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ABSTRACT

We examine the calibration of polarimetric radar cross
section (RCS) measurement systems using rotating di-
hedral and cylinder targets. Stringent requirements
on the polarimetric system’s stability, dynamic range
and sensitivity as functions of the cross-polarimetric
parameters present several measurement challenges.
We must consider the system sensitivity over the re-
quired dynamic range in the context of the overall
system uncertainty, which might need to be improved
to successfully complete a polarimetric calibration.

The minimum cross-polarimetric signal-to-noise and
signal-to-drift ratios must be accurately character-
ized. In state-of-the-art radar cross section systems
the signal-to-noise requirement is probably satisfied.
However, the presence of very small drifts will invali-
date a polarimetric calibration and must be removed
from the data. A cylinder preserves the transmitted
signal’s cross-polarization and can provide drift-free
measurements. Hence, we propose a new polarimetric
calibration procedure that combines calibration data
from both a dihedral and a cylinder to obtain the sys-
tem parameters.
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bration, radar cross section, sensitivity

1. Introduction

In polarimetric calibration we want to determine the
system cross-polarimetric parameters e,, where the
subscript ¢ designates either the horizontal h or verti-
cal v polarization of the transmitting channel [1 — 5].
For ideal systems with perfect channel isolations and
which have been perfectly aligned, the €, vanish. Real
systems will have finite cross-polarimetric parameters
that, however, could be very small. This poses a mea-
surement challenge: the overall system uncertainty [6]
must be smaller than the the target-dependent system
polarimetric factor, which we define as the ratio of the
received signals measured by a real RCS system and
an ideal RCS system. For example, when measuring a
cylinder, the polarimetric factor (see Section 4 for the
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simple derivation) for hh copolar measurements is
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where Cy4 are the cylinder’s copolar scattering matrix
elements. We obtain the corresponding definition for
vv copolar measurements by interchanging h and v. It
is estimated that for RCS measurement systems cur-
rently in use, 0.01 < e, < 0.15. Hence, if Cpp, = Cyy,
the polarimetric factor in decibels is very small.

In Figure 1 we plot the ratios of the copolar scatter-
ing matrix elements as a function of frequency from
0.1—18 GH z for two standard cylinders (usually desig-
nated as 900 and 1800 by the RCS community) with
diameters 22.86 and 45.72 c¢m, and heights of 10.67
and 21.34 c¢m, respectively. Only small deviations
from 1 are seen at most frequencies. In Figure 2 the
polarimetric factors (dB) for the 900 cylinder are plot-
ted for various values of e. We see that for e = 0.15,
a possible upper bound for current RCS measurement
systems, the polarimetric factor is less than 0.2 dB.
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Figure 1. The ratio C,,/Chpr as a function of fre-

quency from 0.1 — 18 GH z for standard 900 and 1800
cylinders. Only small deviations from 1 are observed.
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Figure 2. The polarimetric factor in dB as a func-
tion of frequency from 0.1 — 18 GH z for the standard
900 cylinder. The curves, identified by the values of
€, specify the required uncertainty limits of the polari-
metric measurement system.

The curves in Figure 2 need to be interpreted in the
context of RCS uncertainty analysis [6]. In the case
of monpolarimetric calibration with cylinders, these
curves represent the polarimetric uncertainty as a
function of frequency. To state an upper bound cal-
ibration uncertainty we need to assume an upper
bound for e. A value of € = 0.15 is defensible based on
known cross-polarimetric ratios obtained from near-
field antenna measurements.

Alternatively, the curves in Figure 2 specify the to-
tal nonpolarimetric system uncertainty that must be
met to perform polarimetric calibration successfully.
For example, to determine a cross-polarimetric ratio
€ = 0.15, the combined nonpolarimetric system un-
certainty from all sources of uncertainty [6] must be
significantly less than 0.2 dB. In addition, the uncer-
tainty limits for the polarimetric calibration must be
small enough to stay outside the uncertainty bounds
of the nonpolarimetric calibration. Only then can the
polarimetric and nonpolarimetric calibrations be dis-
tiquished from each other. This is a serious measure-
ment challenge even for state-of-the-art RCS measure-
ment systems. Obviously, the smaller the system e,
the more stringent the system uncertainty require-
ment becomes.

Polarimetric calibration can be implemented using ei-
ther a cylinder, a rotating dihedral, or both. The un-
certainty considerations just discussed apply to both
cylinders and dihedrals. With a cylinder, the cali-
bration occurs at a single signal level; however, with
a dihedral we must accurately receive signals over a
wide dynamic range estimated by (see Section 3)
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dihedral calibration signal dynamic range (dB)
0

Figure 3 shows the dynamic range as a function
of € wherein signals must be accurately measured.
The dynamic range increases as e decreases and,
as we have seen in Figure 2, the required system
uncertainty decreases with e. Thus, the measure-
ment challenge in calibration with a rotating di-
hedral is even more stringent: the system uncer-
tainty must be small even at very low signal levels!
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Figure 3. The dynamic range in dB as a function of
€ wherein signals must be accurately obtained when
using a rotating dihedral to perform polarimetric cal-
ibration. The challenge is to measure signals accu-
rately over a large range when the cross-polarimetric
ratio € is small.

