of accumulated spins scatters from a region of non-

uniform magnetization, generating a torque that increases non-uniformity

in both the magnetization and the spin accumulation. This is described

quantitatively by the second term in Eq. (13). (B) Non-uniform spin

accumulation with non-zero transverse angular momentum scatters from

uniform magnetization, generating a torque to increase the non-

uniformity of the magnetization. This process is described quantitatively

by the first term in Eq. (13).
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orbit toward which the system then relaxes at a rate given
by the intrinsic damping of the system. If a steady-state
orbit does not actually exist, and the system is evolving
instead in proximity to an attractor in phase space, then
thermal fluctuations would tend to either simply modulate
the chaotic motion already inherent in the system, or drive
the system from one attractor to another. Clearly, to
address this question on a theoretical level, more accurate
models for spin torque nano-oscillator dynamics are
required.

Sankey et al. [16] have measured the temperature
dependence of linewidth for microwave emissions from
nanopillars devices. Instead of the linear temperature
dependence predicted by Kim et al. [37], the linewidth
decreases supralinearly with decreasing temperature at high
temperatures (T4100K), and apparently plateaus at low
temperatures (To100K). (Sankey et al. [16] modeled the
low-temperature behavior as scaling with T1/2, based upon
their own Landau–Lifshitz macrospin model for tempera-
ture-dependent linewidth.) Although nanopillar devices
differ substantially from the spin torque nano-oscillator
based upon point-contact geometry, a linear dependence of
linewidth on temperature has so far not been experimen-
tally observed, once again supporting our conclusion that
the simplifying assumptions associated with calculations of
temperature-dependent linewidth may need revision. On
the experimental side, more data are required by use of a
substantial number of devices before any conclusions can
be reached about the phenomenological behavior of
linewidth vs. temperature.

5. Non-uniform spin accumulation

The spatial non-uniformity of the excited mode affects
frequency and noise performance in a variety of ways. For
example, if the magnetization distribution is non-uniform,
the spin accumulation in the non-magnetic contacts is also
non-uniform. Any non-uniformity in the spin accumula-
tion necessarily means that there are additional gradients in
the spin current transverse to the magnet/non-magnet
(FM/NM) interface, which, in turn, means that additional
sources of torque are acting on the magnetic layer. The
theory for such a ‘‘transverse spin diffusion’’ source of spin
torque has been elaborated on by numerous authors
[41–45], and limited experimental confirmations have been
obtained via measurements of differential resistance in
single layer structures [46].

One approach to the transverse spin diffusion problem is
to separate the longitudinal and transverse components of
the spin accumulation, where the longitudinal component
is parallel to the axis defined by the equilibrium magnetiza-
tion direction in the ferromagnetic layer [41]. This allows
for the solution of the longitudinal spin accumulation
problem in the usual manner developed for spin-dependent
transport in current-perpendicular-to-plane giant magne-
toresistive structures. Then the transverse problem can be
solved in terms of a perturbation approach.
To understand how the separation of spin accumulation
into transverse and longitudinal components permits
solution of this problem, let us consider the spin torque
exerted at a single FM/NM interface. If the magnetization
is uniform, there is a net background ‘‘sea’’ of accumulated
longitudinal spin u0 (having units of density) at the
interface, which can be calculated by straightforward
methods for spin-dependent transport when current is
flowing perpendicular to the plane of the multilayer struc-
ture [47]. If, however, the magnetization deviates from the
uniform state by virtue of there being an additional
spatially varying ‘‘transverse’’ component ~M?ð~rÞ, such
that ~Mð~rÞ ¼ ~M0 þ ~M?ð~rÞ, where ~M0 � ~M?ð~rÞ ¼ 0, then
there is also an additional transverse component of the
spin accumulation ~u?ð~rÞ, which can be written in reciprocal
space as ~~u?ð~kÞ ¼ Gð~kÞ~~Mð~kÞ [41] where Gð~kÞ contains the
details of the transverse spin diffusion process. In real
space, the transverse spin accumulation may be written as
~u?ð~rÞ ¼ F ð ~Mð~rÞÞ, where F is the commensurate convolution
operator. The resultant spin torque surface density is
therefore

~Nð~rÞ ¼ _w0 ~u?ð~rÞ � u0~m?ð~rÞð Þ, (13)

where w0 is the effective interfacial scattering velocity for
the spin transfer process, and ~m?ð~rÞ¼

: ~M?ð~rÞ=M0. Fig. 7
shows a simple schematic of how we can understand the
two terms in Eq. (13) in the context of the elementary spin
reflection processes on the NM side of the NM/FM
interface. While the second term in Eq. (13) is analogous
to the usual Slonczewski spin torque due to a background
of non-collinear (but uniform) spin accumulation, the first
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term is the new contribution to the spin torque due to
non-uniform ‘‘excess’’ spin accumulation.

