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Abstract
Conventional Johnson noise thermometers based on switching correlators have conflicting
matching requirements for the sensing resistance. To mitigate distortion effects in the
correlator, the RT products of the two sensors must be the same, and to mitigate
frequency-response errors in nominally identical input circuits, the two sensing resistances
should be the same. A noise thermometer using synthetic noise for the primary reference
signal overcomes this conflict because the output voltage and output resistance are
independent. This paper presents the rationale and design constraints for a noise thermometer
using a synthetic-noise source based on Josephson junctions. The quantized voltage noise
source developed at NIST produces tunable waveforms with a spectral density composed of a
comb of frequencies of equal amplitude and random phase. In addition to the conventional
noise-power and impedance constraints, it has additional constraints relating to the number of
tones and the tone spacing.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In Johnson noise thermometry, temperature is inferred from a
measurement of the thermal voltage generated across a resistor.
According to Nyquist’s law, the mean-square voltage is

V 2
T = 4kT R�f, (1)

where T is the temperature, k is Boltzmann’s constant, R is the
resistance of the sensing resistor and �f is the bandwidth over
which the noise is measured. Currently the most accurate noise
thermometers are based on the switching-correlator design first
proposed by Brixy [1, 2], shown in simplified schematic form
in figure 1.

The correlator is used to ensure that the measurement
of the noise power (1) is independent of the input noise
voltage of the preamplifier [3, 4], while frequent switching
between the two sensing resistances, at different temperatures,
eliminates the effects of drifts in the noise thermometer gain
and frequency response. If the bandwidths and gains of the
noise thermometer are the same for both measurements of noise
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Figure 1. Simplified schematic diagram of a conventional
switching-correlator noise thermometer.

power, an unknown temperature can be inferred from the ratios
of the measured noise powers and the sensing resistances:

T = T0
V 2

T

V 2
T0

R(T0)

R(T )
, (2)

where T is the unknown temperature and T0 is the reference
temperature (often the triple point of water).

Most noise thermometers employing the switching-
correlator design use digital electronics for the multiplying
and integrating stages of the thermometer. Digital processing
has the advantages of enabling compact storage of random
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Figure 2. A simplified schematic diagram of the new noise
thermometer using a synthetic reference.

data as averaged cross-spectra, eliminating the effects of the
analogue filter response, enabling digital definitions of the
correlation bandwidth and readily detecting some types of
electromagnetic interference (EMI) [5]. Typically the two
streams of sampled data from each sensor are converted to
the frequency domain by FFT, multiplied together to form
the cross-spectrum, averaged over many datasets to produce
a smooth cross-spectrum and then used to form a ratio with
the cross-spectrum from the other sensor. Thus, conceptually,
each bin of the ratio spectrum formed from the cross-spectra
can be treated as a noise thermometer with a bandwidth
corresponding to the width of the FFT bins.

For several years, NIST has been developing a switching-
correlator type noise thermometer that uses a synthetic-noise
source based on a Josephson ac-voltage generator [6–12]. The
synthetic source replaces the sensing resistor at the reference
temperature, as shown in figure 2. The NIST project was
motivated by two factors. Firstly, with conventional noise
thermometers there is a requirement to match the noise powers
of the two sensors to minimize the influence of non-linearities
within the correlator [13]. This means the sensing resistances
must be related according to R(T )T = R(T0)T0 (see (1)). At
the same time it is desirable to match the sensing resistances,
R(T ) = R(T0), in order to minimize differences in frequency
response of the transmission lines connecting the sensors to
the preamplifiers [14, 15]. In the conventional design, both
requirements cannot be satisfied simultaneously. The use of
a synthetic-noise source in place of the measurement at T0

enables both the noise powers and the source resistance to be
matched independently.

The second motivational factor for the new noise
thermometer was the possibility of determining Boltzmann’s
constant. With the 2005 announcement of the Comité
International des Poids et Mesures to consider updating the SI
so all the base units of the SI are defined in terms of fundamental
physical constants [16], this motivating factor has increased in
importance.

The NIST quantized voltage noise source (QVNS)
produces pseudo-random noise based on a comb of frequencies
of constant amplitude and random phase [6]. The main purpose
of this paper is to investigate the requisite properties of the
frequency comb. First we briefly summarize the rationale for
using the synthetic-noise source. This is followed by analyses
identifying matching criteria for the source. The criteria relate
to the number of tones in the frequency comb, and principally,

the spacing between the tones. First we demonstrate in detail
the limitations of conventional noise thermometers.

