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Calculation of Pulse Parameters and
Propagation of Uncertainty
Paul D. Hale, Senior Member, IEEE, and C. M. Jack Wang

Abstract—The fundamental starting point for the analysis of all
two-state waveforms is the determination of the low- and high-
state levels. This is a two-step process. First, the data are grouped
into points belonging to each state, and second, the value of each
state is determined from the group mean, the mode, the median,
or some other statistic. Once the state levels are determined, pulse
parameters such as transition duration, amplitude, overshoot, and
undershoot can be calculated. The IEEE 181-2003 Standard on
Transitions, Pulses, and Related Waveforms recommends methods
for grouping the data, determining the state levels, and deter-
mining pulse parameters, but gives no guidance for propagation
of uncertainty, particularly in the presence of systematic and/or
correlated sources of error. Correlations are important because
certain pulse parameters, such as transition duration and pulse
duration, are invariant with respect to, e.g., multiplicative error,
which is correlated highly. We propose a new procedure for de-
termining the pulse states that involves clustering the data and
then using a robust location estimator to determine the state level.
This technique allows the propagation of uncertainty from the
covariance of a sampled waveform representation all the way to
the calculation of pulse parameters. We use Monte Carlo simula-
tions to verify the proposed procedure for some canonical pulse
waveforms.

Index Terms—Covariance analysis, metrology, oscilloscopes,
pulse measurements, uncertainty.

I. INTRODUCTION

O SCILLOSCOPES are routinely used to measure the prop-
erties of a wide variety of pulsed waveforms, including

digital data streams in computers and in electrical and optical
communications. Accurate characterization of pulse parameters
and their measurement uncertainty has a huge economic impact
on the producers and the consumers of the digital communica-
tions equipment and computers that are ubiquitous in modern
everyday life. With cost pressures driving manufacturers to
create products that just meet specifications, the ability to make
robust and well-characterized measurements is becoming more
important. In this paper, we describe a method that, given a
mean waveform and its covariance, can be used to accurately
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Fig. 1. Two-state waveform with nominal state levels L1 = −1.0000 and
L2 = 0.9897. All operations in this paper are independent of any particular
unit system; therefore, we consider them dimensionless. All quantities in this
paper are scaled relative to either S or t as appropriate.

calculate pulse parameters and their uncertainties, even in
the presence of correlated errors. Correlations are important
because certain pulse parameters, such as transition duration,
are invariant with respect to, for example, multiplicative error,
which is highly correlated in the example considered in this
paper. The technique is totally general in that it can be extended
to estimate the uncertainty of any scalar or vector quantity that
is derived from the waveform.

Consider the two-state pulsed waveform in Fig. 1. The funda-
mental starting point for analysis of such a waveform is to group
the samples in the waveform into groups that represent the
low and high states of the waveform. The industry standard
for pulse analysis is the IEEE 181-2003 Standard on Transi-
tions, Pulses, and Related Waveforms [1]. In the absence of
prior knowledge about the waveform, IEEE 181-2003 suggests
making a histogram of the sampled waveform values. The his-
togram is then separated into lower and upper histograms from
which the modes (or means) are computed and subsequently
used to determine the waveform state levels. Once the state
levels are estimated, pulse parameters such as amplitude, tran-
sition duration, overshoot, and undershoot can be calculated.
IEEE 181-2003 describes how fluctuation in pulse parame-
ters can be quantified; however, it gives no guidance on how
to determine the total uncertainty of the determined pulse
parameters.
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Documentation of the pulse parameter measurement service
that is previously implemented at the National Institute of
Standards and Technology (NIST, USA) gives extensive details
of how uncertainty analysis [2] of pulse parameter measure-
ments could proceed. That analysis uses a propagation of uncer-
tainty strategy that moves from physical phenomena directly to
various pulse parameters. However, if a new (unforeseen) prop-
erty of the waveform (along with its uncertainty) is required, it
is necessary to start from the beginning. Unfortunately, the sen-
sitivity of the new property to underlying physical phenomena
may be unknown or uncharacterized. Even if the sensitivities
are known, it is difficult to transport this information to the user
in a convenient format. This paradigm makes it nearly impos-
sible for the measurement service customer to estimate quan-
tities (and associated uncertainties) other than those reported
by the NIST.

The NIST measurement services are now being redesigned
to make the whole waveform the quantity of interest. The
goal of this paradigm shift is to provide the customer with
the capability of calculating any required information from the
calibrated waveform measurement. This is achieved by deliv-
ering the whole measured waveform along with the covariance
matrix, which contains the uncertainty of each sampled point
and the correlations between the errors in each sampled point.
Although the NIST will still provide basic pulse parameter
estimates that are extracted from the calibrated waveform, the
customer will also be able to calculate other quantities (and
their uncertainties) that might be of interest but are not provided
by the NIST.

The analysis in [2] assumed that the physical phenomena
underlying the pulse parameter errors are uncorrelated. This
assumption is usually correct and is appropriate for the type of
analysis that is described there. However, uncorrelated physical
phenomena can lead to various correlations within a waveform
that cannot be ignored in the “whole waveform” paradigm.
For example, if correlations in pulse state levels due to mul-
tiplicative errors were ignored, the uncertainty in the pulse
transition duration could be overestimated severely. “Tilt” [3]
is another correlated error that can lead to variations in the
pulse parameters. The covariance matrix allows the uncer-
tainty, along with correlation information, to be transported
from one customer (or procedure) to another in a convenient
format. These uncertainties can include random and systematic
effects.

