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Abstract – We review the use of slab-coupled optical waveguide 
amplifiers (SCOWAs) in low-noise mode-locked and single-
frequency lasers.  We also report a new single-frequency laser cavity 
incorporating an Er/Yb-codoped waveguide distributed-Bragg-
reflector that produces 330-mW power with 75-kHz linewidth. 

 
Introduction 

Over the past decade, dramatic improvements in precision 
metrology and low-noise signal generation have been realized 
through the development of mode-locked-laser-based optical 
frequency combs and single-frequency CW lasers.  
Ultimately, the noise characteristics of both mode-locked and 
CW lasers are limited by the quality factor (Q) of the laser 
cavity and the amount of intracavity optical power.  However, 
this quantum-limited performance is often not obtained due to 
the presence of other noise sources (e.g., cavity length 
fluctuations, power-supply noise, 1/f noise). 
  To date, fiber and solid-state lasers have exhibited 
superior noise performance relative to semiconductor lasers 
due to their larger intracavity powers, smaller intracavity 
losses, and negligible gain/index coupling.  The main 
limitation of fiber and solid-state lasers is that their power 
conversion efficiency is low (typically < 10%) due to optical 
pumping inefficiencies.  Directly-pumped semiconductor 
lasers offer the potential of higher power efficiency provided 
that they can be designed to have sufficient noise 
performance. 
 We have recently developed a new class of high-power 
semiconductor optical gain media referred to as the slab-
coupled optical waveguide amplifier (SCOWA) [1].  The 
SCOWA has several attributes that are beneficial for realizing 
low-noise optical sources:  (i) large (5 x 7 µm) fundamental 
optical mode due to low index-contrast and mode filtering,  
(ii) large saturation output power (~ 1 W) due to low optical 
confinement factor (Γ), and (iii) small excess optical loss due 
to low overlap between the mode and the high-loss p-doped 
cladding layers.  SCOWA applications that have been 
demonstrated at 1.5-µm include Watt-class power amplifiers, 
actively mode-locked external-cavity lasers (ECLs) with 
record-low timing jitter, monolithic passively mode-locked 
lasers with > 200-mW power, and single-frequency fiber 
Bragg-grating (FBG) SCOWA-based ECLs (SCOWECLs) 
producing 90-mW power with ~150-kHz linewidth [2].   
 In this talk we will review the operating principles of the 
SCOWA technology and its use in low-noise mode-locked and 
single-frequency lasers.  We report improved FBG 
SCOWECL performance.  We also demonstrate a novel ECL 
having an external cavity comprising an Er/Yb codoped 
waveguide distributed Bragg-reflector (DBR).   

Single-Frequency External-Cavity Lasers 
A primary issue in realizing single-frequency semiconductor 
ECLs is designing the cavity to maintain stable, single-
longitudinal-mode operation with high side-mode suppression.  
To achieve single-frequency operation, a frequency-selective 
element must be included in the cavity to reduce the optical 
bandwidth, thereby allowing only a single mode to oscillate.  
The narrow bandwidth required becomes increasingly difficult 
to attain as the length of the active gain medium increases.  
We examine two external cavities that enable stable single-
mode operation with a long (10 mm) SCOWA gain section.  
First, we use a long FBG that contains only a few longitudinal 
modes within its bandwidth.  And second, we use a Er/Yb-
codoped waveguide containing a relatively short DBR.  This 
doped-cavity approach has previously been used to stabilize 
semiconductor ECLs comprising meter-length doped-fiber 
external cavites [3]-[4]. 
 Figure 1 depicts the two SCOWECL cavities that were 
investigated.  Both cavities utilize the same curved-channel 
InGaAsP quantum-well SCOWA (10-mm length, 100-mm 
radius) having a high-reflectivity (R > 95%) rear facet and a 
5°-angled, anti-reflection (AR) coated front facet [5].  The 
AR-coated SCOWA facet is directly butt coupled to either an 
angle-cleaved FBG (Fig. 1(a)) or an angle-polished Er-DBR 

 
 

