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Abstract

Testing electronic devices in order to assure the qual-
ity of individual products can be time-consuming and
expensive. To speed up this process without compro-
mising on reliability, testing strategies have been devel-
oped at NIST. They are based on the extraction of low-
dimensional linear error models, using a priori knowl-
edge of the structure of the device or data from an ex-
haustively tested training and validation set. Produc-
tion testing then is performed only on a small subset of
all possible test points which must be chosen optimally.
This paper describes statistical and computational as-
pects of these procedures and reports on the theoretical
background, heuristics, algorithms, and practical expe-
riences.

1 The Need for EfficientTesting

Testing is a critical step for assuring the quality of elec-
tronic devices. For complicated devices, the cost of test-
ing is quite significant and may exceed 20 % of the sale
price. Efficient yet reliable testing strategies that assure
the quality of every single device can therefore result in
substantial savings.

For many device types, the number of test points is
vastly larger than the number of parameters that are
expected to determine the device behavior. For exam-
ple, a 13-bit AID converter has 213 = 8192 possible test
points, but it can be described with only a few dozen
parameters.

Efficient testing strategies try to identify error pat-
terns that occur for a certain device type and build a
mathematical model for it. For a given new device,
the parameters for these patterns are then determined
from measurements at a well-chosen reduced set of test
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points. The mathematical model is used to compute the"~~
device response at all test points. This note discusses a.D.~:
approach that has been developed at NIST (Koffma.n'';'~, "

Souders, Stenbakken, Lipe, Kinard 1996, Stenbakken &1
Souders 1991) with which a user can construct a model~-a
GJ:1oosea reduced test point set, assess its accuracy, and '<
predict the behavior of a device under test. The method .~,
is now implemented in MATLAB as the High dimen-"~~

. sional Empirical Linear Prediction Toolbox (HELP). It}
-has a graphical user interface and allows the user to do' :'.

device modeling, model diagnosis, and device prediction--
interactively and without detailed knowledge of the un-'::
derlying statistical and computational procedures. :

2 Linear Models

Consider a device whose behavior can be measured at
m different test points. The actual behavior at each
of these test points differs from the nominal one by a
quantity that is here called the device response.

Let us denote the measured device response by the
column vector y with m components. For a linear error
model, one assumes that

y=Ax+€ (1)

where A is an m x p model matrix, specific to the device
type and incorporating information that depends on the
device design, its components, its production process etc.
The p x 1 vector x consists of parameters that are specific
for an individual device. The column vector € incorpo-
rates remainder terms and measurement errors. It is
treated as a random vector with zero component means
and standard deviations that are identical or similar in
magnitude.

At the outset, neither the matrix A nor the number
p of its columns are known. This note is mainly con-
cerned with the situation where A has to be estimated
from a training set of devices for which complete mea-
surements are available. The result is called an empirical
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model. Note that in the present form, A is not identi-
fiable from observations of Y, since it can be replaced
with AB-l and x can be replaced with Ex for any non-
singular matrix B. An estimate for A will be denoted
by A. In other approaches that are also implemented in
HELP, linear models can be found by linearizing non-
linear circuit models or by including error patterns that
are obtained by other engineering considerations, result-
ing in physical or a priori models. If several of these
approaches are combined, the result is a mixed model.

3 Construction of Linear Models

To construct a linear empirical model, one assumes that
an m x n matrix of training data Y is given, that is a ma-
trix with columns Yi, i = 1,..., n that contain complete
measurements of n devices in a training set. The goal
is to extract a k-dimensional approximation of these re-
sponses, i.e. an m x k matrix A such that all columns of
Y are nearly in its column space. The model dimension
k may be smaller or larger than the unknown number
p of parameters in equation (1). It must be determined
along with A.