2. Matching criteria in conventional noise
thermometers

2.1. Matching of the noise powers

Amongst the many systematic errors that affect noise
thermometers, non-linearity is a major problem. The input
signals (equation (1)) are of the order of 1 µV rms, so that each
channel of the correlator requires an overall voltage gain of
the order of 106 to obtain a voltage suitable for analogue-to-
digital conversion. The problem of keeping distortion products
below 0.001% with JFET preamplifiers operated without
feedback [15], multiple amplifier and filter stages and high-
speed analogue-to-digital converters [17, 18], is practically
impossible to solve. The only practical approach is to control
how the errors propagate, and this usually necessitates the
matching of the various contributions to the noise signals.

Suppose the (amplitude) transfer function for each channel
of the correlator, when referred to the correlator input, is
represented as the Taylor series [13, 19]

Vj =
∞∑

k=0

ajk(VT + Vnj )
k, aj1 = 1, (3)

where the index j indicates the channel number (j = 1, 2),
the index k indicates the order of the coefficient and Vnj is the
equivalent input noise voltage for channel j . The coefficients
aj0 therefore represent the offset voltages and aj1 represent the
linear gains. All of the ajk except aj1 represent the unwanted
non-linear terms and are assumed to be small.

When the signals from the two correlator channels are
multiplied and averaged we obtain the measured noise power

V 2
T (T )meas = a10a20 + a10a22σ

2
n2(T ) + a20a12σ

2
n1(T )

+ a12a22σ
2
n1(T )σ 2

n2(T ) + σ 2
T (T )

(
1 + a10a22 + a12a20

+ σ 2
n1(T )(a12a22 + 3a13) + σ 2

n2(T )(a12a22 + 3a23)

+ 9a13a23σ
2
n1(T )σ 2

n2(T )
)

+ 3σ 4
T (T )

(
a13 + a23

+ a12a22 + (σ 2
n2(T ) + σ 2

n1(T ))3a13a23 + · · · ) . . . , (4)

where σ 2
T (T ) = V 2

T is the variance of the thermal noise signal

(total noise power), V 4
T = 3σ 4

T (T ), as expected for a Gaussian

variable, and V 2
n,j (T ) = σ 2

n,j (T ). Note that all of the even-
order non-linearity coefficients (aj0, aj2, aj4, . . .) occur in (4)
only as products of two small non-linear terms. However,
some of the odd-order non-linearity coefficients (aj3, aj5, . . .)
appear in terms that are first order in the coefficients and
therefore probably contribute greater error in the correlator
output. Additionally, it is possible to eliminate the even-order
non-linearities completely by commutating the preamplifier
inputs [19].

To simplify the analysis we consider only the most
significant odd-order terms of (4) (the conclusions from the
analysis do not change if more terms are added):

V 2
T (T )meas ≈ σ 2

T (T ) + 3(a13 + a23)σ
4
T (T )

+ 3
[
a13σ

2
n1(T ) + a23σ

2
n2(T )

]
σ 2

T (T ). (5)
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The expected ratio of two noise-power measurements made at
different temperatures is therefore

V 2
T (T )meas

V 2
T (T0)meas

≈ σ 2
T

σ 2
T0

{1 + 3(a13 + a23)[σ
2
T (T ) − σ 2

T (T0)]

+ 3a13[σ 2
n1(T ) − σ 2

n1(T0)] + 3a23[σ 2
n2(T ) − σ 2

n2(T0)]}.
(6)

Thus the error in the measured noise-power ratio due to the
non-linearities increases in proportion to the differences in
the various noise powers (the terms in square brackets). The
criteria for eliminating the non-linearity errors are

σ 2
T (T ) = σ 2

T (T0) (7)

and
σ 2

n1(T ) = σ 2
n1(T0) (8a)

and
σ 2

n2(T ) = σ 2
n2(T0). (8b)

The criterion for the correlated noise, (7), applied to (1) leads
to the equivalent requirement R(T )T = R(T0)T0, and hence a
different sensing resistor or reference resistor must be chosen
for each temperature measured. Because the amplifier noise is
common to both sensors, the mismatches in the uncorrelated
noises arise from small differences in the series resistance
of the components in the transmission lines. The matching
criteria for the uncorrelated noises (8a) and (8b) can be satisfied
simply by inserting low-value resistors into some of the input
connections to the switch.