Fig. 1.  SCOWA-based 1.5-µm single-frequency lasers having different 
external cavities:  (a) narrow-bandwidth (6.2 GHz) fiber Bragg grating, (b) 
Er/Yb co-doped phosphate-glass waveguide with distributed Bragg reflector 
(DBR).   Er-DBR waveguide dimensions:  L1 = 1 mm, LG = 6 mm, L2 = 9 mm. 
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waveguide (Fig. 1(b)). 
 FBG SCOWECLs were evaluated at three different 
wavelengths spanning the SCOWA gain bandwidth using 
FBGs fabricated in HI1060 Flex fiber and having center 
wavelengths of 1480, 1520, and 1556 nm.  The bandwidth and 
reflectivity of the FBGs were 50 pm (6.2 GHz) and 50%, 
respectively.  The FBGs were angle cleaved at 11° and AR-
coated.  The distance between the angled fiber facet and the 
beginning of the FBG was < 2 mm.  The mode-diameter of the 
HI1060 Flex fiber (6.5 µm) is well matched to the large mode 
profile of the SCOWA (6 x 7.5 µm), enabling butt-coupling 
efficiency > 60%. 
 For the three FBG wavelengths evaluated, the best 
performance was obtained at 1520 nm, which is on the short-
wavelength (“blue”) side of the gain spectrum peak at the 
threshold current of 700 mA.  Single-mode operation was 
verified using a scanning Fabry-Perot interferometer.            
At I = 2.9 A, the output power was 200 mW and the FWHM 
linewidth was 40 kHz.  Self-heterodyne linewidth 
measurements (Fig. 2) revealed a Lorentzian lineshape, 
indicating that white noise was dominant.  The threshold 
currents for both the 1480- and 1556-nm FBGs increased to 
about 1 A due to the lower gain at these wavelengths.  The 
single-longitudinal-mode stability was notably worse at    
1556 nm.  We attribute this mode instability to operation on 
the long-wavelength (“red”) side of the gain spectrum where 
the linewidth enhancement factor (α) is larger. 
 The Er/Yb-codoped DBR phosphate-glass waveguide 
used here was previously used to realize optically pumped  
1.5-µm single-frequency lasers producing 80-mW power and 
500-kHz linewidth [6].  In our work, the waveguide facets 
were polished at a 10° angle to reduce the facet reflectivity 
and allow efficient butt-coupling.  The facets were not AR 
coated.  The dimensions shown in Fig. 1(b) are L1 = 1 mm,  
LG = 6 mm, and L2 = 10 mm.  For this grating length, the DBR 
bandwidth is approximately 270 pm (33 GHz) and contains 
many longitudinal modes.  The etched DBR center 
wavelength is 1539 nm and the estimated reflectivity is 65%. 
 The threshold current for the Er-DBR SCOWECL was 
750 mA, which is nearly equal to that of the 1520-nm FBG 
SCOWECL.  Self-heterodyne linewidth measurements (Fig. 3) 
revealed a Voigt lineshape with Gaussian (Lorentzian) 
linewidths increasing from 56 to 75 kHz (5.0 to 7.2 kHz) as 
the current was increased from 1.2 to 3.0 A.  The output 
power at I = 3 A was 330 mW.  To our knowledge, this 
combination of high output power and narrow linewidth is the 
best that has been achieved for semiconductor ECLs.   
 

Conclusions 
We have demonstrated two semiconductor ECL geometries 
containing a high-power SCOWA gain medium that provide 
stable single-longitudinal-mode operation.  The Er-DBR 
cavity has higher output power than the FBG cavity (330 vs. 
200 mW at ~3 A bias).  The lineshapes of the two cavities are 
considerably different.  At I ~ 3A, the total FWHM linewidth 
of the Er-DBR cavity is almost twice as large as that of the 
FBG cavity (75 vs. 40 kHz).  However, the Er-DBR Voigt 

lineshape has a 7.2-kHz Lorentzian component so that the 
phase noise decreases much faster than that of the FBG ECL.   
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Fig. 2.  Self-heterodyne linewidth measurement of SCOW external-cavity 
laser incorporating a 1520-nm HI1060 Flex fiber Bragg grating.  Fiber 
delay = 25 km (125 µs).

 
Fig. 3.  Self-heterodyne linewidth measurement of SCOW external-cavity 
laser incorporating a Er/Yb codoped waveguide with DBR.  Fiber delay = 
25 km (125 µs). 
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