The rest of this paper is organized as follows. Section II
briefly reviews the covariance-based uncertainty analysis. In
Section III, we present the procedures for determining state
levels and their uncertainty covariance matrix. Section IV
describes how the pulse parameters, such as transition duration,
which are functions of the two state levels, are calculated.
It also shows how the uncertainties of the pulse parame-
ters are obtained by use of the covariance matrix approach.
Section V describes in more detail some statistical considera-
tions regarding additive and multiplicative errors. Section VI
uses a simulation study to verify the covariance-based prop-
agation of uncertainties for the pulse amplitude and the tran-
sition duration. We conclude with some summary remarks in
Section VII.

II. UNCERTAINTY PROPAGATION

We use the covariance method described in [4] for the
uncertainty propagation of multivariate quantities. Suppose that
random vectors X (m × 1) and Y (n × 1) are related through
a known functional relationship of the form

Y = f(X).

Then, the uncertainty of Y (expressed as a covariance matrix)
can be estimated from the uncertainty of X as [5]

ΣY = cov(Y ) = JΣXJT (1)

where ΣX is the covariance matrix of X , JT denotes the
transpose of J , and J is an n × m Jacobian matrix with the
(i, j)th element Jij given by

Jij =
∂Yi

∂Xj
.

Equation (1) is exact if f(·) is linear in X , i.e., if the matrix
elements Jij are independent of X . It is approximate if f(·) is
nonlinear. For example, suppose that

Y1 =
X1

X2
sin X3

Y2 =
X1

X2
cos X3.

Then

J =

(
sinX3

X2
−X1 sinX3

X2
2

X1 cosX3
X2

cosX3
X2

−X1 cosX3
X2

2
−X1 sinX3

X2

)
.

In a case that is relevant to this paper, consider a waveform
vector Y . Pulse parameters are functions of the two state levels,
which, in turn, are functions of the waveform vectors. In this
paper, we construct operators that transform the waveform
vector into various pulse parameters and use (1) to derive the
covariance matrix for the pulse parameters. This will be an
effective method for determining the pulse parameter uncer-
tainties if the covariance matrix of the waveform vector is
available and if the algorithms and the associated operators are
sufficiently linear. In Sections III and IV, we propose operators
for determining state levels and reference times.

The International Standards Organization Guide to the Ex-
pression of Uncertainty in Measurement provides rules for
evaluating and reporting the uncertainty only for the model of
measurement having a single output quantity.1 Several authors
[6]–[9] have described methods for evaluating, expressing, and
using the uncertainty that is associated with complex-valued
quantities in radio frequency measurements. In this case, the
input and output vectors are 2-D, and these methods are all

1An effort to produce a supplemental guide to the Guide, which in-
cludes measurement models with more than one output quantity, is be-
ing coordinated by the Joint Committee for Guides in Metrology. See
http://www.bipm.org/en/committees/jc/jcgm/.
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covariance based. A more general treatment of various multi-
variate measurement scenarios is given in [10]. A detailed de-
scription of how a covariance matrix representing a waveform
measurement system might be constructed, including Type A
and Type B evaluations of uncertainty, is given in [4]. A
brief description of how some particular waveform covariance
matrices can be obtained using Type A and Type B evaluations
is given in Appendix A. A method for measuring a pulse that
includes calibration at every time point inside the waveform
epoch and a covariance matrix that can be used in the proce-
dures described in this paper is reported in [11].

Finally, we note that uncertainties can be estimated using
Monte Carlo simulation, such as the one described in [12]. This
type of uncertainty analysis is more general than the covari-
ance approach that we describe here because it can model the
effects of system nonlinearities and different error probability
distributions. These advantages come at the cost of considerable
computer time for the simulations. We will use Monte Carlo
simulations in Section VI to demonstrate that our operators are
effectively linear, and that the covariance approach is valid for
the applications that we describe here.

III. DETERMINATION OF STATE LEVELS

As described in IEEE 181-2003, a waveform epoch that
contains the waveform features under analysis is chosen. The
waveform epoch must contain sufficient data to yield the state
levels to the desired accuracy. Data points from the waveform
must then be categorized or “clustered” as belonging to a partic-
ular state. We use the k-means method [13] to cluster the data.
In this method, the samples are sorted by their distance from
a particular cluster mean. Consider the pulse in Fig. 1 having
two state levels with only one occurrence of each state. Let
Y = (y1, y2, . . . , yI) be the waveform vector. The clustering
process is iterative. We first select the initial cluster means;
typically, we use (y1, yI) and assign yi to the nearest cluster
based on the distance between yi and the cluster means. We then
update the cluster means, which are calculated as the average
values of yi assigned to each cluster. The process continues
until the yi’s no longer switch clusters or until the cluster means
no longer change. After the algorithm converges, typically in
two or three iterations, we obtain Y1 = {y(1)

1 , y
(1)
2 , . . . , y

(1)
I1

} as
the set of all I1 samples defining the state-one level (cluster
one) and Y2 = {y(2)

1 , y
(2)
2 , . . . , y

(2)
I2

} the set of all I2 samples
defining the state-two level (cluster two).