2.2. Matching of the transmission lines

Ideally, and for sufficiently narrow FFT bins, the power in
each bin of the averaged cross-spectra converges on a value
proportional to the power spectral density of the amplified
sensor signal times the bandwidth of the bin (i.e. independent
of preamplifier noise currents and voltages). The measured
power in the FFT bin at frequency f is

V 2
R(T , f ) = 4kT R(T )F |HR(R(T ), f )|2 |A(f, T )|2 , (9)

where F is the bandwidth of each FFT bin, HR is the frequency
response of the transmission line connecting the sensor to the
preamplifiers and A is the frequency-dependent gain of the
amplifiers and filters in the noise thermometer. Note that HR is
dependent on the sensor resistance. The ratio of the measured
powers at two temperatures is

V 2
R(T , f )

V 2
R(T0, f )

= T R(T )

T0R(T0)

|HR(R(T ), f )|2
|HR(R(T0), f )|2 , (10)

which is independent of the amplifier frequency response.
Ideally the ratio of the remaining two frequency responses is
unity so that (2) follows. However, if the two transmission lines
are nominally identical, so they have the same inductance and
capacitance, the ratio of the frequency responses depends on
the sensor resistance that terminates the lines [15]

|HR(R(T ), f )|2
|HR(R(T0), f )|2 = 1 + 4π2f 2(Ct + 2Cin)

2

× [R(T0)
2 − R(T )2], (11)

where Ct and Cin are, respectively, the transmission line and
preamplifier input capacitances. Thus the condition for zero
error due to the differences in the transmission-line frequency
responses is

R(T ) = R(T0), (12)

which is in direct conflict with the linearity matching
requirement of (7).

Note that the transmission-line inductance does not appear
in (11). Although a factor in the frequency response of the
transmission line, the inductance appears only in high-order
terms in combination with the capacitances, which do not
normally change significantly between the two measurements.

Unlike the case for the non-linearity errors, there are
alternative means for managing the transmission-line errors.
Ideally, the capacitances or inductances of the transmission
lines are adjusted so that the characteristic impedance of
each line is matched to its sensor resistance [14]. This ensures
that the frequency response of each transmission line is as
wide and as flat as practical. The matching criterion for the
characteristic impedance is

R2 = L (2Cin + Ct)

(Cin + Ct)
2 . (13)

Normally the sensing resistance is greater than the
characteristic impedance of the transmission line so a small
series inductance is required to achieve the match.

Historically, it was accepted practice to match only the RC
time constants by adding capacitance to one of the transmission
lines [20]. However, this practice neglects the stray inductance
and results in an even larger error due to the interaction of the
inductance and capacitance [15]. A variation on this approach
is to shunt one of the transmission lines with additional
capacitance so that the ratio of the two cross-spectra is as
flat as practical [10, 11]. This achieves the desired result of
a good match of frequency responses at low frequencies, but
the high-order terms due to the interaction of inductance and
capacitance are still large and limit the available bandwidth.

It is also possible to measure the combined capacitance of
the transmission line, switch capacitance and the preamplifier
input capacitance, and to calculate a correction using (11) [21].
This requires impedance measurements to be made while the
preamplifier is live. Additionally, the measurements may give
different values for different positions of the switch.

Because the transmission-line error increases as frequency
squared, the uncertainty in corrections or the uncertainty in
the match of the transmission lines also increases as frequency
squared. This is one of the main factors limiting the useful
bandwidth of the noise thermometer.

3. The rationale for a synthetic-noise source

The NIST QVNS is a delta–sigma digital-to-analogue
converter. It uses first-order oversampling techniques to
produce a sequence of pulses at a very high frequency with the
required baseband (typically 0–4 MHz) waveform of interest
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Figure 3. The first 10 MHz of the QVNS spectrum calculated from
a code sequence with a pattern repetition frequency of 400 Hz. The
upper branch shows the odd harmonics up to 4 MHz. The lower
branch shows the even harmonics up to 4 MHz and all harmonics
above 4 MHz. The amplitudes of the even harmonics are indicative
of the accuracy of the code.

[22]. The advantage of the Josephson system is that each pulse
has quantized area [23]∫

V (t) dt = nh/2e, (14)

where n is an integer (normally n = 1 in the NIST QVNS), h is
Planck’s constant and e is the charge of the electron. Thus, the
synthesized voltage can be calculated exactly from the known
sequence of pulses, the clock frequency of the pulse generator
and fundamental physical constants.

