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Abstract-Continued efforts to model the distortion behavior of 
custom-designed digitizing samplers for accurate measurement of 
dynamic signals are reported. This work is part of ongoing efforts 
at the National Institute of Standards and Technology (NIST) to 
advance the state of the art in waveform sampling metrology. In 
this paper, an analytic error model for a sampler having a -3-dB 
6-GHz bandwidth is described. The model is derived from exam- 
ination of the sampler's error behavior in the phase plane. The 
model takes as inputs the per-sample estimates of signal ampli- 
tude, first derivative, and second derivative, where the derivatives 
are with respect to time. The model's analytic form consists of 
polynomials in these terms, which are chosen from consideration 
of the voltage dependence of the digitizer input capacitance and 
the previously studied error behavior in a predecessor digitizer. At 
1 GHz, an improvement in total harmonic distortion from -32 to 
-46 dB is obtained when model-generated sample corrections are 
applied to the waveform. The effect of timebase distortion in the 
sampling system is also accounted for and corrected. The inclusion 
of second-derivative dependence in the model is shown to improve 
the model's fit to the measured data by providing fine temporal 
adjustment of the fitted waveform. 

Index Terms-Analog-to-digital conversion, data models, error 
compensation, nonlinear distortion, signal sampling. 

C ONTINUED advances in the development of high-speed 
signal generators and samplers require control and min- 

imization of errors arising from dynamic nonlinear behav- 
ior commonly referred to as distortion. In some applications, 
the intrinsic distortion performance of signal generating and 
sampling equipment can be improved through numeric pre- 
processing of digital data patterns for waveform synthesis or 
postprocessing of acquired data samples. One example is the 
modeling of distortion behavior for base station power am- 
plifiers to produce compensating predistorted data patterns for 
greater power efficiency and reduced adjacent channel leakage 
[I]. Another example is the calibration of multisine signals 
used to characterize radio frequency (RF) devices for wireless 
applications [2]. 

This paper describes a data processing method to correct 
nonlinear dynamic error in a sampling probe having a -3-dB 
6-GHz bandwidth. We report a 14-dB improvement in 
achievable total harmonic distortion (THD), which is from 
-32 to -46 dB at 1 GHz for a signal with a peak amplitude 
of 1.6 V. This work is part of the continuing efforts of the 
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National Institute of Standards and Technology (NIST) to 
establish, maintain, and provide accurate waveform sampling 
metrology for signals having a frequency content from dc to 
1 GHz. The sampler under study is similar to two NIST- 
developed sampling probes previously described [3], [4]. All 
of these probes are noteworthy for their excellent gain flatness 
and settling performance. However, because they exhibit more 
harmonic distortion than is typically seen in track-and-hold- 
type samplers with comparable bandwidth, an investigation into 
the efficacy of postsampling data processing to improve THD 
was undertaken. 

We have previously described an error model [5] that is able 
to reduce dynamic errors in a NIST-designed low-bandwidth 
sampling probe [3] over the frequency range of dc-1 MHz. 
Although that digitizer and the one of interest here are con- 
structed with different technologies and have considerable per- 
formance differences in terms of speed and accuracy, they 
share a common principle of operation and many architectural 
similarities. It is therefore believed that a modeling approach 
similar to the one developed for the slow digitizer will be 
effective at describing the error behavior of the fast probe. 
Results so far suggest that this assumption is reasonable. 

The digitizer we are modeling has a sampling-comparator 
architecture. We refer to it as the next-generation sampling- 
comparator (NGSC) probe because it is the follow-up to an 
earlier NIST-designed probe [4]. The NGSC probe utilizes a 
semicustom layout in bipolar Si technology (fT = 26 GHz). 
Like its predecessor and the low-bandwidth probe, the NGSC 
probe was designed specifically to offer high performance 
in gain flatness and settling error, which are parameters of 
interest to NIST measurement services [6]. A simplified circuit 
schematic of the comparator section of the NGSC probe is 
shown in Fig. 1. 

Phase-plane compensation for analog-to-digital convert- 
ers (ADCs) has been discussed extensively in the literature 
[7]-1131. In past efforts to characterize the distortion behavior 
of NIST-designed sampling probes, a distortion model was 
derived experimentally from examination of the probe's error 
surface in the phase plane spanned by signal state and slope 
[5]. We found that a linear combination of basis functions 
consisting of seventh-order polynomials in state, first deriva- 
tive, and second derivative did a good job of describing the 
digitizer's dynamic error behavior. Of significant consequence 
was the finding that the prescribed manner in which the second- 
derivative terms were introduced endowed the model with the 
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Fig. 2. Measurement setup. 