Once the clusters are formed, we can use any of the location
estimators, such as the arithmetic mean, the trimmed mean, the
median, or the mode, to estimate the state levels [14]. Since
waveform data may contain outliers, robust estimators should
be used. The median and the least median of squares (LMS)
estimator [15] can tolerate up to 50% of the outliers; that is,
their breakdown points [16] are 50% (in contrast, the arithmetic
mean has a breakdown point of 0; a single aberrant value can
cause the mean to give an arbitrarily bad result). However, since
there is not an adequate Jacobian matrix corresponding to the
transformation of the waveform vectors to the median or the
LMS estimator, it is difficult to employ the covariance approach
for uncertainty propagation if either one of these estimators is

used to estimate the state levels. Another choice is the mode [1],
although uncertainty propagation is also difficult in this case.2

We use a location estimator, similar to the LMS estimator,
of each cluster to estimate the state levels. For each cluster, the
shortest interval that contains 50% of the data is determined.
This approach is motivated by the need to find a “mode”
without using the histogram method. The idea is that, instead of
locating a (single-number) mode, we look for a concentration,
or a “collective” mode, in the data. We use the “50% of the data”
as the criterion for concentration. Instead of using the midpoint
of the shortest interval, which is the LMS estimator of the data
[15], we use the mean of the data contained in the shortest
interval to estimate each state level. This allows us to easily
obtain the approximate covariance matrix of the estimated state
levels. The mean of the data in the shortest interval is sometimes
called the “shorth” estimator.

For the set of I1 samples that define the state-one level, the
shortest interval that contains 50% of the I1 samples is the
interval that produces the smallest of the following differences:

y
(1)
(h) − y

(1)
(1) , y

(1)
(h+1) − y

(1)
(2) , . . . , y

(1)
(I1)

− y
(1)
(I1−h+1)

where h = �I1/2� + 1, �x� stands for the greatest integer less
than or equal to x, and y

(1)
(1) ≤ y

(1)
(2) ≤ . . . ≤ y

(1)
(I1)

are the or-

dered observations of y
(1)
1 , y

(1)
2 , . . . , y

(1)
I1

. Let (y(1)
(m), y

(1)
(h+m−1))

be the shortest interval; then, the state level L1 is calculated as

L1 =
1
h

h+m−1∑
j=m

y
(1)
(j) . (2)

As a simple illustration, suppose that I1 = 11 and(
y
(1)
(1) , . . . , y

(1)
(I1)

)
= (10, 45, 50, 53, 56, 58, 60, 62, 63, 65, 75).

Then, h = �11/2� + 1 = 6, and the smallest of the differences
58 − 10, 60 − 45, 62 − 50, 63 − 53, 65 − 56, and 75 − 58
is 9, which corresponds to the interval (56, 65). The data
contained in this interval are 56, 58, 60, 62, 63, and 65.
The state level L1 is calculated as L1 = (56 + 58 + 60 + 62 +
63 + 65)/6 = 60.67.

Similarly, let (y(2)
(n), y

(2)
(k+n−1)) be the shortest interval that

contains 50% of the I2 samples defining the state level; then,
the state level L2 is calculated as

L2 =
1
k

k+n−1∑
j=n

y
(2)
(j) (3)

where k = �I2/2� + 1.
The vector L = (L1, L2)T , representing the state levels, can

be expressed as the linear transformation of Y . That is,

L = HLY

2The only method we know for estimating the uncertainty in the mode is
through Monte Carlo simulation. It should be noted that the mode and its
uncertainty are functions of the choice of the histogram bin size.
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where HL is a 2 × I matrix. The ith element of the first row of
HL is

1/h if yj ∈
{

y
(1)
(m), y

(1)
(m+1), . . . , y

(1)
(h+m−1)

}
0 if yj /∈

{
y
(1)
(m), y

(1)
(m+1), . . . , y

(1)
(h+m−1)

}
.

Similarly, the ith element of the second row of HL is

1/k if yj ∈
{

y
(2)
(n), y

(2)
(n+1), . . . , y

(2)
(k+n−1)

}
0 if yj /∈

{
y
(2)
(n), y

(2)
(n+1), . . . , y

(2)
(k+n−1)

}
.

Using (1), we estimate the covariance matrix ΣL of L as

ΣL = HLΣY HT
L (4)

where ΣY is the covariance matrix of Y . The diagonal ele-
ments of ΣL represent the variance of the two state levels
of the pulse, whereas the off-diagonal elements represent the
covariance of the state levels. However, (4) does not take into
account the variation of the process of finding the shortest
interval, which is nonlinear and nondifferentiable, and can
underestimate the true variation of the state levels when uncor-
related errors are the main source of error. This point will be
discussed further in Section V.

IV. CALCULATING PULSE PARAMETERS AND

PROPAGATION OF UNCERTAINTY

A. Pulse Amplitude

We define3 the pulse amplitude A as

A = L2 − L1.

The squared standard uncertainty of the pulse amplitude is
given by

u2(A) = JALΣLJT
AL (5)

where the Jacobian matrix JAL = (−1, 1).

B. Reference Level Instant

According to [1], the 100 × f percent reference level is
defined as

yr = L1 + f(L2 − L1)

where 0 ≤ f ≤ 1. Using our definition of L1 and L2, reference
levels for f < 0.5 occur before those for f > 0.5. The reference
level instant is the instant at which the waveform crosses the
reference level and is generally estimated by interpolation of
the waveform. The standard states that if the error due to
linear interpolation “. . . is significant, then a more sophisticated
interpolation method based on more than two adjacent samples

3In this paper, we consider only pulses with a positive amplitude. However,
the method we propose can be applied to both polarities.

may be used. . . The interpolation method and the conditions in
which it is used must be specified.” Here, we describe a method
based on a polynomial fit of order P on a set of N samples
closest to the percent reference level, where P < N , and P is
typically one, two, or three.

We seek to find an estimate t̂r of the reference level instant,
i.e., the time at which the polynomial fit crosses the reference
level yr. For the following discussion, we assume that the time
of the ith sample is ti, and that the samples are sorted in
order of increasing time. The N samples that are closest to
the reference level are chosen. We then construct the vector
Y r = (yq+1, . . . , yq+N )T of these N samples corresponding
to times (tq+1, . . . , tq+N ). The vector Y r can be expressed as
the transformation

Y r = HrY

where Hr is an N × I matrix with only one nonzero element
in each row, such that the ith element of the nth row of Hr is

1 if i = q + n

0 if i �= q + n.