The matching resistors used to terminate the QVNS
transmission line are placed in the leads of the transmission
line (figure 2) so that they produce only uncorrelated noise.
The resistors are also maintained at 4 K so they do not unduly
increase the uncorrelated noise.

The QVNS uses a continuously recycled digital code
that is M bits long, giving the synthesized waveform a
power spectrum composed of a series of tones (harmonics)
at multiples of the pattern repetition frequency, f1 = fS/M ,
where fS is the clock frequency of the code generator, typically
10 GHz [6]. Software is used to generate the code sequence
to produce the desired waveform. For the noise thermometer,
the usual waveform is a series of tones at the odd harmonics
f1, 3f1, 5f1, . . ., all of the same amplitude but random phase.
This yields a pseudo-random noise waveform with a calculable
power spectral density, as shown in figures 3 and 4.

The amplitudes of the tones are chosen so that the average
power spectral density of the synthesized noise is the same
as that of the noise from the sensing resistor of the noise
thermometer. The average power of a QVNS tone located
at fi , as measured by the correlator, is

V 2
QVNS(T , fi) = NFv2

calc(T )|HQVNS(RQVNS, fi)|2|A(fi, T )|2,
(15)

where vcalc(T ) is the average power spectral density calculated
from the code sequence, the clock frequency, and N = 2f1/F
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Figure 4. A 3 µs sample of the calculated QVNS output signal
showing the noise-like waveform.

is the number of FFT bins separating each odd tone. We refer
below to this collection of N bins as a ‘block’. In order
to ensure that N is an integer, specific pattern lengths are
required for the Josephson waveform; the clock frequencies
of the analogue-to-digital converters and the code generator
are chosen to be commensurate; and they must use a common
10 MHz reference. In (15), RQVNS is the resistance of the series
resistors terminating the QVNS transmission line (figure 2).
A detailed description of the principles of the noise source and
the electronic design considerations can be found in [6,7,9,23].

3.1. Relative temperature measurements

When the thermometer is used in relative mode, it makes two
separate measurements of noise-power ratio [8]. In the first
measurement at temperatureT , the following ratio is calculated
for each block:

V 2
R(T , fi)

V 2
QVNS(T , fi)

= 4kT R(T )

v2
calc(T )

×
∑(N−1)/2

n =(1−N)/2 |A(fi + nF, T )|2 |HR(R(T ), fi)|2

N |A(fi, T )|2 ∣∣HQVNS(RQVNS, fi)
∣∣2 . (16)

The numerator includes the sum of the measured sensor noise
powers from the block of N FFT bins located about the QVNS
tone, and the denominator includes the measured power in the
tone itself. Note that vcalc(T ) is chosen so that the noise-power
ratio is very close to unity and the effects of non-linearities are
negligible.

If it is assumed that the frequency response of the
transmission lines and amplifiers is constant over the narrow
bandwidth covered by one block of FFT bins, (16) simplifies to

V 2
R(T , fi)

V 2
QVNS(T , fi)

= 4kT R(T )

v2
calc(T )

|HR(R(T ), fi)|2∣∣HQVNS(RQVNS, fi)
∣∣2 , (17)

which is independent of the amplifier response. If a
second noise-power-ratio measurement is made at the
reference temperature, T0, using exactly the same sensor
and transmission line as for (17), the unknown temperature
calculated from the noise powers associated with the ith QVNS
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tone is

T (fi) = T0
R(T0)

R(T )

V 2
QVNS(T0, fi)

V 2
R(T0, fi)

V 2
R(T , fi)

V 2
QVNS(T , fi)

× |HR (R(T0), fi)|2
|HR(R(T ), fi)|2

v2
calc(T )

v2
calc(T0)

. (18)

This expression is computed for each QVNS tone and all
such measured temperatures are averaged to give the final
measurement.

Note that the frequency response of the transmission line
for the synthetic source is absent from (18). By using the same
sensor and transmission line for both of the measurements
leading to (18), we ensure, by design, that the first four
ratios in (18) are all very close to 1.0. Only the last
ratio, v2

calc(T )/v2
calc(T0), differs significantly from unity, but

it is calculated with negligible uncertainty from fundamental
constants and the pulse-generator frequency. The use of
the QVNS enables the thermometer to operate with the same
sensing resistance, the same transmission line and the same
noise powers, therefore overcoming the matching conflict
inherent in conventional noise thermometers.

