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Abstract

We have shown that thermal ink jet print heads can be used to
place GaN nanowires on patterned substrates. The semiconductor
nanowires had diameters ranging from 70 to 300 nm and lengths
from 5 um to 20 um. They were dispersed in alcohol-water
solutions for loading into ink reservoirs. To avoid clogging, the
thermal ink jet heads were chosen with drop weights from 72 to
165 ng. The thermal ink jet method was successfully used to place
nanowires across narrow gaps in metal patterns. When using a
low-power optical microscope to align the nozzle with substrate
pattern features, the placement accuracy is much higher than with
micropipette placement. For unknown reasons, nanowires would
not pass through piezoelectric ink jet heads. These experiments
demonstrate that ink jet technology holds promise for low-cost,
rapid, massively parallel placement and processing of nanowires
for optoelectronic, electronic, and sensor applications.

Introduction

Semiconductor nanostructures provide opportunities for novel
device architectures and improved performance and yield, but
handling of these materials efficiently will require new
manufacturing technologies. In this paper we describe placement
of GaN nanowires on patterned Si substrates to within 35 pm by
use of thermal ink jet technology. We have previously shown that
nanowires can be dispersed in solvent solutions onto patterned
planar surfaces and partially directed with applied electric fields
through a dielectrophoretic mechanism [1]. The adhesion
between a dispersed nanowire and its substrate is sufficient to
survive subsequent conventional photolithographic processing,
thus enabling the deposition of electrical contact pads. For
example, bridge structures such as the one illustrated in Fig. 1 have
been made in this way. The yield offered by this method is
limited, however, by the ~5 pL drop size produced by a metered
pipette. This volume is equivalent to a spherical drop 2 mm in
diameter that disperses over a substrate area on the order of 1 cm?.
Although pipettes with metered volumes down to 200 nL are
commercially available, this still reduces the drop volume by only
a factor of 40. In contrast, ink jet drop volumes around 150 pL
can readily be achieved, allowing confinement of the nanowires in
a solvent sphere of 70 pm diameter. Although placement yield
varies significantly with geometrical parameters such as the
number and area of acceptable sites and the density of nanowires
in the solvent, we expect to improve device yields from below
~10 % afforded by the dielectrophoresis process to greater than
90 % with the ink-jet techniques.

By addressing the efficient coupling of the nanoscale
semiconductor device to the macro world, ink jet dispersal could
demonstrate a path for full utilization of semiconductor
nanostructures in a manufacturing process. GaN and related
compounds are particularly attractive for nanostructure growth
because conventional bulk and epitaxial growth methods produce
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material with high defect density and therefore low yields. Native
substrates for the nitride semiconductors are only now becoming
available in small diameters (1 to 8 cm) and at high cost. GaN
nanowires with diameters on the order of 200 nm and lengths of 10
um contain sufficient material to sustain operation as diode lasers,
light emitting diodes, detectors, or field effect transistors [2,3,4].
The superior optical and crystalline quality [5,6] that we have
demonstrated for nanowires relative to epitaxial material makes
them valuable from a performance standpoint alone, and avoiding
expensive native substrates also lowers manufacturing costs.
Alloys of GaN with InN and AIN span a large range of the optical
spectrum, from 0.7 eV to 6.2 eV, thus making them suitable for
applications from ultraviolet medical and sterilization systems to
solar cells and telecommunications.

Figure 1. GaN nanowire placed on metal pads with dielectrophoresis guiding
followed by processing with conventional photolithography to add electrical
contact pads.

Experiment Description

Nanowire dispersals were attempted with two different ink jet
systems, one based on thermal ink jet (TLJ) technology and the
other on piezoelectric ink jet (P1J). The TIJ head is a prototype
instrument named Thermal Ink jet Picojet System (TIPS®)
obtained from Hewlett Packard Corporation,** for which iTi
Corporation is a “beta test site” for new applications. The
instrument is programmable for use of up to 16 nozzles and 1 to
2000 drops per dispersal cycle. A number of exchangeable
nozzles were available with reservoirs holding 1to 2 ml of fluid.
For these experiments, we used heads in which only 1 or 2 nozzles
were activated and with larger apertures, for which the drop
weight ranged from 41 to 165 ng. Because the specific gravity of
the dispersal solutions was close to 1.0, the corresponding drop

* Contributions of NIST, an agency of the U. S. Government,
are not subject to copyright.

** Manufacturers of certain instrumentation are identified in
this manuscript for technical clarity only. Inclusion in this paper
implies neither endorsement by NIST nor that similar
instrumentation by other manufacturers would not perform equally
well for the application described.
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volumes are from 40 to 165 pL. The TIPS unit was attached to
optical mounts that held it about 40 ° off normal to allow use of a
low power stereo microscope for aligning the nozzles with the
substrate features. A solution of 10 % by volume of isopropanol
in water was used for dispersals.

A second set of experiments was conducted with a
piezoelectric jet head. These heads had Dimatix S-Class 128
nozzles with aperture size 52 to 54 um. Higher viscosity solutions
are required for this print head; therefore, solutions of 60 % (by
weight, roughly 57 % by volume) ethylene glycol in water were
prepared for nanowire dispersal.