That is, Hr is a transformation matrix that selects N elements
of Y to form Y r.

We seek a weighted least-squares solution θ̂ of the following
equation:

Mθ̂ = Y r

where

M =

⎛
⎜⎝

1 tq+1 · · · tPq+1

...
...

...
...

1 tq+N · · · tPq+N

⎞
⎟⎠

and θ̂ = (θ̂0, θ̂1, . . . , θ̂P )T is the vector of estimated polyno-
mial coefficients. The weighted least-squares estimate of the
polynomial coefficients is [17]

θ̂ =
(
MT Σ−1

r M
)−1

MT Σ−1
r HrY (6)

where

Σr = HrΣY HT
r .

The estimated reference level instant is then the appropriate root
of the following equation:

(θ̂0 − yr) + θ̂1t̂r + · · · + θ̂P t̂Pr = 0 (7)

and the squared standard uncertainty corresponding to t̂r is
evaluated by propagation of uncertainty and is given by

u2(t̂r) = JR

(
Σθ̂ Σθ̂L

ΣT
θ̂L

ΣL

)
JT

R (8)

where JR is the Jacobian of the root of (7) with respect to
(θ̂,L). Details of the root finding function and the Jacobian are
worked out for a second-order polynomial fit in Appendix B.
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The terms in the covariance matrix in (8) are found as
follows. Making the substitution

T =
(
MT Σ−1

r M
)−1

MT Σ−1
r Hr

(6) can be rewritten as

θ̂ = TY .

The covariance of θ̂ is then given by

Σθ̂ = TΣY T T =
(
MT Σ−1

r M
)−1

.

The polynomial coefficients may be correlated with the state
levels of the waveform. The covariance between the coefficients
and the state levels is expressed by the (P + 1) × 2 matrix

Σθ̂L = cov(θ̂,L)

= cov(TY ,HLY )

=TΣY HT
L

=
(
MT Σ−1

r M
)−1

MT Σ−1
r HrΣY HT

L.

C. Transition Duration

Transition duration, i.e., the difference between two refer-
ence level instants, is a commonly reported quantity for steplike
pulses. The correlation between the two instants and the top and
bottom state levels must be considered to correctly propagate
uncertainty from the covariance matrix of the waveform to the
uncertainty in the transition duration.

The estimated transition duration ΔtBA from reference level
A to reference level B is t̂B − t̂A, where t̂B and t̂A are obtained
by use of the procedures described in the previous section.
Specifically, the estimated polynomial coefficients are

θ̂A = T AY

for t̂A and

θ̂B = T BY

for t̂B , where

T A =
(
MT

AΣ−1
A MA

)−1
MT

AΣ−1
A HA

T B =
(
MT

BΣ−1
B MB

)−1
MT

BΣ−1
B HB .

The squared standard uncertainty that is associated with ΔtBA

is evaluated by propagation of uncertainty and is given by

u2(ΔtBA) = JR

⎛
⎜⎝

Σθ̂A
Σθ̂Aθ̂B

Σθ̂AL

ΣT
θ̂Aθ̂B

Σθ̂B
Σθ̂BL

ΣT
θ̂AL

ΣT
θ̂BL

ΣL

⎞
⎟⎠ JT

R (9)

where JR is the Jacobian of t̂B − t̂A with respect to
(θ̂A, θ̂B ,L). The terms Σθ̂A

, Σθ̂B
, ΣL, Σθ̂AL, and Σθ̂BL are

found in the same way as described in the previous section. The

new term Σθ̂Aθ̂B
, describing the covariance between the two

polynomial fits, is found as

Σθ̂Aθ̂B
= T AΣY T T

B .

V. ADDITIVE AND MULTIPLICATIVE ERRORS

Let yj(ti) denote the measurement of the jth two-state
pulsed waveform at time ti. A model for yj(ti) that accounts for
additive and multiplicative errors (with respect to the nominal
waveform) is given by

yj(ti) = (1 + αj)S(ti) + βij (10)

where S(·) is the nominal pulsed waveform, and αj and βij are
normally distributed uncorrelated random variables with mean
zero and variances a2 and b2, respectively. With this model,
we have

var [y(ti)] = a2S2(ti) + b2 (11)

cov [y(ti), y(ti′)] = a2S(ti)S(ti′), i �= i′. (12)

This simple model accounts for many of the error sources
that we encounter in our laboratory, including the effect of
uncertain knowledge about the gain in our oscilloscope, the
temperature-dependent pulse amplitude variations in our pulse
generators, and the Johnson noise of our samplers. The limiting
case of a = 0 results in a measurement model with uncorrelated
additive errors, and the case of b = 0 produces a model with
correlated multiplicative errors. Different mixtures of additive
and multiplicative errors can be chosen by varying a and b.

The simulation studies of Section VI show that the covari-
ance matrix of (4) must be modified in cases where uncorrelated
additive errors are the main source of errors. In those cases, (4)
substantially underestimates the true variation of the estimated
state levels. The reason is as follows. If y(j) in (2) were
selected randomly, arithmetic mean L1 would converge at the
h−1/2 rate. However, the data are selected from the shortest
half, and L1 converges at the h−1/3 rate [15] as I1 becomes
large. Therefore, (4), which is obtained without including the
variation of the shorth process, needs to be adjusted. One
simple way to compensate for the different convergence rates
is to multiply the uncertainty of L1 that is obtained by the
covariance-matrix approach by h1/2/h1/3 = h1/6.