2. Basics of Polarimetric Calibration

The transmitted signal is scattered by a target in all
directions in space and a signal is received at some
location. In monostatic configurations, the transmit-
ter and receiver are located at the same point. This
scattering process is described by

s = rSt, (3)

where s is the polarimetric signal received by the
radar, and t, S and r are the system transmit, target
scattering and system receive matrices, respectively.
In eq (3), r is generally defined as

_ (Thh Tho
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In the matrix elements in eq (4), the right index spec-
ifies the polarization of the incoming signal and the
left index specifies the channel that is receiving the
incoming signal. For reciprocal systems, t is given by
the transpose of r: t =1, and

s=(g &) )

We can renormalize r as

r =Ty,E, (6)



where
(7)

and )
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Equations (4), (7) and (8) define the cross-polarization
ratios as
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Equation (3) can now be written as

(11)

In polarimetric calibration we want to determine €. In
general, r,, must be specified or eliminated from the
measurements s, before € can be found.

S = ryeSér,.

3. Polarimetric Calibration with a Dihedral

Polarimetric calibration using a rotating dihedral has
been studied extensively [1 - 5]. Here, we review the
fundamentals, and refine our understanding of the cal-
ibration process in light of the discussion presented in
the introduction.

The scattering matrix Sp for a dihedral (in the high-
frequency limit) is

— cos 20

sin 260
sin 260 ) (12)

Sp = kD( cos 20

where 6 is the angle of rotation from the vertical about
the line-of-sight from the radar to the dihedral (see
Figure 4), and kp is a complex constant that depends
on the location and size of the dihedral. Equations
(11-12) give the polarimetric components of the re-
ceived signals as

) cos 26 + 2ep, sin 26, (13)

(14)

Shh = kDrhh

Spy = kpr? 2) cos 20 + 2¢, sin 26),

(15)
Suh = kpThaTvo ((€n — €,) 0820 + (1 + €xe,) sin 29).
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After we measure s44(6), we obtain the n = 2 Fourier
coefficients cp 44 and sz qq. The presence of a signifi-
cant n = 0 Fourier component is the background sig-
nal; all other coefficients with n % 2 should be small,
and are filtered. This Fourier filtering of the data is
one of the benefits of using a rotating dihedral to ob-
tain the system cross-polarimetric parameters.

Figure 4. Full scattering matrix data as a function
of 6 is obtained using a rotating dihedral to calibrate
polarimetric RCS measurement systems. The z—axis
points toward the radar, and @ is the angle of rotation
about the z-axis. From the calibration data, we obtain
the system cross-polarimetric ratios e;.

From eq (13-14), we see that the ratio of the n = 2
coeflicients
2¢4

=49 1
s (17)

52,qq

C2,qq

can be solved for ¢,. We can readily verify that the
two solutions of the quadratic in eq (17) are negative
reciprocals of each other. The correct solution must
be selected: we choose |¢;| < 1.

In Figure 5 we show the dihedral response for a per-
fectly isolated system (¢; = 0) and a real system
(e # 0) as seen by the hh channel. From eqgs (13
- 14) we see that the dynamic range of the signals re-
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Figure 5. The hh signals received from a rotating
dihedral. Both the amplitude and phase of the signal
change because of imperfect channel isolation (e # 0).
These changes are very small and difficult to measure.
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ceived from a rotating dihedral, defined as the ratio
of the minimum and maximum measured signals, is
given by eq (2). An amplitude change a and a phase
shift ¢ as functions of €,

o= 63 -1 (18)
and ) 5
_ -1 _“%q
6—§tan R (19)

q

characterize the polarimetric signals. The very small
amplitude and phase changes in eq (18 - 19) must be
accurately measured over a large dynamic range, as
seen in Figure 3. We note again: this is a difficult
measurement challenge!

If we ignore the phase shift shown in Figure 5, then «
in eq (18) is the polarimetric factor in dihedral cali-
bration. As discussed in the introduction, a(e), shown
in Figure 6, gives the uncertainty within the dynamic
range given in eq (2) of a nonpolarimetric RCS system
that must be met to successfully perform polarimetric
calibration.