Nanowires were grown by molecular beam epitaxy on silicon
substrates (Fig. 2). Details of the growth method have been
previously published [7,8]. Briefly, the wires formed
spontaneously on Si (111) substrates under growth conditions of
high temperature (near 820 °C) and high nitrogen flux. The wire
growth rates were from 0.1 to 0.2 pm/h, and lengths up to 25 um
have been achieved. Unless wires coalesced during growth, they

matrix : '

Figure 2. Field emission scanning electron micrographs of GaN nanowires
used in this experiment taken with nanowires still on the silicon substrate.
Upper photo: Top view. Lower photo: Side view.
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typically formed with hexagonal cross-section and diameters
ranging from 50 to 400 nm (Fig. 2). An irregularly pitted layer
called a matrix layer generally formed between the wires during
growth, along with larger features including coalesced wires.
Because these larger pieces can also detach into the dispersal
solution and increase clogging, the growth run used in this
experiment was chosen for its relatively thin matrix layer and low
degree of wire coalescence. Dispersal solutions were generated by
cleaving a section of wafer covered with nanowires into small
pieces roughly 3 mm x 4 mm, and placing two such pieces in a
small vial. Approximately 1.5 ml of solvent was added to the vial,
and the mixture was then placed in an ultrasonic bath for 35 s.
Dispersal solutions were shaken briefly by hand prior to transfer
into ink jet reservoirs.

Thermal Ink Jet Results

The TIJ experiments demonstrated that we could successfully
jet nanowires from nozzles that had a drop mass of at least 72 ng.
The drop outline on the dispersal substrate was defined in some
cases by residual ink contamination in the reservoir tip, as
illustrated in Fig. 3. The nanowire solutions contained on the
order of ten nanowires per drop. After attaching the sample and
TIPS head to precision mounts, we were able to align the nozzle
using a low power optical microscope to place nanowires relative
to predefined metal features on the substrate surface. This
microscope had sufficient magnification to see the pattern features
and the drops, but not individual nanowires. (Figs. 3 and 4 were
obtained from inspection with a separate, higher magnification
microscope with polarization contrast.) The geometry of the TIPS
nozzle prevented us from focusing clearly on the nozzle heads, but
the placement of the drops on the surface was sufficiently
reproducible that, with some practice, we could predict drop
location relative to the out-of-focus head image to within about 30
um. The nanowires appeared to clog nozzles with drop mass of
41 ng, that is, no ejected liquid could be observed with these
nozzles.

—10 um.

_—

Figure 3.Optical micrograph of GaN nanowires showing dispersed drop
diameter of approximately 50 um when using 165 ng nozzle of thermal ink jet
head. The dark rectangles are metal lines deposited by photolithography
prior to the nanowire dispersal.
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In a second round of experiments, we combined
dielectrophoresis guiding with T1J nanowire placement. The target
substrate was patterned with bus bars that allowed simultaneous
application of voltage across more than 100 bridge gaps. An AC
sine wave voltage of 20 V (peak-to-peak) at 75 kHz was applied
across the gaps. By moving the substrate with an x-y stage and
actuating the TIJ head, several bridges were dosed using the
smaller nozzle size for 72 ng drop weight. The drops could be
observed through the microscope, and they dried in about 1 to 2 s.
This procedure produced a number of devices in which two
nanowires bridged the gap, as shown in Fig. 4. There were also
several drops where wires were dispensed but did not bridge the
gap, which might indicate insufficient time for the electric field to
guide wires. The larger nozzle and drop sizes also appeared to
reduce nanowire clustering. We note that the yield for single-
nanowire bridges would have been higher with a more dilute
solution. A higher power microscope would have permitted by
repeatedly dosing in the same spot until a nanowire was observed
in the gap. Finally, it is clear that periodic solution agitation and
cleaner solutions (no residual ink) would increase the placement
uniformity.

Piezoelectric Ink Jet Results

The PIJ head was a commercial print head designed for
regular printing use, and therefore available only in smaller drop
sizes. We attempted to observe nanowire ejection from the print
head using a drop visualization tool [9]. For unknown reasons, the
nanowires used in the TIJ experiments did not pass through the PIJ
nozzles. Glycol solutions containing nanowires purged quickly
but would not jet when the nozzles were operated in normal print
mode. The print head contained an internal filter with rated
particle filter size of 20 pm, and it is possible that this filter
removed the nanowires even though their length is around half the
target particle size. It is also possible that the voltages used in the
piezoelectric valves impacted the ability of nanowires to flow
smoothly. Although this first experiment was unsuccessful, the
underlying problems might be easily addressed with simple design
modifications to the print head.

Conclusions

We have demonstrated that T1J printing can be used to place
semiconductor nanowires with dimensions of approximately 0.2
um in diameter and 10 um in length. Nanowires were jetted
without noticeable damage through nozzles with drop weight down
to 72 ng. The method was compatible with dielectrophoresis
guiding across metal gaps. The yield of successful placement
could be improved by combining solutions of lower density with
immediate sensing of nanowire placement in order to continue
dosing until a single nanowire is detected. Successful printing
using commercial PIJ heads was not achieved, either because of
smaller orifice size, internal filters, or other unknown obstacles.
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Figure 4.Optical micrograph showing two nanowires placed on a bridge
structure with the TIJ head while voltage was applied across the center gap.
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