Fig. 1. Simplified schematic of comparator, highlighting critical circuitry. 

correct relationship between harmonic distortion and nonlinear 
gain and phase error, which are not easily measured. The 
method provided a complete description of the error behavior 
of the probe, including nonlinear gain, phase, and offset error 
in addition to harmonic distortion from measurements of probe 
harmonic distortion alone. 

In this paper, we deviate from the earlier modeling approach Time (ns) 

in two regards: First, timebase nonlinearity was not a concern Fig. 3. colTections. 
previously because the signal frequencies were relatively low. 
'or this paper, signa1 frequencies are high enough that lime- of 600 MHz. Thus, for the l-GHz data, there were exactly five 
base nonlinearity can introduce errors that are not benign to periods contained in the data records, whereas for 
the process. We this using curve the 600-MHz data, there were exactly three periods 
fitting to sinusoidal reference signals [I41 to separate the errors in the data records. An analog low-pass filter was 
inherent to the sampler those from timebase used to ensure adequate spectral purity of the test signals. The 
nonlinearity. Second, we found previously that an input capaci- attenuation of the filter was approximately -30 and dB at 
tame model based on the customary expression for p-njunction 1.2 and 2 G H ~ ,  respectively. ne specified harmonic and spuri- 
capacitance [15I was effective at im~roving the model's fit '0 ous signal levels of the signal generator and RF amplifier were 
probe-distortion behavior. In this paper, we instead model input better than -30 dBc. RF amplifier had a low-frequency 

error with a series a ~ ~ r o x i m a t i o n y  which comer at 20 MHz. Therefore, any changes in the dc offset of the 
has been found to consist of a polynomial in state-slO~e cross- measured data could be amibuted only to distortion behavior in 
product terms [I 11. We note in passing that, as shown in Fig. 1, the sampler and not to the signal source. 
the NGSC probe uses a cascade in~ut-stage that To account for in the timebase that would af- 
reduces Miller multiplication of the input capacitance and fect estimates of the probe,s harmonic distortion, a timebase 
the attendant contribution of its voltage nonlinearity to probe correction vector was computed using calibration signals at 
distortion. 1 GHz and 900 MHz, with each at four phases (0°, 90", 18O0, 

and 270") [14]. The resulting timebase correction vector is 
m. DATA COLLECTION shown in Fig. 3, and the effect of these corrections is shown 

order to examine the error behavior of the probe in the in Fig. 4 where the residual error of a three-parameter sine fit 

phase plane, we measured an ensemble of calibration sine [I7] to measured probe data is shown. When timebase 

waves over a peak amplitude range of 0.1-1.6 v using the nonlinearity is corrected, the structure in the fit residuals per 

measurement setup shown in Fig. 2. The probe's full-scale waveform period repeats with better uniformity. The correc- 

range is f1.8 V. me signal source was a commercial RF tions in Fig. 3 have been smoothed with a nine-point moving 

signal generator. l-iming jitter between the generator's signal average filter. Timebase corrections were used in all subsequent 

output and its synchronous timebase output made the timebase data processing. 

signal unsuitable as a trigger for the sampling mainframe. The 
mainframe's trigger signal was therefore derived from the test IV. ERROR MODELING 
signal through a prescaler and countdown chain. The measure- 
ment epoch duration was 5 ns. We collected two amplitude In consideration of previous work [18] suggesting that probe 
ensembles: one at a frequency of 1 GHz and one at a frequency dynamic error depended only on powers (quadratic and higher) 
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The full model matrix A, which contains all the error 
components described previously, is comprised of four m x n 
submatrices such that 

A = [Aol AI,  A2, A31 (2) 

where 
-0.01; 1 U 2 I 3 1 4 I I 

5 
Time (ns) AI = [ Y Y ~  y2y, - . . 1 Y ~ Y ~  

cai 
0.03r 

A2 = [yy, y2Gl . . . , yny] and 
I I I 1 (2b) 

-0.01; 1 I 2 I I I 
3 4 5 

Time (ns) 
(b) 

Fig. 4. Probe distortion for a 0.7-V 1-GHz signal (a) without timebase 
correction and (b) with timebase correction. 

of first-derivative signal (slope), we previously [5] used as many 
powers of slope as were advised by the number of significant 
harmonic components in the error spectrum. For this paper, we 
continue this approach for the simple reason that it appears 
to be effective. We also make use of the finding [ l l ]  that 
the error caused by interaction of a nonzero resistive source 
impedance with probe voltage-dependent input capacitance 
can be modeled with the form p(y)y, where the notation y 
indicates the vector of sampled data and y indicates the first 
derivative of the vector y with respect to time. The polynomial 
p(y) is a simple power series in y. We have determined 
from studying different error models that a model combining 
these two sets of basis functions can describe most of the 
error behavior shown in Fig. 4. In addition, we have found 
that the inclusion of the first derivative with respect to time 
of each of these error terms improves the fit to the data by 
producing a fine adjustment to the temporal positioning of the 
modeled error. 