3.2. Absolute temperature measurements

In absolute mode, the temperature is inferred from (17) directly
in terms of fundamental constants:

T (fi) = v2
calc(T )

4kR(T )

V 2
R(T , fi)

V 2
QVNS(T , fi)

∣∣HQVNS
(
RQVNS, fi

)∣∣2

|HR (R(T ), fi)|2
. (19)

Note that all terms are ratios of similar quantities, the ratio of
two calculated quantities (one with a measured resistance),
two measurements of noise power and the ratio of two
frequency responses. Although the matching of the frequency
responses remains difficult, there is no longer a constraint to
have resistances of a particular value, and they can be chosen
to be matched to the line. This maximizes the bandwidth of the
system and minimizes the frequency-response error. Further
discussion of this point is beyond the scope of this paper but we
note that the remnant second-order effects of the transmission-
line mismatch can be addressed by extrapolating the measured
temperature to zero frequency [11].

By making the measurements at the triple point of water,
(19) can be used to find a value for k, Boltzmann’s constant.
This requires a good ac measurement of the resistance of
the sensor and the measurement of the ratio of the noise
powers. Note that making a Boltzmann constant determination
directly from (1) using conventional noise thermometers
involves the practically impossible tasks of characterizing
the gain and bandwidths of the noise thermometer [24].
The shift to processing in the frequency domain to eliminate
the analogue filter response and the use of a source with
calculable power spectral density makes the measurement
possible. Determining k from (19) effectively involves the
balancing of power spectral densities rather than noise powers.
The near perfect linearity in both frequency and amplitude of
the QVNS synthesized waveforms makes the determination of
k possible.

4. Matching criteria in a noise thermometer with
the QVNS

4.1. Noise-power matches

The noise-power matches for the synthetic-noise source are
exactly the same as for a conventional noise thermometer
(equations (7), (8a) and (8b)). However, because the
impedance-matching resistors are inserted into the leads of
the transmission line and operate at a temperature near
4 K, they also produce uncorrelated noise, so making an
additional contribution to the uncorrelated noises, which
must be considered.

4.2. Impedance matching

In principle, the use of the QVNS allows the simultaneous
matching of the noise powers and the resistors terminating
the transmission line. However, the situation is not as
simple as might at first be thought. In figure 1 a single
resistor terminates the two transmission lines connecting the
sensor to each preamplifier. In figure 2, the short circuit
of the Josephson junctions effectively decouples the two
pairs of leads to the preamplifiers. This means that, for
otherwise identical transmission lines (same stray inductances
and capacitances), the total resistance inserted into each pair of
the QVNS lines must be twice the sensor resistance (i.e. each
lead resistor shown in figure 2 must be equal to the sensing
resistance shown in figure 1). In practice, the QVNS and
sensor transmission lines will be different, so the ratios of the
terminating resistances will not be exactly 2 : 1. Currently, for
the NIST QVNS, the terminating resistance is about 1.6 times
the sensing resistance.

4.3. Voltage-distribution match

The requirement to consider the number of spectral elements
(tones) in the QVNS frequency comb is motivated by the need
to ensure that the distortion products in the thermal noise signal
and the QVNS signal are the same. If it is assumed that the
QVNS produces a sine wave of the same total power as the
thermal signal; then the first-order distortion-product terms of
(4) give rise to a noise power at the output of the correlator of

V1V2

∣∣
sin = σ 2

T + 3
2 (a13 + a23)σ

4
T + 3(a13σ

2
n1 + a23σ

2
n2)σ

2
T .

(20)

The difference between the correlator output (20) for the sine
wave and (5) for the Gaussian noise arises because the fourth
moment of the distribution of voltages for a sine wave is
different from that for Gaussian noise (when the two have the
same second moment). Thus it is not possible to use a pure
sine wave as a reference signal without incurring errors from
the non-linearity effects. If the full Taylor-series expansion of
the correlator transfer function is considered, then all of the
non-zero statistical moments of the signal distribution will be
manifest in (4). Therefore, for the QVNS reference waveform
to achieve a good match against the noise in the presence
of non-linearity, the distribution for the QVNS waveform
must have the same statistical moments as that of the noise
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Table 1. The first four non-zero moments of the distributions for a single sinusoid, m sinusoids and a Gaussian signal.