Note that for several of the existent theories [41,42], spin
waves of a particular wavenumber become unstable at
sufficiently high currents, but that the wavenumber of the
unstable spin waves is not a function of the contact
dimension. (Indeed, these theories actually ignore the
contact dimensions, in order to make the problem
tractable.) This is in clear distinction to the case of spin-
torque-induced oscillations in a point contact with a
magnetic trilayer structure without lateral spin diffusion,
where the characteristic length that sets the spin wave
wavenumber is the contact size [13]. Instead, the spin
diffusion length in proximity to the ferromagnetic layer sets
the characteristic length scale for the problem with lateral
spin diffusion. Presumably, in a real spin torque nano-
oscillator, there is a competition between the contact
dimension and the spin diffusion length as the dominant
length scale of importance.

Brataas et al. [48] have calculated the threshold current
for a standard five-layer structure with a putative
nanopillar geometry, utilizing a theory that includes the
effects of lateral spin diffusion. However, the lateral length
scale of the nanopillar is again ignored as a simplifying
assumption, thereby neglecting any boundary conditions
that might affect the resultant dynamics. An alternative
approach by Xi et al. [45] is to assume that the point
contact is infinitesimally narrow in lateral extent and that
the excited film is of a finite radius, centered at the contact,
thereby ignoring any self-consistent contribution of lateral
spin diffusion to the mode structure. In both cases what is
lacking is an understanding of the competition between
contact size and lateral spin diffusion in establishing the
spatial profile of the excited mode.

Adam et al. [43] demonstrated a numerical proof-of-
concept model for the integration of spin diffusion effects
into micromagnetic simulations. Using this model, the
authors predict that the dc resistance of the structure is
reduced at the onset of microwave dynamics, and that
chaotic dynamics ensue at sufficiently large dc currents in
the absence of any applied magnetic field. However, an
unrealistic geometry was used for the spin torque structure
(a quasi-one-dimensional active layer), and the dipole
(demagnetizing) fields were ignored. Indeed, the authors
themselves admit that the model lacks the spatial resolu-
tion and physical realism to be considered quantitatively
predictive.

The separation of spin accumulation into longitudinal
and transverse components is strictly valid only in the limit
of small deviations of the magnetization from uniform
orientation; errors accumulate when the non-uniformities
of the magnetization are no longer small. A consistent
solution for the spin accumulation with arbitrarily
inhomogeneous magnetization would be particularly help-
ful for a quantitative understanding how this ‘‘self’’ torque
affects mode structure in spin torque nano-oscillators. Not
only are there nonlinearities in the magnetic response, but
there are also nonlinearities of the spin accumulation in
response to large amplitude magnetization dynamics that
must also be taken into account.
6. Conclusion

Spin torque nano-oscillators are novel microwave
components that show promise for future spintronic
applications. Such oscillators based upon point-contact
geometry exhibit the narrowest room temperature line-
widths, and are capable of mutual phase locking between
two oscillators due to spin wave coupling in a shared active
magnetic layer. While strides have been made to explain
the coarse properties of spin torque nano-oscillators, and
to improve the practicality of such devices, greater under-
standing of the detailed physics underlying spin torque
dynamics is essential if progress towards practical applica-
tions is to continue. We have outlined some of the
outstanding unanswered questions associated with the
details of spin torque nano-oscillators in point contacts,
though we have also endeavored to show that these so-
called ‘‘details,’’ which are often ignored or oversimplified
in theoretical treatments, actually have great importance in
affecting measured properties.
We do not consider this list of questions to be

exhaustive. Of course, there are also many engineering
issue that would also need to be addressed before spin
torque oscillators will ever have practical utility. For
example, there is the question of impedance matching
between the spin torque nano-oscillator and an intercon-
necting waveguide, or how to array such devices for
increased output power and stability [2,49]. There is also
the possibility of using magnetic tunnel junctions to greatly
increase the emitted microwave power [50], though whether
magnetic tunnel junctions are compatible with point-
contact geometry remains an open question. Nevertheless,
it is expected that continued development of new magnetic
material systems and spin torque geometries will fuel
further improvements in device performance, and that
enhanced understanding of the numerous ‘‘details’’ that
affect spin torque dynamics in point contact structures will
guide the development of such future materials and
geometries.
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