An explanation of the procedure begins by writing the error 
behavior modeled by the powers of slope as 

where A. is an m x n matrix whose columns are model basis 
functions and whose rows correspond to data samples, w is an 
n x 1 vector of regression coefficients, and e is an m x 1 vector 
of probe errors obtained from sine fit residuals or the discrete 
Fourier transform (DFT). From (I), A. = [ j r 2 ,  j r 3 , .  . . , yn+']. 
Because we are using timing corrections and therefore do not 
have uniform sample spacing, we compute e using sine wave 
curve fitting. As the residual of a sine fit, the vector e contains 
no fundamental. 

As = [yy + y2,  y2y + 2 y y 2 1 . .  . , ynG + nyn-'~'] .  (2c) 

The notation & indicates the second derivative of the vector 
y with respect to time. The Al model components describe 
nonlinear input capacitance error. The columns of A2 and A3 
are the time derivatives of the functions comprising the columns 
of A0 and Al, respectively. 

Fitting the harmonic content of the model to the harmonic 
content of the probe requires solving the system of linear 
equations 

where A equals A with the fundamental component removed 
from each column. 

As has been noted previously [l 11, a better determination of 
w is obtained with a global fit to multiple calibration signals of 
different amplitudes and frequencies. With multiple calibration 
signals, (3) becomes 

where L is the number of calibration signals. The diagonal 
matrix K(4n x 4n) is introduced to provide the normalized 
design matrix A L ~ .  The elements of K are the reciprocal 
of the root mean square (rms) of each of the columns of jiL. 
From (4), w* can be estimated in a least squares sense as 

With w* determined, errors in a given set ofsampled data are 
modeled by computing 

where each column of A, is computed from the analytic 
expression for the corresponding column in A but reevaluated 
using the state and derivative values from the sampled data 
being corrected. We note that because the functions in A, 
contain fundamental, 2 includes an estimate of error at the 
fundamental frequency. 
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Fig. 5. Six most significant model functions (n = 5) generated from (a) pure 
sine wave and (b) modulated sine wave input. 
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Fig. 6.  Model coefficients GI*. 

A key attribute of this method is that a single set of re- 
gression coefficients w* can correct errors in any arbitrary 
signal because the basis functions that make up the error 
estimate are recomputed for each new waveform being cor- 
rected. As an example, Fig. 5 illustrates the patterns of the six 
most significantly weighted columns of A,K generated by an 
800-MHz sine wave with a peak amplitude of 1.5 V and by the 
same signal with 20% amplitude modulation at 320 MHz. 

Fig. 6 plots the regression coefficients resulting from fitting 
the model to the 600-MHz and 1-GHz calibration signals. 
Most of the probe's error behavior is described by the Al 
components of the model (specifically, the yy, y3y, and y59 
terms), although some of the Ao, AP. and AB components are 
significant as well. 

Slope (Vlns) -20 -2 Amplitude M 

Fig. 7. Error surface for I-GHz data. 

slope (~ lns)  -26-2 Amplitude (V) 

Fig. 8. Model-generated corrections for 1-GHz data. 

The NGSC probe's error surface in state-slope space after 
binning the time-domain errors from the test signal ensemble is 
shown in Fig. 7. The surface was generated from 1-GHz data. 
Model-generated corrections using a model order n = 5 are 
shown in Fig. 8. For comparison with Fig. 7, the fundamental 
component in the corrections has been removed. Figs. 7 and 8 
show good agreement between the data and the modeled fit to 
the data. 

Figs. 9 and 10 show the model's performance in the fre- 
quency domain as a function of input signal level. The model 
was fit to the 600-MHz and 1-GHz calibration ensemble ex- 
cluding those signals whose peak amplitudes were less than 
1 V. This choice produced the best agreement between the 
model and the data for large signals, where distortion is of 
greatest concern. In Fig. 9, the magnitudes of the second, 
third, and fourth harmonics of measured and modeled data are 
plotted. Here, we see excellent agreement between measured 
and modeled harmonics at 1 GHz. At 600 MHz, the modeled 
third harmonic fits well at higher signal levels, whereas the 
modeled second harmonic fits the data best for signal levels 
between approximately 0.8 and 1.3 V. 

In Fig. 10, the phase difference between measured and mod- 
eled data for the second, third, and fourth harmonics is plotted 
versus the input signal level. At 1 GHz, the model produces 
excellent phase agreement for the second harmonic and good 
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Fig. 9. Measured (solid line) and modeled (dotted line) magnitude of second 
(darkest), third, and fourth (lightest) harmonics versus input signal level for 
(a) 600-MHz and (b) I-GHz measurement ensembles. 

m 
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Applied Peak Signal Level (V) 

Fig. 10. Phase difference between measured and modeled data for second 
(darkest), third, and fourth (lightest) harmonics versus input signal level for 
(a) 600-MHz and (b) 1-GHz measurement ensembles. 

phase agreement for the thud harmonic for signal levels greater 
than approximately 1 V. Phase agreement for the 600 MHz is 
not as good, but for signal levels greater than approximately 
1.2 V, the phase error for the second and third harmonics is 
nearly flat. In neither case is the modeled fourth harmonic phase 
in good agreement with measured data. The reason for this is 
not clear and warrants further study. 