Moment for single
Moment sinusoid Moment for m sinusoids Moment for Gaussian

µ2 σ 2
T σ 2

T σ 2
T

µ4
3

2
σ 4

T

(
3 − 3

2m

)
σ 4

T 3σ 4
T

µ6
5

2
σ 6

T

(
15 − 45

2m
+

10

m2

)
σ 6

T 15σ 6
T

µ8
35

8
σ 8

T

(
105 − 315

m
+

1435

4m2
− 1155

8m3

)
σ 8

T 105σ 8
T

signal, i.e. the distribution of voltages comprising the QVNS
waveform must be Gaussian.

The argument above is based on a Taylor-series
approximation of the amplitude dependence of distortion-
producing components. There are other distortion mechanisms
associated with the analogue-to-digital-converters [17,18] and
slew-rate limiting that can also produce distortion that is not
well described by Taylor series. However, a synthetic reference
that has all of the same moments and spectral distribution as
Gaussian noise will produce the same distortion products as
the noise.

In order to calculate the distribution for the probability
density distribution for many sinusoids, consider first the
distribution for a single sinusoid of amplitude A:

p(x) = 1

π
√

A2 − x2
for − A < x < A

= 0 for |x| > A. (21)

The probability density function for a collection of N such
sinusoids, all of the same amplitude and random phase, is
obtained by convolving the probability density function (21)
with itself many times. The convolution is more easily
computed in the Fourier domain by the use of the characteristic
function (Fourier transform) of the distribution [25]:

Fx(ξ) =
∫ +∞

−∞
p(x) exp(iξx) dx = J0(Aξ), (22)

where J0(Aξ ) is a Bessel function of the first kind. The nth
moment, µn, of the distribution (21), p(x), is obtained by
differentiating (22) n times according to [25]

µn = 〈xn〉 = (−i)n
dn

dξn
Fx(ξ)

∣∣∣∣
ξ=0

. (23)

Since convolution in the x-domain is equivalent to
multiplication in the ξ -domain, the moments of the distribution
of the sum of m statistically independent sinusoids (with
random phase) is also given by (23), but with Fx(ξ ) replaced by
Fm

x (ξ). The results of the calculation, which was carried out
with an algebraic mathematics application, are summarized in
table 1. The amplitude of the m sinusoids has been chosen so
that the total mean-square power is always σ 2

T . Note that the
odd moments for all of the distributions are zero because the
distributions are symmetric about zero.

Table 1 shows that as the number of sinusoids increases,
the moments all converge to the values for the Gaussian

distribution. The convergence is expected since this is an
example of the central limit theorem [25]. Secondly, and most
importantly, the convergence improves as 1/m.

The 1/m convergence of the frequency comb to a Gaussian
distribution gives a general guide for the design of the
QVNS. For example, in a noise thermometer with the total
distortion below 0.1% of the noise power, a synthetic spectrum
comprising 1000 or more sinusoids should ensure that the
differences in distortion products are below the parts-per-
million level. However, the spectral distribution of the
sinusoids must also be considered. To match the distortion
products exactly, the total noise powers must be matched
(equations (7) and (9)) at every stage of the noise thermometer.
The only way to achieve this is for the frequency comb
to extend to the full bandwidth of the preamplifier. Since
about 1000 tones are required within the nominal passband
of the thermometer, which is usually much less than the
bandwidth of the preamplifier, the total number of tones
required may be very much greater than 1000. Experimentally,
we have observed no differences in correlator output when
the bandwidth of the tones is changed from 4 MHz to 8 MHz,
indicating no measurable bandwidth-related non-linearity in
the measurement system.

A reference waveform based on a non-constant power
spectral density could also be considered. It could, for
example, be synthesized from a frequency comb with Rayleigh
distributed amplitudes, as is characteristic of narrow-band
noise [25]. However, this option probably converges to a
Gaussian distribution more slowly than the equi-amplitude
sinusoids as described above. If we consider the case for two
sinusoids this becomes clear. Clearly if the amplitudes of the
two sinusoids are very much different, the improvement in
statistics will be only marginally better than having one large-
amplitude sinusoid. The best situation must be when the two
sinusoids have equal amplitudes. This must also apply when
there are many sinusoids.