We use a simple simulated example to illustrate the adjust-
ment for a single level. We generate I = 200 samples from the
waveform in (10) with ti = i/2048, S(ti) = 1, i = 1, . . . , I ,
a = 0, and b = 1. The shortest interval that contains 50% of
the 200 samples is determined, and the mean of the (101 =
200/2 + 1) samples inside this shortest interval is computed.
We denote this mean by L. We repeat this process 1000 times.
The standard deviation of the 1000 means is found to be 0.200,
which is an accurate estimate of the uncertainty of L. However,
the uncertainty of L based on (4) is approximately equal to
b/
√

101 = 0.099. With the adjustment factor 1011/6 = 2.158,
we use 2.158 × 0.099 = 0.21 as the uncertainty of L. We also
use other values of I and b in the simulation; the results seem
to confirm the effectiveness of the adjustment.
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In a more typical two-level waveform, the values of h and k
that are used in (2) and (3) to calculate L1 and L2 may not be
the same; therefore, the elements of the covariance matrix in (4)
must be adjusted separately. We replace the covariance matrix
in (4) with(

u2(L1)h1/3 u(L1, L2)(hk)1/6

u(L1, L2)(hk)1/6 u2(L2)k1/3

)
(13)

where u(L1, L2) is the off-diagonal element, and u2(L1) and
u2(L2) are the first and second diagonal elements of ΣL in (4),
respectively.

The adjustment is needed only under the uncorrelated ad-
ditive error model. Under this model, the nominal covariance
matrix of Y is a diagonal matrix with each diagonal ele-
ment equal to b2, and the nominal covariance matrix ΣL is
given by

(
b2/h 0

0 b2/k

)
.

That is, L1 and L2 are uncorrelated. Based on this result, we
use a simple test to determine whether the adjustment should
be applied, i.e., to test whether L1 and L2 are correlated. First,
we calculate the correlation of L1 and L2 as

r =
u(L1, L2)

u(L1)u(L2)
.

Then, Fisher’s z transformation [18] is employed to obtain

z =
1
2

log
(

1 + r

1 − r

)
.

Let p = min(h, k). If

√
p − 3|z| ≤ 1.96 (14)

we conclude that L1 and L2 are not correlated, and the co-
variance matrix in (13) should replace the covariance matrix in
(4). Otherwise, the covariance matrix from (4) is used without
modification.

In practice, a will not be exactly equal to zero; that is, L1 and
L2 are correlated. However, the adjustment is still needed if the
correlation is not significantly different from zero. The z-test is
simply used for this purpose and should not be used to test if
the measurement model is additive.

If one of the states in the waveform is zero, and a �= 0,
then the above z-test will be ineffective for determining
whether the adjustment should be applied. A detailed discus-
sion on how to adjust ΣL under these conditions is given in
Appendix C.

VI. SIMULATION RESULTS

To verify (5) and (9) and the algorithms that we use to
evaluate them, we use a standard steplike pulse S(ti) (shown
in Fig. 1 and described in Appendix D) in (10) with different

Fig. 2. Scatter of the 20 uncertainty estimates (by propagation of uncertainty)
associated with amplitude estimates for each value of b with a = 0 (dots). The
empty circles show the pooled standard deviation of the 20 amplitude estimates.

The line shows the values of
√

2/33b, which are the uncertainty estimates
using the unadjusted covariance matrix ΣL.

values of a and b to generate yj(ti) and perform Monte Carlo
simulations. For our first simulation, we set a = 0 and vary
b between 0.01 and 0.05 with an increment of 0.01 [scaled
relative to S(t)] to investigate how well the propagation of
uncertainty approach estimates the variation of the pulse param-
eters. For each value of b, we generated J = 1024 waveforms
(j = 1, . . . , J). For each waveform, we used ti = 5i/2048,
i = 1, . . . , 128. This gives 33 points typically in each state after
selecting the shortest half of the state, i.e., h = k = 33. The
mean waveform ȳ(ti) and the (ii′)th element of the 128 × 128
sample covariance matrix S based on the 1024 waveforms were
calculated as

ȳ(ti) =
1
J

J∑
i=1

yj(ti)

Sii′ =
1

J − 1

J∑
j=1

(yj(ti) − ȳ(ti)) (yj(ti′) − ȳ(ti′))

where i′ = 1, . . . , I .
We first used the proposed shorth procedure on the mean

waveform ȳ(ti) to determine the pulse states, the pulse
amplitude A, and the transition duration ΔtBA. We then used
the sample covariance matrix S as ΣY in propagating the
uncertainty of A, denoted by uA, using (4) and (5), and in
propagating the uncertainty of ΔtBA, denoted by utd, using (9).
The modified ΣL in (13) was used throughout. The simulation
was repeated 20 times for each value of b. Figs. 2 and 3 display
the results corresponding to the amplitude and the transition
duration, respectively.

For each value of b, the scatter of the 20 uA’s is shown by the
dots in each column of Fig. 2. It also shows, using the empty
circles, the pooled standard deviation of the 20 A’s, which is an
adequate estimate of the uncertainty of the amplitude estimate.
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Fig. 3. Scatter of the 20 uncertainty estimates (by propagation of uncertainty)
associated with transition duration estimates for each value of b with a = 0
(dots).The empty circles show the pooled standard deviation of the 20 transition
duration estimates.

The “best” squared uncertainty estimate for the amplitude using
the unmodified ΣL is given by

(−1 1 )
(

b2/33 0
0 b2/33

)(
−1
1

)
=

2
33

b2.

It is the “best” because b is assumed known and not estimated.
Values of

√
2/33b are shown by the line in Fig. 2. It clearly

indicates that they greatly underestimate the uncertainty of the
amplitude.