A major difficulty, the presence of drift, encountered
on outdoor polarimetric measurement ranges has been
examined in [1]. It has been shown that after Fourier
analysis, only the cff”f ! and sff”f ! coefficients modify
the solutions to eq (17). The ratio of the n = 2 Fourier

coefficients, in the presence of drift, becomes [1]
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Figure 6. The polarimetric factor (dB) as a function
of € for a rotating dihedral after the phase shift is
removed from the signal (see eq (18)). This specifies
the uncertainty of the RCS measurement that must be
met to successfully calibrate the polarimetric system
within the dynamic range given by eq (2).

The way drift alters the final computation of the po-
larimetric parameters €, will depend on the ampli-
tudes and phases of the n = 4 Fourier coefficients
present in the drift. The right side of eq (20) reduces
to the non-drift ratio if the n = 4 drift coefficients
vanish. Examination of eq (20) shows that even a
small drift can significantly alter the polarimetric so-

. drift
lutions. For example, let sy 1t > sy /(kpr2,) << 1
and ¢¥"" = 0; the numerator in eq (20) can now be

larger by more than a factor of 2, since ¢ /(kpr7,) ~ 1.
This example is easy to understand: the drift compo-
nent 547" substantially modifies the minimum signal
received as the dihedral rotates, thereby introducing

a large error into the computed ;.

To obtain meaningful system parameters €, drift must
be severely limited during calibration or eliminated
from the data. Measurement of the system drift dur-
ing calibration has never been performed. Simulta-
neous measurements on a fixed target behind the di-
hedral might be adequate, although the drift could
in fact be different even at a short distance from the
dihedral; phase and amplitude differences due to tar-
get separation could also be important. The challenge
here is to design a new calibration artifact that would
allow us to calibrate the rotating dihedral and simul-
taneously obtain drift data at the same location.

Alternatively, we need to perform polarimetric cali-
bration without drift. Rapid measurements on a cali-
bration cylinder might be useful here. In [1] we have
used the vanishing of the cross-polarization scattering
matrix element of a cylinder to eliminate the effect
of drift on the ratio in eq (20). This is possible be-
cause we can modify the drift component of the sig-
nal without affecting the drift-free dihedral response.
We choose to modify the drift until we see no cross-
polarimetric response from the cylinder. For details
of this procedure, see [1].

4. Polarimetric Calibration with a Cylinder

We examine the possibility of polarimetric calibration
using a cylinder, since a cylinder can provide us with
drift-free calibration data. The polarimetric basics
presented in Section 2 apply. The scattering matrix
Sc¢ for a cylinder is

Sc = ’“C(Cgh CO>

(21)
where k¢ is a complex constant dependent on the lo-
cation of the cylidner. We assume that the theoretical
(computed) values Cy, are known. The off-diagonal
elements are 0: the cylinder only scatters but does
not depolarize signals. Since the cross-polarimetric



components of the transmitted signals are preserved,
we obtain information on the system parameters ¢,.
The components of the received signals are given by

Shh = kcr%h(Chh -+ G%Cm)), (22)

Sho = karhnTvo (€vChi + €,.Cu0), (23)

Svh = kCrhhrvv(EvChh + 6hC"uv)» (24)

Sy = ]fc?“?w(cvv + G%Chh). (25)

For perfectly isolated and aligned systems, ¢, = 0,

the cross-polar measurements vanish, and the copolar
measurements are proportional to the cylinder’s copo-
lar response. The polarimetric factor in eq (1) is easily
obtained from eq (22).

Equations (22-25) provide three independent condi-
tions with the four unknowns ryp, 740, €5 and €,. Un-
less independent data exist to obtain the receive coef-
ficients r44, we cannot use these equations to solve for
€q- We can, however, eliminate 744 by constructing

C — ShvSvh ) (26)
ShhSvv

X

x© is independent of the receive coefficients, and can

be used to check on the integrity of the parameters ¢,
that were obtained independently. If we have used a
dihedral to obtain €,, most likely the data have been
contaminated with drift, and the x“ obtained from
cylinder data and computed using eqgs (22 - 25) will
not be in agreement.

To use only cylinder data to determine e; we must
have independent knowledge of rqq. The measurement
challenge here is to determine r,, accurately prior to
the polarimetric calibration. To our knowledge, this
has never been accomplished. We note that we could
use dihedral data to obtain r4,, but we must be cog-
nizant of the real possibility of contamination by drift.

Given r,, we can easily obtain ¢, from egs (22) and
(25). To check the consistency of measurements and
calculations, we form €, as determined from the cylin-
der measurements. Let

S0 = €0Sc€o; (27)

then
(r,€m) 's(€, rn) ! = €.'s0E,," =S¢ (28)
if and only if €, = €y, where ¢g is the correct system
cross-polarimetric matrix. If we have used dihedral

data to determine r,, most likely we cannot recover
Sc in eq (28), because of drift.