4.4. Spectral match

The synthetic noise generated by the QVNS is not uniformly
distributed throughout the spectrum, but distributed as evenly
spaced tones of equal amplitude such that the average power
spectral density of the thermal noise signal and the QVNS
are the same. In the noise thermometer operated at NIST,
the signals are sampled by a fast analogue-to-digital converter,
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with the data-acquisition period chosen so that each bin in
the FFT is approximately 1 Hz wide. Ideally, the QVNS
would generate tones at 1 Hz intervals so that the averages
of the two power spectra are indistinguishable. However, as
discussed above, the tone spacing is limited by the memory of
the code generator driving the QVNS. When the thermometer
is operating in absolute mode, this leads to an error that is
dependent on the frequency response of the amplifiers and
filters.

If it is assumed that the frequency response of the
transmission lines is constant over the block of N bins, but
the amplifier response is not constant, then the measured noise
power ratio (16) is

V 2
R(T , fi)

V 2
QVNS(T , fi)

= 4kT R(T )

v2
calc(T )

|HR(R(T ), fi)|2∣∣HQVNS(RQVNS, fi)
∣∣2

×
∑(N−1)/2

n=(1−N)/2 |A(fi + nF, T )|2
N |A(fi, T )|2 . (24)

Equation (24) shows the approximation leading to (17) is based
on the assumption that

1

N

(N−1)/2∑
n=(1−N)/2

|A(fi + nF, T )|2 = |A (fi, T )|2 , (25)

i.e. the frequency response of the thermometer at the frequency
of the tone is equal to the average frequency response over the
whole block. Note that it is assumed that the QVNS tone is
in the centre of the block. Where the frequency response of
the filter is relatively constant (actually trapezoid), (25) proves
to be a good approximation. However, near the edges of the
pass band of the thermometer, where the frequency response
is curved, the approximation becomes worse.

The accuracy of the block summations can be evaluated
by noting that the discrete sum (25) has a continuous analogue:

1

2f1

∫ fi+f1

fi−f1

|A(f )|2 df = |A(fi)|2 . (26)

If A(f ) has an n-pole low-pass Butterworth response with a
3 dB cutoff frequency of f0, then the integrand of (26) can be
expanded as a Taylor series about fi to give

|A(f )|2 ≈ f 2n
0

f 2n
0 + f 2n

i

− 2nf 2n
0 f 2n−1

i(
f 2n

0 + f 2n
i

)2 (f − fi)

+
nf 2n

0 f 2n−2
i ((2n + 1)f 2n

i − (2n − 1)f 2n
0 )

(f 2n
0 + f 2n

i )3
(f − fi)

2,

(27)

and hence the value for the integral (26) is

1

2f1

∫ fi+f1

fi−f1

|A(f )|2 df ≈ |A(fi)|2

×
[

1 +
n

12
f 2n

i

(
(2n + 1)f 2n

i − (2n − 1)f 2n
0

)
(
f 2n

0 + f 2n
i

)2

4f 2
1

f 2
i

]
.

(28)

Equation (28) shows that the relative accuracy of the
approximations, (25) and (26), diverges as the square of the

Figure 5. The error in the block summation for tone spacing of
400 Hz and 800 Hz. It is assumed that the noise thermometer has an
11-pole low-pass Butterworth response with a cutoff frequency of
650 kHz.

block bandwidth (equal to the tone spacing) and roughly as
the square of the number of poles in the response of the filter.
The relative error due to the approximation is given by the
second term in the square brackets of (28). At frequencies
well above the cutoff frequency of the filter, the error has a
1/f 2

i dependence.
In the NIST thermometer, we recently reduced the

measurement bandwidth of our electronics from 2 MHz to
650 kHz by replacing the active four-pole Butterworth anti-
alias filter [7] with a passive 11-pole low-pass Butterworth
filter. A(f ) is dominated by the response of this anti-aliasing
filter. The relative error is plotted in figure 5 for two values
of tone spacing, 400 Hz and 800 Hz. The most notable feature
of the curves is that the most serious effects are apparent only
above the cutoff frequency of the filter, and the effects are
practically negligible at frequencies below 500 kHz. Note too,
the zero in the error near the cutoff frequency; this is also
apparent from (28).