Similarly, Fig. 3 shows the scatter of the 20 utd’s (dots) and
the pooled standard deviation of the 20 ΔtBA’s (the empty
circles). Figs. 2 and 3 show that the uncertainty that is cal-
culated by the use of the proposed propagation of uncertainty
technique closely tracks the actual standard deviation of the
pulse parameters, with bias slowly increasing for large errors.

In our next simulation, we set b = 0.01 and vary a from
0 to 0.01 [scaled relative to S(t)] with an increment of 0.00025
to investigate our ability to accurately estimate the pulse param-
eter uncertainty in the presence of multiplicative errors. We
simulated the waveforms and calculated the pulse parameter
standard deviation (based on the 20 simulations), and also
propagated the uncertainty as before. However, this time, we
performed the test for significant correlation in ΣL using (14)
and modified ΣL using (13) when appropriate. The results are
shown in Figs. 4 and 5 with the same designation for dots and
empty circles as those in Figs. 2 and 3.

Fig. 4 shows that at a = 0.00125 (the sixth value of a),
the dots scatter on both sides of the circle, indicating that the
uncertainty estimates can either overestimate or underestimate
the variation of the pulse amplitude. This is because, at this
point, there are approximately equal contributions from additive
and multiplicative errors in the measurements, resulting in an
approximately equal probability of passing or failing the z-test
of (14). The bias is positive if the z-test is passed, and the
modified ΣL is used; the bias is negative if the z-test is failed,

Fig. 4. Scatter of the 20 uncertainty estimates (by propagation of uncertainty)
associated with amplitude estimates for each value of a with b = 0.01 (dots).
The empty circles show the pooled standard deviation of the 20 amplitude

estimates. The line shows the values of
√

0.0002/33 + 3.959a2, which are
the uncertainty estimates using the unadjusted covariance matrix ΣL.

Fig. 5. Scatter of the 20 uncertainty estimates (by propagation of uncertainty)
associated with the estimates of transition duration for each value of a with
b = 0.01 (dots). Note that the vertical scale is the same as that used in Fig. 3 to
emphasize the observation that the transition duration is invariant with respect
to the multiplicative error standard deviation a.

and ΣL is used without modification. The magnitude of the bias
when a = 0.00125 is about 30% and is acceptably low for our
applications in either case.

The “best” uncertainty estimate for the amplitude when only
the unmodified ΣL is used, i.e., without performing the test for
significant correlation in ΣL, is given by

√
b2

h
+

b2

k
+ 3.959a2 =

√
2
33

0.012 + 3.959a2. (15)

This is obtained as follows. The covariance matrix of Y is
obtained using (11) and (12) with the appropriate approximate
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values of S(ti) (either −1 or 0.9897). Based on this covariance
matrix, the covariance matrix ΣL is obtained using (4) as(

b2/h + a2 −0.9897a2

−0.9897a2 b2/k + 0.98972a2

)
.

The result then follows.
The values of (15) are shown by the line in Fig. 4. The “dot”

and the “line” agree within the scatter of the data except when
a is small. When a is small, the probability of passing the test
in (14) is high, resulting in the use of the modified ΣL for
calculating the uncertainty estimates. We need to point out that
the “line” was calculated assuming a known value of a.

Fig. 5 shows, as expected, that the uncertainty of the transi-
tion duration is independent of the multiplicative error. We used
the same Y -axis scale as in Fig. 3 for ease of comparison.

VII. DISCUSSION

It is important to remember that the quantity that has physical
meaning in any waveform measurement is the measurand, be it
voltage, current, optical power, or other physical quantity that
is being measured as a function of time. Pulse parameters are
defined by the algorithm that is used to transform the waveform
measurements to a metric of (typically) one dimension. It is rea-
sonable to expect that different algorithms will return slightly
different pulse parameters for a given waveform. Algorithms
should be designed to have specific desired properties, such
as the following informal (and probably incomplete) list. The
algorithm should

1) return the intuitively expected value in certain well-
behaved situations;

2) be robust against small perturbations of the waveform,
such as the additive error or small time shifts [19]
(provided that the pulse has sufficiently settled at the
endpoints);

3) use an (approximately) linear measurement equation for
the measurand, so that the uncertainty of the parameter
estimate can be calculated using the covariance-matrix
approach that is used in this paper;

4) have a minimal number of arbitrary parameters.

In this paper, we have described algorithms that are capable
of sorting the waveform data into an arbitrary number of states
and determining the state levels without the use of histograms.
These algorithms meet the above criteria. We have focused on
the shorth for locating state levels, although a matrix operator
for the mean can be constructed that could also be used with the
covariance approach for propagating uncertainty. The mean is
biased by clustered points in the transition region, but has the
advantage that its variance converges as h−1/2. On the other
hand, the shorth is robust against such outliers, whereas its
variance converges at a slower rate of h−1/3. We have used the
matrix operators, along with the waveform covariance matrix,
to propagate uncertainties in the estimated state levels and the
pulse parameters. By demonstrating agreement with the Monte
Carlo simulations, we demonstrated that our transformations
are sufficiently linear as to make our approach valid.

The covariance approach is an extremely powerful technique,
which has application extending beyond the conventional pulse
parameters in [1] provided that the transformations and the
error sources are sufficiently linear. Although we have used a
simple two-state waveform and the 1-D pulse parameters of
the state level, the reference level instant, and the transition
duration as examples, these methods can be generalized to
more complicated waveforms, frequency-domain metrics [4],
and vector metrics, such as the vector L described in this paper
or a vector consisting of two or more reference level instants.
These two vectors could be used, for example, to characterize
eye opening in a digital system.