Fig. 11 compares measured probe harmonic distortion with 
model-generated errors in the time domain. The model fits the 
1-GHz data extremely well. The 600-MHz case represents a 
tradeoff. A higher order model fits the data better but yields 

1 2 3 4 5 
Time (ns) 

(a) 
0.1 

i I ! -0.lA 1 2 3 4 
5 

Time (ns) 

(b) 

Fig. 11. Measured probe distortion (solid line) and model fit (dashed line) for 
(a) 600-MHz and (b) 1-GHz data. The signal peak amplitude was 1.6 V. 
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Fig. 12. Measured (solid line) and modeled (dotted line) magnitude of second 
(darkest), third, and fourth (lightest) harmonics versus input signal level for 
(a) 600-MHz and @) 1-GHz measurement ensembles but with y terms excluded 
from the model. 

inferior distortion performance at frequencies away from the 
calibration points. 

To see the effect of the y terms on the model, the magnitude 
of the second, third, and fourth harmonics of measured and 
modeled data are again plotted in Fig. 12 but using a model 
without the A2 and Ag components. In this case, the magnitude 
response of the model does not agree with measured data as 
well as it does when the model contains second-derivative 
terms. In Fig. 13, the effect of excluding the second-derivative 



BERGMAN AND STENBAKKEN: PHASE-PLANE-DERIVED DISTORTION MODELING OF A FAST DIGITIZING SAMPLER 1099 

-0.04; 1 2 3 4 5 

Time (ns) 
(a) 

-0.1 
8 I I 

0 1 2 3 4 5 
Time (ns) 

(b) 

Fig. 13. Measured probe distortion (solid line) and model fit (dashed line) f o ~  
(a) 600-MHz and (b) I-GHz data but with y terms excluded from the model. 
The signal peak amplitude was 1.6 V. 

terms on measured probe distortion is especially evident in 
the 600-MHz data, where time alignment of the measured and 
fitted data is not as good as that shown in Fig. 11. Although 
the structure of the modeled error in Fig. 13(a) differs slightly 
from that in Fig. ll(a), a more significant effect of the A3 
components is to adjust the temporal placement of the Al 
components that cany most of the fit. This can be understood 
in terms of a Taylor series where 

for small At and is consistent with the relatively small weights 
(vectors 11-20 in Fig. 6)  associated with the A2 and A3 model 
vectors. It is noted that the A. and Az terms are necessary to 
achieve the degree of fit shown in Figs. 9-1 1 even though their 
coefficients are relatively small. 

Fig. 14 shows uncorrected and corrected THD over the 
frequency range of 300 MHz to 1 GHz. Because the data 
records for the frequencies other than 600 MHz and 1 GHz did 
not contain integer numbers of waveform periods, THD was 
computed by fitting a ten-harmonic model to each data record 
and computing the ratio of the rms of the ten fitted harmonics 
to the rms of the fitted fundamental. As might be expected, the 
degree of improvement correlates with the model order at the 
frequencies used to calibrate the model, which are -600 MHz 
and 1 GHz. However, at 900 MHz, the highest order model 
produces the smallest improvement. The poor performance of 
the model below 600 MHz is probably explained by the probe- 
distortion behavior, which departs markedly from the model 
behavior at these frequencies. The behavior is manifested as 
comparatively large low-order harmonic components at small 
signal amplitudes. This behavior is not understood and is the 

-30 - Uncorrected I I 1 

Frequency (MHz) 

Fig. 14. Probe THD. The peak signal level was 1.6 V. 

900 MHz, and 1 GHz, model n = 5 corrections improve THD 
by 4,7, and 14 dB, respectively. 

VI. CONCLUSION 

An analytic model for describing the distortion behavior 
of a high-speed sampling/digitizing probe has been presented. 
The model, which consists of suitable polynomials in the sarn- 
pled waveform's instantaneous amplitude and time derivatives, 
was deduced experimentally from examination of the probe's 
dynamic error behavior in the phase plane. An ensemble of 
calibration waveforms was measured with the probe, and the 
data were then fit via least squares to the model. The poly- 
nomial basis functions of the model were found to be good 
descriptors of the dynamic error behavior of the probe, which 
was designed for accurate waveform metrology applications. 
An improvement in harmonic distortion at 1 GHz from -32 to 
-46 dB was achieved. 
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