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Abstract— Contemporary circiit designers require large band-
widths from microsystems to accomodate the ever-increasing
demand for denser content. The electrical performance of these
microsystems is intrinsically related to the electromagnetic prop-
erties of the materials. Methods using the Fabry-Perot resonator
(FPR) have found widespread use in systems developed for
measuring material properties at millimeter wave frequencies.
This paper will provide a brief overview of the theory and
methodology of Fabry-Perot resonators and present measure-
ments of selected materials made with the FPR system currently
in use at the National Institute of Standards and Technology
(NIST).

I. INTRODUCTION

Designing circuits at microwave and millimeter wave fre-
quencies requires a knowledge of the complex permittivity
of the dielectric substrates used in the fabrication of those
circuits. At microwave frequencies, the most accurate methods
for measuring complex permittivity utilize resonators con-
structed with closed cavities. However, for operating frequen-
cies greater that 40 GHz, this type of resonator becomes
impractical due primarily to the conductor losses in the cavity
walls, and the difficulties posed by the cavity’s small size.

Early research on Gaussian beam theory [1] provided a
theoretical foundation for the development of open Fabry-
Perot resonators with spherical mirrors to be used in the
measurement of complex permittivity at millimeter wave fre-
quencies. This effort was initiated by Cullen [2]-[4]. and
further developed by researchers at the National Physical
Laboratory (NPL) [5]-{8], and has led to the basic theory
currently in use worldwide. A good general review article
covering Fabry-Perot resonators is given in [9].

Throughout this paper, several basic assumptions will be
made about the nature of the electromagnetic fields discussed.
All field excitations are considered to be sinusoidal, and
expressions of the field components are phasor quantities. As
usual, the complex time dependence €?“* will be suppressed.
The complex permittivity is defined as
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where € is the permittivity of free space and €. and €/ are
the real and imaginary parts of the relative permittivity. The
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loss tangent is given by
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This paper will briefly summarize the salient points of

measuring ¢, and tand using a Fabry-Perot resonator- with

the goal of providing a basic. understanding of the theory and
measurement technique involved.

II. A BRIEF OVERVIEW OF GAUSSIAN BEAM THEORY

Although Fabry-Perot resonators can be constructed with
plane reflectors, spherical mirrors have been found to greatly
reduce losses due to diffraction [10]. However, the fields of the
standing waves in the volume between the spherical reflectors
are no longer planar, but instead possess a spatial distribution
that is approximately Gaussian. The mathematical description
of these fields can be obtained through the theory of Gaussian
beams. The evolution of Gaussian beam theory begins with
the Helmholtz wave equation

Viu+ku=0, - 3

where u is any scalar component of the field, £ = 27/A
is the wave number and A is the wavelength. In Cartesian
coordinates, a quasi-plane wave solution is assumed in the
form o

u(:r, Y, z) = "ﬁ(ﬂ% Y, z)e—:’kzv “)

which is substituted into equation (3) to arrive at the reduced
wave equation
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At this point, the so-called paraxial approximations are applied
to equation (5) that result in the elimination of the §%)/02>
term, reducing equation (5) to the paraxial wave equation
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Solutions to this equation then provide the results used to
predict the resonant mode frequencies and their Q factors [1],

(2].
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Although the results of Gaussian beam theory are based
on an approximate scalar theory as outlined above, Cullen
et al. [2], [3] showed that for permittivity measurements of
moderately lossy materials (i.e. tand ~ 107 to 10~3), the
theory works remarkably well.

III. MEASUREMENT SYSTEM DESIGN

Since the Fabry-Perot resonator is an open cavity, the spatial
distribution of the electromagnetic fields between the end
mirrors depends eritirely on the design and construction of
those mirrors because there are no metallic side walls to guide
the fields. There are two basic designs currently in use, and
each have advantages dependent on the type of material under
investigation.

The confocal design (Fig. 1a) employs two spherical mirrors
placed, at most, at their radius of curvature from the opposing
mirror. One of the major challenges of this type of construction
is the parallel alignment of both mirrors and the sample under
test in order to minimize any problems due to the effects of
diffraction or scattering. Excitation and sampling of the fields
are achieved in each mirror through a single aperture placed
in the center of the mirror [2].

By replacing one of the spherical mirrors with a plane
mirror, the hemispherical design (Fig. 1b) offers a practical
solution to the placement of the sample under test, but requires
careful construction and design of the coupling holes since
they are usually placed next to each other on the spherical
mirror [8], [11]. The main disadvantage with this approach is
the increased risk of cross-coupling of electromagnetic energy
between the apertures. Because the wavelengths of the fields
are relatively small, machining tolerances of all aspects of the
mirror and aperature construction must be tight. For the same
reason, alignment supports should receive special attention to
ensure successful operation of the resonator system. Currently,
this is the design in use at NIST.