APPENDIX A
CALCULATING COVARIANCE MATRICES

Type A uncertainty analysis evaluates uncertainty using the
statistical analysis of the measurand itself. Consider a set
{yj ; j = 1, . . . , J} of waveform vectors, each of length I ,
obtained from J repeated measurements. Each waveform can
be considered an I-dimensional random variable. Type A analy-
sis is used to quantify random variations in the measured
waveform in terms of the sample covariance matrix S, as was
done in Section VI.

The determination of the confidence regions that are associ-
ated with S is beyond the scope of this paper. However, as a
rule of thumb, the number of measurements should be much
greater than the dimensionality of the ultimate pulse parameter
that is being extracted. A somewhat more detailed discussion of
confidence regions can be found in [4, Sec. VII].

Type B uncertainty analysis is used to quantify uncertainty
using other methods. For example, a waveform might be a
function f of some scaler quantity p, where p might be the
temperature of the waveform generator or the bias on a par-
ticular component in the generator. In this case, we might
generate the Jacobian in (1) using a finite-difference method,
as described in [4]. That is, we measure the waveform under
identical conditions with the exception of changing p by a
small amount δ, obtaining waveforms f(p) and f(p + δ). The
Jacobian describing the sensitivity of the waveform generator
to variations in p is then an I × 1 vector, i.e.,

Jp =
f(p + δ) − f(p)

δ
.

If the variance of p is σ2
p, then the I × I covariance matrix Σp

expressing the uncertainty in the generated waveform due to
variations in p is found as

Σp = Jp

[
σ2

p

]
JT

p .

Notice that Type A analysis could also be used to characterize
the uncertainty due to p if the repeated measurements were
taken while randomly varying p and keeping all other factors
effectively constant.
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APPENDIX B
JACOBIAN FOR QUADRATIC FIT

For example, if P = 2, the root of the equation

θ̂2t̂
2
r + θ̂1t̂r + θ̂0 − L1 − f(L2 − L1) = 0

is given by

t̂r = R(θ̂,L) =
−θ̂1 ±

√
θ̂2
1 − 4θ̂2

[
θ̂0 − L1 − f(L2 − L1)

]
2θ̂2

with the sign chosen to satisfy the constraint tq+1 ≤ t̂r ≤ tq+N .
Then, the Jacobian matrix JR in (8) is given by

JR =
(

∂R

∂θ̂0

,
∂R

∂θ̂1

,
∂R

∂θ̂2

,
∂R

∂L1
,

∂R

∂L2

)

=

(
∓ 1

Q
,
±θ̂1 − Q

2θ̂2Q
,
θ̂1 ∓ Q

2θ̂2

∓ θ̂0 −yr

θ̂2Q
,±1−f

Q
,± f

Q

)

where

Q =
√

θ̂2
1 − 4θ̂2(θ̂0 − yr)

and yr = L1 + f(L2 − L1).

APPENDIX C
CASE WHERE ONE STATE IS ZERO

Suppose that the two states are zero and one. Using the
results in (11) and (12), it is shown that the nominal covariance
matrix of the states is given by

(
b2/h 0

0 b2/k + a2

)
.

Consequently, the test in (14) is likely to pass, indicating the
need to adjust both uncertainties. In this particular case, it is
necessary to adjust only the uncertainty corresponding to the
state whose level is zero. Therefore, if one of the states is zero,
instead of performing the z-test, one should examine the covari-
ance matrix of the states. If the uncertainty corresponding to
the nonzero state is relatively large compared to the uncertainty
corresponding to the zero state (implying a �= 0), then only the
uncertainty corresponding to the zero state should be adjusted.

If h ≈ k, we can use the statistic [18]

F =
u2(L2)
u2(L1)

to test for the significance of a. Specifically, if F >
F0.95,k−1,h−1, we conclude that a is significantly greater than
zero, where Fα,n1,n2 is the α quantile of an F distribution with
n1 and n2 degrees of freedom.

APPENDIX D
STANDARD STEP FUNCTION THAT IS USED FOR

MONTE CARLO SIMULATION

For the Monte Carlo simulations, we define the sample times
ti = 5i/2048, with i = 1, . . . , 128, and generate the following
offset step function:

S(ti)=Re

{
cH(ti − τs)

[∑
n

an

νn

[
e−2πiνn(ti−τs) − 1

]]}
−d

where c = 2, d = 1, τs = 0.140625, and the step function
H(·) is 0 for arguments that are less than zero and 1 for
arguments that are greater than zero. The following values of
νn and an make S(t) a fourth-order Chebyshev filter response
with cutoff frequency equal to 1:

ν1 0.92461260260237 − 0.24315230680940 i
ν2 0.38298707993899 − 0.58702159682156 i
ν3 −0.38298707993899 − 0.58702159682156 i
ν4 −0.92461260260237 − 0.24315230680940 i
a1 0.18945349227976 − 0.20419547447615 i
a2 −0.64072041135120 + 0.20419547447615 i
a3 0.64072041135120 + 0.20419547447615 i
a4 −0.18945349227976 − 0.20419547447615 i

.

We multiply the above values of νn and an by the cutoff fre-
quency fc = 34.0600 to achieve nominal 10%–90% transition
duration of 12.0058 and state levels L1 = −1.0000 and L2 =
0.9897, although the pulse level asymptotically approaches
0.990074380 with increasing time.

ACKNOWLEDGMENT

The authors would like to thank A. Dienstfrey for
many useful discussions, for providing the coefficients in
Appendix D, and for his careful review of the manuscript.
They would also like to thank G. Stenbakken for his careful
review of the manuscript. They are also grateful to S. Narayan,
who patiently worked on Monte Carlo simulations of pulse
parameter measurements using the histogram technique during
the summer of 2006. Although this paper is not about the
histogram approach, his work helped the authors develop a
“philosophy” of pulse parameter measurements that they hope
they have conveyed in this paper.