To find a candidate for A, one computes the sin-
gular value decomposition Y = USVT. Here U is
m x n with orthonormal columns, V is orthogonal, and
S = diag(sl, S2,..., sn) contains the singular values Si
that are non-negative and decreasing (Golub & Van Loan
1989). One then chooses the model matrix estimate as
A = Uo, consisting of the first k columns Ul, U2,. . . ,Uk
of the left orthogonal factor U. It is known that Uo
has various optimal approximation properties among all
rank-k matrices. In statistical terms, the columns of
U are the principal components of the dispersion ma-
trix n-l yyT of the uncentered data matrix y, and the
s~In are the corresponding latent roots. For a theoreti-
cal analysis, let us make the following normality assump-
tions: The Yi are independent and have multivariate nor-
mal distributions Yi '" Nm(O,~) with covariance matrix
~ = UAUT, the matrix U = (Ul,. . . ,um) is orthogonal,
A = diag(Al,. .. ,Am) with Al ~ A2 ~ . .. > o. Any data
that come from a linear model as in (1) can be written in
this form, if the measurement errors are independent and
N1 (0, p2) - distributed and the device parameters come
from a Gaussian distribution. If rank(A) = p < m, the
Ai will all be equal to p2 for i > p. One expects to detect
this if n is sufficiently large and choose k close to p. It
is known that Ui -+ Ui and s; In -+ Ai in probability,
and the 5; In are the maximum likelihood estimators of
the Ai (Muirhead 1982). The quantities with the smaller
indices converge first, and the speed of convergence de-
pends also on the separation of the Ai. A Central Limit
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Theorem type argument supports these normality as-
sumptions even if the distribution of the parameters is
not Gaussian, but p is sufficiently large.

When the training data are fitted to the k-dimensional
model Uo, the mean square residual per test point is

-2 1 '" T 2 1 '" 2
(Jk = - L.J IIYi - UoUo Yill = - L.J 5i . (2)mn . mn

& i>k

Of course, the mean square residual per test point for
new devices will be larger. Asymptotic arguments and
numerical evidence show that under normality assump-
tions it is approximately

( )
2

2 _ n Tn_2
(Jk - n _ k m _ k (Jk. (3)

If a validation set is available, i.e. complete measure-
ment data from N additional devices Yn+l,..", Yn+N,
then an estimate for (J~can also be computed from their
residuals.

The key problem now is the choice of the model di-
mension k. Formula (3) shows that this decision can be
based on the values 51,52, There are a number of
graphical procedures that are commonly used (Jackson
1991) and are implemented in HELP, including plots of
the 5k (scree plot) or of their logarithms (LEV plot) and
plots of (Jk against k. The dimension k is chosen by
looking for an "elbow" in the scree plot or by making (Jk
smaller than a predetermined quantity. For a selection
of k that can be justified more rigorously, one sets

Q _ (Li>k 57)2
k - 4

Li>k Si
(4)

for k = 1,..., n - 1. It is known that under normal-

ityassumptions VQ~k becomes asymptotically normally
distributed as n -+ 00 (Sugiura 1972). The number Qk
is never larger than n - k, and it is close to this number
if the 5i are approximately the same for i > k. Thus
Qk can be viewed as an estimate of the dimension of the
space that is spanned by the residual vectors Yi-Uoul Yi:
if Qk is small, the residuals "look" as if they are concen-
trated on a low-dimensional set. The model dimension
should then be increased to capture these few remaining
error patterns. The recommendation is to pick the value
of k for which Qk is maximal or is reaching a plateau.

If there is actually a value k beyond which all Ai are
approximately the same, it can be reliably detected by
sphericity tests. The test employed by HELP uses the
test statistic

(n - k)2(m - k)
(
...!.-_ ~

) (5)tk = 2 Qk n - k
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that was proposed in (Sugiura 1972). One can show
that if Ak+l = ... = An, then tk -+ X} in distribution
as the number of test points m becomes large, with f =
(n-k-l)(n-k+2)

2 .
In practice, the recommendations from these ap-

proaches are often not consistent. Graphical methods
tend to lead to unclear recommendations or to model
dimensions that are obviously too low. Sphericity tests
do not work well if the Ai do not eventually become con-
stant and then tend to give model dimensions that are
too high. Using the quantity Qk sometimes is a good
compromise. The general recommendation is to choose
k small (Jackson 1991). If several different values are
proposed by HELP, a small choice for k around which
several such values are clustered is usually safe, provided
the user checks with formula (3) whether the root mean
square residuals per test point will be acceptable.