The linear term of (27) also provides the sensitivity of the
integration to errors in the location of the tone frequency. This
is an issue because the fastest and most frequently used FFTs
are based on 2n-radix algorithms, and hence there is always
an even number of FFT bins per tone. Additionally, for the
NIST QVNS the tone spacing is twice the pattern repetition
frequency of the QVNS. This mean that N , the number of bins
per tone, is always an even number, and there is no FFT bin
exactly centred between two tones. (In the summations of (17),
(24) and (25) N is assumed to be odd to avoid having to raise
this point before now.) The nearest tone is located 0.5 of an
FFT bin from the centre of the summed FFT bins. If the tone
is located at fi and the block summation is centred on fc then
the result of the block summation is

1

2f1

∫ fc+f1

fc−f1

|A(f )|2df ≈ |A(fi)|2

×
[

1 + 2n
f 2n

c

(f 2n
0 + f 2n

c )

(fc − fi)

fc

]
. (29)

The second term in the square brackets of (29) gives the relative
error in the block summation due to the offset of the tone from
the block centre. Note that the error term has the shape of a
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Figure 6. The error in the block summations with the tone
misplaced from the block centre by 0.5 Hz. The filter has an 11-pole
low-pass Butterworth response with a cutoff frequency of 650 kHz.

high-pass filter multiplied by 1/fc. This yields little error at
low frequencies and a 1/f shape above the cutoff frequency
of the filter. This is plotted in figure 6 for a 0.5 Hz offset and
an 11-pole low-pass Butterworth filter with a cutoff frequency
at 650 kHz. Note again that there is practically no error for
frequencies below 500 kHz, and the error is greatest near the
band edge.

There are at least three possible approaches to managing
the block summation error caused by the tone offset. Firstly,
ignore it and consider only data below about 500 kHz
(approximately 0.75f0). However, it is desirable to remove
all such spectral artefacts to avoid complicating the matching
of the transmission lines. Secondly, because the effect is
linear, it can be eliminated by alternating the block summations
so that the 0.5 Hz offset is alternately positive and negative.
Thirdly, a value for the expected amplitude of a tone located
at the true centre of the block can be obtained by interpolating
between the neighbouring-tone amplitudes. At NIST we have
adopted the latter approach using a cubic spline to carry out
the interpolation.

5. Conclusions

A noise thermometer using a synthetic-reference-noise source
overcomes the conflicting sensor-matching requirements that
afflict conventional noise thermometers. Additionally, a
noise thermometer using a Josephson ac-voltage generator to
synthesize a noise waveform consisting of a frequency comb of
known power spectral density offers a means for determining
Boltzmann’s constant.

In order to mitigate distortion effects in the correlator,
the synthetic-noise source must produce a signal that closely
approximates a Gaussian voltage distribution. This ensures
that all of the various distortion products (effectively the
moments of the distribution of voltages) are the same for both
the sensor signal and the synthetic noise. For a pseudo-random
noise signal composed of a frequency comb with m sinusoids
of constant amplitude and random phase, the moments of the
distribution of sinusoids converge to the Gaussian moments
as 1/m. Thus, for a noise thermometer with about 0.1%
distortion, a minimum of 1000 sinusoids are required within

the thermometer pass band to ensure that the effects are below
the part-per-million level.

Due to the limited memory available in the code generator,
it is not possible to produce tones for every FFT bin of the
processed signal. Consequently, if the frequency response of
the noise thermometer is not constant, the noise thermometer
response at the tone frequency may not be representative of
the response over the block of FFT bins near the tone. Near
the edges of the thermometer pass band, this will causes errors
proportional to the square of the tone spacing. A similar error
occurs if there is an offset between the tone and the centre of
the block between two tones.

In total there are six constraints on a noise thermometer
using a frequency comb as a synthetic reference. The first
three constraints are the same as for conventional noise
thermometers.

(i) To avoid errors due to correlator non-linearity, the
amplitude of the synthetic noise must be the same as that
of the thermal noise signal.

(ii) The uncorrelated noise powers in each channel must be the
same for the two measurements. In combination with (i),
this means the total noise powers in each channel must be
the same for both measurements. Note that the synthetic-
noise source has additional noise due to extra resistors
terminating the transmission line.

(iii) To maximize bandwidth and minimize transmission-line
errors, the resistances terminating the sensor and synthetic
source transmission lines should be terminated by a
resistor of the characteristic impedance of the line.

The second group of three constraints relate specifically to a
synthetic-noise source based on the frequency comb.

(iv) To minimize the effects of non-linearity, the synthetic-
noise source must generate a large number of tones across
the full spectrum of the noise thermometer to ensure the
sensor noise and synthetic noise have the same statistical
moments.

(v) The spacing of the tones from the synthetic source must
be small enough to ensure accurate block summations of
the spectral power.

(vi) Each tone should be at the centre of each spectral block
used to calculate the ratio spectrum, or measures taken
during computations to compensate for any offset.
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