An important component of the mirror design and construc-
tion is the coupling aperture used to excite and sample the
fields. The most common- approach has been to couple elec-
tromagnetic energy through circular wavegunide sections that
terminate as circular irises on the mirror’s surface. Komiyama

et al. presented data relating the cavity’s insertion loss to the
length and diameter of the circular waveguide section [12] .
Sample preparation is also important, but because the fields
have constant phase fronts with a spatial Gaussian dependence,
the optimum shape for the sample is not planar. Researchers
have investigated this possible source of error and developed
correction terms that may be used for samples with flat,
parallel surfaces [2], [6]. ’

IV. EMPTY CAVITY MEASUREMENTS

The solution of the paraxial equation (6) provides the
necessary equations to accurately predict the frequency of
the quasi-T' EMp,n, modes excited between the empty cavity
mirrors. In the following discussion, the equations presented
will be for a hemispherical design, but similar results are also

‘available for confocal systems [2].

For a hemispherical system, the equation for the frequencies
of the resonant modes is given by

froa = 555 [0+ 14 A2 s (2]
where mng are the mode numbers of the quasi-T'EMpnq
resonance, ¢ is the speed of light in air, D is the center-to-
center distance between the mirrors, and R is the radius of
curvature of the spherical mirror [11].

For the fundamental T'EMpo, modes, the electric field in
spherical coordinates is approximately given by

E(p) = Ege™ (%, ®

where p is the radial coordinate and w is the Gaussian beam
radius. This result implies that for the T EMpo, modes, the
fields have a purely Gaussian spatial distribution. The practical
implication is that the sample under test does not have to
be very large in order to obtain a good measurement [8].
It is important, therefore, to be able to correctly identify all
of the frequencies fpoq in the mode spectrum needed for
a measurement. Using equation (7), it is a straightforward -
exercise to calculate a mode table for this purpose.

V. CAVITY WITH SAMPLE

When the sample is inserted into the Fabry-Perot resonator,
the empty mode frequencies fooq are shifted lower and their Q
factors are decreased. These measured changes are then used
to calculate the complex permittivity of the sample through
the equations derived from the Gaussian beam theory.

At the air-sample boundary, continuity of the field ratios
E,/H, derived from the beam theory allow for matching
conditions that are used to derive expressions for e. The basic
equation for ¢, is given by

\}ztan (kt\/Z, - ¢t) = —tan(kd - ¢a), (9
with wave number %, sample thickness ¢, distance d = D — 1,
and phase shifts ¢; and ¢4. The expression for loss tangent is

2k+/el(d + tA) (10)
Qe [2ktA /e, — Asin(kt /e, — ¢1)]

Details for the terms A, Q., ¢:, and ¢4 are given in [11].

tand =




VI, ACCURACY OF FPR MEASUREMENTS

As the FPR method began to be considered for metrology-
level measurements of e, researchers looked for ways to evalu-
ate their results. Through measurements of well-characterized
reference materials, confidence was gained in the determi-
nation of ¢/, but reliable measurements of tand presented
a challenge. Early on, Cullen [3] and Jones [7] addressed
the problem of planar sample surfaces and their effect on
loss. Cook et al. [5] used polytetrafluoroethylene (PTFE) as
a reference material for comparison measurements using a
mode-filtered cavity and a hemispherical FPR at 35 GHz, with
good results. However, other attempts to measure materials
with very high or very low loss tangents proved to be prob-
lematic. Clarke and Lynch then conducted research on this
issue and ended up proposing different FPR configurations
for the measurement of tan§, depending upon the anticipated
loss of the sample under test [13], [14].

VII. MEASUREMENT DATA WITH A HEMISPHERICAL FPR

As noted previously, NIST currently uses a Fabry-Perot
resonator in a hemispherical configuration that operates at
approximately 60 GHz [15]. Measurement data for some
common materials are shown in the table below. The estimated
Type B uncertainties are based on characterizations of the
FPR measurement system with standard reference materials
and various analysis published previously in many of the
references listed in this survey.

Reference Sample Measurements
Material f, GHz e tand x 10%
Polystyrene 60 2.544+0.05 | 4.8+05
Quartz 60 4.45 £ 0.05 0.7+ 0.5
Fused Silica 60 3.82+0.05 5.8+0.6
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