We can try to relax the requirement that r,, be known.
We can determine ¢,,, then evaluate

entsét = el (rnsorn)E,t # Se, (29)

since, in general, r,, # I, the unit matrix. The ratio
of the copolar matrix elements of eq (29) is

2.2
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(30)

where p = ry,/rpp is the copolar channel imbalance.
For p = 1 and € = ¢, the eq (30) ratio reduces to
Chh/Cypy, and the cross-polar elements reduce to 0.
Conversely, we can solve the simultaneous equations

(ea'st I _ Con
(67_nls€;.bl)vv va ’

(€88 Jnw =0 (31)
for €;, and ¢€,. We get two pairs of solutions:
€hn = €0n, €v = €0u, (32)
and

egthv/Chh — €0v€oh + 2
€0v + €0nCou/Chn
G%U + (2 - €0v€0h)cvv/chh

€y = . 33
€00 + €0nCou/Chi (33)

)

Since the C,/Chi = 1 (see Figure 1), the amplitudes
of the second pair of solutions exceed 1, and need to
be rejected.

In theory, we may be able to configure a polarimet-
ric RCS system with balanced copolar channels, al-
though, to our knowledge, this has never been demon-
strated in practice. The required accuracy of such a
procedure needs to be understood. Let p = 1+ dp,
where dp << 1. Small parameter analysis (or a Tay-
lor series expansion) shows that the solutions to eqs
(31) will be

1 1)
e = con(l — —0h 2P (34)
P Sohv €0h
- Sovw 0P
€y = €01+ ——). (35)
Sovh €0v

For ¢, and €, to be acceptable estimates, the second
terms in the above solutions have to be small; we ob-
tain the condition

S
op << eoqszﬂ ~ O(eZ,), (36)
qq



where sgqq and sgp, designate the copolar and cross-
polar elements of sy in eq (27). The copolar channel
imbalance must be very small: to achieve an accuracy
to second order in €gq is a very difficult measurement
challenge.

5. Calibration with a Cylinder and a Dihedral

When we measure both a cylinder and a dihedral, we
can develop a polarimetric calibration procedure that
is satisfactory theoretically. We are then left with the
important challenge to reduce the measurement un-
certainty to levels low enough to resolve polarimetric
effects. it Even state-of-the-art RCS systems need to
be carefully assessed to achieve the low level of uncer-
tainties required by polarimetric calibration.

In eq (26), the quantity x is independent of r,; x can
be expressed theoretically in terms of the unknown
parameters €4, and can also be obtained from the data.
We use egs (13 - 16) with # = 0 and assume that
€on 7 €ov to express P for a dihedral, and use eqs (22
- 25) to express x© for a cylinder; then we equate these
to corresponding xo obtained from measurements:

X2 (0) = x§(0), x“ =x§. (37)

These two equations will be drift free, and can be
solved for the two unknowns ¢, and €,. Note, how-
ever, that x contains a 4"-order term e2€2; hence,
eight pairs of solutions will be obtained. We will ac-
cept solutions that satisfy €, < 1. To distinghish and
select the correct solution from the acceptable pairs,
we must turn to the dihedral data as a function of
the angle of rotation. A phase ambiguity of = might
be easily resolved; small differences between solution
pairs might be more difficult to resolve because of
drift. This needs closer examination, and will be the
subject of a future study.

Small parameter expansions (or Taylor series) shows
that solutions to eq (37) are approached very steeply.
Let €; = €9q + 0€4. Then, to first order in de,, when

€0h 7 €0vs

D
x"(0) 2 2 2
=1+ dep, — dey) + O(d€r) + O(des
) = 1 (B — 0e) + 006}) + 00
(38)
and
c
X142 Cov 52t e, +0(662)+0(5€2). (39)
X0 Sovh S0hv

Here all coefficients of de, are large: small deviations
from €y, will produce large deviations from the data.
We will see a deep null in the computed x as solutions
to eq (37) are approached. For a one-dimensional ex-
ample, see [1], where we exhibited the deep null as
the vanishing of the cylinder’s cross-polar response is
recovered when the solution €g;, is approached.

6. Summary and Future Efforts

We have recognized three major obstacles to perform-
ing polarimetric calibration successfully: (1) the small
polarimetric effect demands that the overall RCS sys-
tem uncertainty be very small, (2) the presence of
drift, and (3) the lack of data on the radar’s receive
matrix r,. Consequently, (1) the currently accepted
RCS measurement uncertainties will need to be re-
duced to make polarimetric calibration a reality, and
(2) we recommend a new calibration procedure using
a cylinder and a rotating dihedral. We combine the
polarimetric matrix elements to obtain an expression
independent of drift and r,,. The method yields multi-
ple sets of solutions, and we can use the data obtained
with the rotating dihedral to select the correct pair.
Some details of this technique will be developed with
real data in the near future.
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