After a model has been constructed, HELP allows the
user to perform a number of additional diagnostic tests.
These include figures of merit such as the R2 - value for
the training set fitted to its own model or for a validation
set and scores from sign tests and rank-sum tests for the
residuals for each test point.

4 Reducingthe Test Point Set

One now has to choose a reduced test point set J c
{1, . . . , m} such that the device behavior can be pre-
dicted reliably at all m test points from measurements
at the test points in J. By the construction from the pre-
vious section, we can assume that the estimated model
matrix A = Uo has orthonormal columns. Let UOJde-
note the matrix that is obtained from Uo by selecting
the rows in J. Then the response of a new device can be
predicted from measurements yjew at the test points in
J by

Anew TT (
rrTTT )

-lrrT new
y = uo uOJUOJ uOJYJ .

The covariance matrix CJ = Uo(ulJUOJ) -1 ul de-
scribes the effect of random errors in yjew on the predic-
tion if the errors have constant variances and are uncor-
related. Both assumptions are questionable, since mea-
surement uncertainties are not exactly known. Also, at
this stage of the modeling process, the errors contain re-
mainder terms from fitting a model, and these are always
correlated. Still, properties of CJ are useful for selecting
J.

There are several possible optimality criteria for the
choice of the reduced test point set J (Pukelsheim 1993).
These include

a) maximizing det(UlJUoJ), i.e. minimizing the vol-
ume of prediction ellipsoids (D-optimality)
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b) minimizing the trace of (U;DuOJ)-1, i.e. minimiz-r
ing an expected mean square of residuals (A-optimality) ~

c) minimizing max diag(CJ), Le. minimizing diame- ~

ters of prediction ellipsoids (G-criterion). ': ~:

A famous theorem by Kiefer and Wolfowitz states that '.

D-optimality and the G-criterion are equivalent for a t
continuous version of the design problem (Pukelsheiin~

1993). .

To have an overdetermined problem and be able to .

perform diagnostics, a subset J with IJI = t > k test.
points must be found. An exhaustive search for the best .

subset is obviouslynot feasible. In fact, the problemof .

finding a D-optimal selection is known to be NP-hard,:.
and thus branch and bound methods provide no guar-;
antee for a fast solution. Even approximate iterative \

methods such as DETMAX are still too expensive. In":
HELP, a "one-pass" method is used that builds up the ~
reduced test point set J in a single sweep, consisting of ~

two phases. In the first phase, a minimal subset of k'1
test points is determined by applying QR-factorization'~
with column pivoting to ul (Golub & Van Loan 1989).~

In this phase, test points are added to J one at a time,1
corresponding to rows of Uo that have maximal normS,
after having been orthogonalizedwith respect to all pre-~

viously selected rows. This turns out to be the greedy1.
algorithm for D-optimality. In the second phase, addi-
tional test points are selected by adding test points where'
the prediction variances are maximal, one at a time, un-
til the desired size of J has been reached. The prediction.
variances must be recomputed after each selection. The
second phase is the greedy algorithm for the G-criterion.':

Numerical evidence shows that the reduced test point i
sets that are found with this procedure usually are not.~
optimal (as is to be expected), but that they are better

l
than most other choices and that their performance usu-',
ally cannot be improved much. The reduced test point.

sets usually are also very good selections for other opti-~

mality criteria. I
The distribution of the residual vectors r = ynew -~

ynew can be described in the asymptotic limit of large}
n if the data satisfy the normality assumptions of the~

previous section and if k 2: p (Ding & Hwang 1996).i
A consequence of the theory in that paper is t~at ap-i
proximately ri f'V Nl (0, a~wd, where a~ is as.m (3)'

]

'

Wi = 1 + Wi for i ~ J, Wi = 1 - Wi for t E J,
with (Wl"'" wm) = diag(CJ). In fact, the factors
that determine r can be identified as measurement e~,;1
em and truncation error et for a new device, measu~j
ment and truncation errors Em and Et for the tr~
ing set, and an estimation error Ee for the model ma:.. . fonn-
trix Uo. Then there is a relation of the quahtatlve tb~
r <Xem + et + (Em + Et)(1 + Ee)x, where x denotes ~
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parameters of the device under test, with a proportional-
ity factor that can be computed from CJ. In particular,
the device behavior itself contributes to a portion of the
uncertainty: A device whose behavior is very close to
nominal can be predicted well with almost any empiri-
cal model, regardless of the quality of the training data.
Details can be found in (Ding & Hwang 1996).