REFERENCES

[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, Institute
of Electrical and Electronics Engineers, IEEE Std. 181-2003, Jul. 2003.

[2] N. G. Paulter and D. R. Larson, “Pulse parameter uncertainty analysis,”
Metrologia, vol. 39, no. 2, pp. 143–155, 2002.

[3] N. G. Paulter and D. R. Larson, “The effect of tilt on waveform state
levels and pulse parameters,” in Proc. IMTC, Como, Italy, May 18–20,
2004, pp. 1296–1300.

[4] D. F. Williams, A. Lewandowski, T. S. Clement, C. M. Wang,
P. D. Hale, J. M. Morgan, D. A. Keenan, and A. Dienstfrey, “Covariance-
based uncertainty analysis of the NIST electrooptic sampling system,”
IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 481–491, Jan. 2006.

[5] F. A. Graybill, Theory and Application of the Linear Model.
North Scituate, MA: Duxbury, 1976.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 6, 2009 at 18:49 from IEEE Xplore.  Restrictions apply.



648 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 3, MARCH 2009

[6] N. M. Ridler and M. J. Salter, “An approach to the treatment of uncer-
tainty in complex S-parameter measurements,” Metrologia, vol. 39, no. 3,
pp. 295–302, 2002.

[7] R. Willink and B. D. Hall, “A classical method for uncertainty analysis
with multidimensional data,” Metrologia, vol. 39, no. 4, pp. 361–369,
2002.

[8] B. D. Hall, “On the propagation of uncertainty in complex-valued
quantities,” Metrologia, vol. 41, no. 3, pp. 173–177, Jun. 2004.

[9] B. D. Hall, “Some considerations related to the evaluation of measurement
uncertainty for complex-valued quantities in radio frequency measure-
ments,” Metrologia, vol. 44, no. 6, pp. L62–L67, Dec. 2007.

[10] M. Cox, M. Dainton, P. Harris, and N. Ridler, “The evaluation of un-
certainties in the analysis of calibration data,” in Proc. Instrum. Meas.
Technol. Conf., May 24–26, 1999, pp. 1093–1098.

[11] P. D. Hale, D. F. Williams, A. Dienstfrey, C. M. Wang, A. Lewandowski,
T. S. Clement, and D. A. Keenan, “Complete waveform characterization
at NIST,” in Proc. Conf. Precision Electromagn. Meas., Jun. 8–13, 2008,
pp. 680–681.

[12] D. F. Williams, P. D. Hale, and T. S. Clement, “Calibrated 200 GHz
waveform measurement,” IEEE Trans. Microw. Theory Tech., vol. 53,
no. 4, pp. 1384–1389, Apr. 2005.

[13] J. A. Hartigan, Clustering Algorithms. Hoboken, NJ: Wiley, 1975.
[14] O. M. Solomon, D. R. Larson, and N. G. Paulter, “Comparison of some

algorithms to estimate the low and high state level of pulses,” in Proc.
IEEE Instrum. Meas. Conf., Budapest, Hungary, May 21–23, 2001,
pp. 96–100.

[15] P. Rousseeuw and A. Leroy, Robust Regression and Outlier Detection.
Hoboken, NJ: Wiley, 2003.

[16] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust
Statistics. Hoboken, NJ: Wiley, 1986.

[17] N. R. Draper and H. Smith, Applied Regression Analysis. Hoboken, NJ:
Wiley, 1981.

[18] G. W. Snedecor and W. G. Cochran, Statistical Methods. Ames, IA: Iowa
State Univ. Press, 1980.

[19] D. R. Larson, N. G. Paulter, and D. I. Bergman, “Pulse parameter depen-
dence on transition occurrence instant and waveform epoch,” IEEE Trans.
Instrum. Meas., vol. 54, no. 4, pp. 1520–1526, Aug. 2005.

Paul D. Hale (M’01–SM’01) received the Ph.D.
degree in applied physics from the Colorado School
of Mines, Golden, in 1989.

Since 1989, he has been with the Optoelectronics
Division, National Institute of Standards and Tech-
nology (NIST), Boulder, CO, where he conducts
research on broadband optoelectronic devices and
signal metrology. His current technical work focuses
on extending both time- and frequency-domain opto-
electronic measurements to beyond 110 GHz, imple-
menting novel covariance-based uncertainty analysis

that can be used for time- and frequency-domain quantities, and dissem-
inating NIST traceability through high-speed electronic and optoelectronic
measurement services. Since 1996, he has been the Leader of the High-Speed
Measurements Project in the Sources and Detectors Group. He has authored
over 50 technical publications.

Dr. Hale was the recipient of the Department of Commerce Bronze, Silver,
and Gold Awards, of two Automatic Radio Frequency Techniques Group Best
Paper Awards, and of the NIST Electrical Engineering Laboratory’s Outstand-
ing Paper Award. From June 2001 to March 2007, he was an Associate Editor
of optoelectronics/integrated optics for the IEEE JOURNAL OF LIGHTWAVE

TECHNOLOGY.

C. M. Jack Wang received the Ph.D. degree in
statistics from the Colorado State University, Fort
Collins, in 1978.

Since 1988, he has been with the Statistical En-
gineering Division, National Institute of Standards
and Technology, Boulder, CO. He has authored over
70 journal articles. His research interests include
statistical metrology and the application of statistical
methods to physical sciences.

Dr. Wang was the recipient of the Department of
Commerce Bronze Medals and of several awards

from the American Statistical Association (ASA). He is a Fellow of the ASA.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 6, 2009 at 18:49 from IEEE Xplore.  Restrictions apply.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