Since LiEJ Wi = k and the Wj tend to be smaller off
J than on J, one also obtains that

E (llynew - yneWll2) ~ O"~(m _ 2k + mk ) (7)
111

This shows that increasing the model dimension k in
order to improve the model's accuracy may have the op-
posite effect of increasing the mean square residuals, un-
less J is also increased. This happens because additional
columns of Uo eventually only model noise in the train-
ing set. Formula (7) can also serve as a guideline for
selecting the model dimension when the size of J is fixed
in advance due to cost constraints.

5 Detecting Nonmodel Errors
In order to detect whether a device under test is well
described by the given linear model, one computes the
residual sum of squares at the reduced test point set.
Under normality assumptions and if k is not too small,
the IIY1ew - y1ew 112J O"~are nearly XF-k - distributed. A
flag is raised by HELP if this quantity is larger than a
suitable X2 quantile, and a nonmodel factor

PNM = max{1, lIylew- ylewll2 J«t - k)O"~)} (8)

is computed. Of course one expects PNM > 1 for about
one out of two devices, even if they are well described
by the model. If PNM is consistently larger than 1 for
subsequent production devices, there may be new error
sources in the devices under test which are not decribed
by the original model. This could be due to a change in
production methods or in device components, or it could
result from performing measurements for the device un-
der test with less accuracy. However, large values of PNM
are also observed for devices from the same population
as the training data merely if their response is large, due
to the multiplicative error mechanism that was sketched
in section 4. HELP uses PNM to adjust the uncertainty
bounds for the prediction.

The power of the X2 - based procedure for identifying
nonmodel errors depends essentially on the number of
degrees of freedom, t - k. The ratio kit should also be
sufficiently small, since typically Wi ~ ~ or less. In sim-
ulations, it is observed that the procedure employed by
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HELP identifies devices with a nonmodel error compo-
nent with a probability around 50% or larger, if the root
mean square of this component is equal to the standard
deviation of the measurement noise and if t - k ~ 30. IT
PNM consistently exceeds a value of 2, this suggests that
the model might have to be updated.

6 Prediction and Decision

Typically, the tolerance bounds that are permitted for an
acceptable device are positive numbers Bi' i = 1,..., m.
A device is acceptable if its measured behavior at each
test point is within the corresponding bounds, that is if

Iyrewl~ Bi, i = 1,... m. (9)

On the basis of the predicted values yfew, a device should
be accepted if

I~rewl ~ Bi - tQ,IJI/PNMO"~Wi' i = 1,... ,m (10)

w4.ere a is a bound for the desired type I error prob-
ability and the Wi are as in section 4. Thus the null
hypothesis is that the device under test is unacceptable,
Le. "Iyfew I > Bi for some i" .

HELP also offers options to compute individual and
simultaneous confidence bounds for the measured behav-
ior. These are

yrew :f: tQ/2,IJI VPNMO"~Wi (11)

and the Bonferroni versions

Anew ...Lt _ / 2
Yi ~ Q/2m,IJIY PNMO"kWi. (12)

In simulations, it is observed that the proportion of un-
acceptable devices that is identified correctly is larger
than the advertised fraction 1- a, as is to be expected for
composite null hypotheses. The nonmodel factor PNM is
observed to be essential for guaranteeing these detection
probabilities even in the presence of moderate nonmodel
effects. Similarly, coverage probabilities for the individ-
ual prediction intervals are observed to be close to I-a in
simulations. However, simultaneous prediction intervals
may be less reliable in the presence of nonmodel errors,
that is, their coverage probability tends to be somewhat
less than the advertised value 1 - a, due to the heavy
reliance of the Bonferroni method on well-behaved tails.

Along with a large proportion of bad devices, a cer-
tain fraction of acceptable devices will also be rejected,
resulting in a reduced yield of good devices. An increased
nonmodel factor will be particularly harmful to the yield,
so it has to be monitored carefully.
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