Practical Aspects Impacting
Time Synchronization Data Quality
in Semiconductor Manufacturing

James Moyne,
Jonathan Parrott, Naveen Kalappa and Ya-Shian Li

moyne@umich.edu

October 2006
Why is time synchronization so important in semiconductor manufacturing?
- Components in the end-to-end synchronization problem

Currents efforts in semiconductor manufacturing time synchronization data quality
- NIST and the University of Michigan
- SEMI Standards

Key points and future efforts
Motivation: The Move to Networks

Ethernet Everywhere!

- Interfaces A, B and C
- EDA, PCS, e-diagnostics
- HSMS
- XML, VPN, OPC
- MES to I/O Level
Why Synchronize Time?

Manufacturing Automation
- Process Control
- Coordination among tools
- Scheduling/Dispatching

Fault Diagnosis for Power Industry

Robotics Coordination for Auto Industry

Test and Measurement
- Fault Diagnosis

Network Operations
- Security
- QoS measurement
Motivation in Chip Manufacturing

Advanced Process Control:
- Fault Detection Classification
- Process Optimization

Precision Time Stamping:
- Merging data from heterogeneous sources
- Maintain data and event ordering
- Improve multivariate, advanced correlation and analysis
- Expose new cause-effect relationships
Common Time Sync. Pain Points in APC

• Events and data are received out-of-order
• Inability to support high data collection rates with good data quality
• Cannot synchronize data across multiple systems (e.g., equipment & metrology systems)
• “False Positives” in fault detection systems bring equipment down unnecessarily
 – Out-of-order data, poor timestamping
 – Timestamping at point of sending instead of point of event occurrence
• “Out-of-control” situations for R2R controllers
 – Poor data quality due to delay and delay variability
• Inability to migrate from the equipment level to the factory-wide level with APC systems
• Etc…
How Does Time Synchronization Work?

1.) Master (UTC-based clock) multicasts Sync messages to notify synchronization to all of its slaves

1.5) Master follows up with a time stamp of when the Sync message was actually sent using the Follow_Up message

2.) Slave receives the Sync message, records time of receipt

3.) Slave returns with a Delay_Req message used to gauge the latency from the slave to the master and records the time that message was sent

4.) When the master receives the delay request, it records the time (t4) and sends t4 back to the slave in the Delay_Resp message

5.) Slave calculates offset based on t1, t2, t3, and t4
How Does Time Synchronization Work (2)

- Across the Enterprise
 - Example

1588 Hardware
VPN Server/Gateway C

Internet

UDP or TCP

1588 Hardware

Switched Ethernet
LAN

Remote Diagnostics

VPN/Time/Data Client D
1588 Hardware

NSF

Slide 8
18th AEC/APC Symposium
Solutions for Time Synchronization

- **NTP 4.0 or SNTP 4.0**
 - Software only
 - 50 µs to 50 ms accuracy, depending largely on software + network environment
 - More mature

- **ANSI/IEEE 1588 – (IEC 61588)**
 - Software and hardware
 - Approx 100ns accuracy
 - Infancy in standard and solutions

IEEE1588

- Precision Time Protocol
- SW-Module
- HW-Module

Synchronisation Element

- Port Interface
- TimeStamp Interface
- Clock Interface
- Network Driver
- MAC
- PHY

IEEE 1588

- Timestamp Driver
- MD
- HW Realtime Clock

- MII
- PHY
- Port

MD – Message Detector for Sync and Delay_Request packets

necessary if no MII- interface available
What Needs To Be Synchronized?

Clocks have
- **Offset** from absolute time
- **Skew**, rate difference from frequency source
 - Due to clock imperfections, temperature, etc.
 - Typical computer system clocks can reach several hundreds parts per million (PPM)
 - Several seconds off per day
Today’s Factories

• Switched Fast Ethernet (100Mbps)
 – No collisions, Low utilization

• Protocols on top of Ethernet for end-to-end communication diagnostics, security, etc.
 – UDP and TCP for end-to-end connectivity
 – Equipment Data Acquisition (E134, interface “A”) and OPC for diagnostics (SCADA)
 – VPN for security (E132, interface “C”)

• A lot of data traveling to a lot of places

• So where is the weak link??
Components of Delay

- **Total end-to-end delay is the sum of**
 - Pre-processing time: microprocessor
 - Waiting time: network protocol - MAC
 - Transmission time: data rate & length
 - Post-processing time: microprocessor
A Simple Switched-Ethernet Experiment

- Where are the sources of delay and variability?
 - Network and nodes

![Diagram of a switched-ethernet experiment with Node A, Switched 100Mbps Ethernet, and Node B connected by 100m links.]
One-way Delay Contributions

Node A

100m

Switch 100Mbps Ethernet

100m

Node B

Propagation
0.5

Transmission
5.12

Switch latency
10

Transmission
5.12

Propagation
0.5

Network

Node time
330

64-byte packet

The Delay is in the Node Software

(Tpre, Twait and Tpost)

Node A

100m

Switched 100Mbps Ethernet

100m

Node B

64-byte packet

The Delay is in the Node Software

(Tpre, Twait and Tpost)
Application level delays

• UDP round-trip delays (100Mbs switched network)
 - Mean = 0.33ms, max = 1.89ms
 - Stdev = 0.03ms
 - Network round-trip time: 0.035ms

• OPC round-trip delays (100Mbs switched network)
 - Mean = 1.5ms, max = 16.8ms
 - Stdev = 0.81ms

OLE for Process Control: “THE” diagnostics protocol utilized outside of semiconductor mfg. today

The Delay and delay Variability is in the Node Software
Varying packet size

- **UDP round-trip delays** (100Mbs switched network)
 - Slope = 0.411 μs/bit
 - Theory: 0.32 μs/bit
 - Intercept: 0.285 ms

- **VPN round-trip delays** (100Mbs switched network)
 - Slope = 0.848 μs/bit
 - Intercept: 1.07 ms
 - Using DES (data encrypt. std)
Test Results Summary

<table>
<thead>
<tr>
<th></th>
<th>UDP</th>
<th>VPN (UDP)</th>
<th>OPC (TCP)</th>
<th>DeviceNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay Average (ms)</td>
<td>0.33</td>
<td>1.21</td>
<td>1.48</td>
<td>0.3-1.2</td>
</tr>
<tr>
<td>Delay Variation (3σ) (ms)</td>
<td>0.09</td>
<td>0.49</td>
<td>2.43</td>
<td>0.005-0.2</td>
</tr>
<tr>
<td>Min. Ntwrk. Contribtn (ms)</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.188</td>
</tr>
<tr>
<td>% of Delay Due to Network</td>
<td>11%</td>
<td>3%</td>
<td>2%</td>
<td>63%</td>
</tr>
</tbody>
</table>

The Message:

- We need time synchronization and time stamping to mitigate delay and delay variability disturbances of end-to-end network communication.
- We need standards for time synchronization and *when* to time stamp information in the end-to-end communication path.
- Using synchronization and time stamping, we can decouple application node time from communication network time.
Outline

• Why is time synchronization so important in semiconductor manufacturing?
 – Components in the end-to-end synchronization problem

• Currents efforts in semiconductor manufacturing time synchronization data quality
 – NIST and the University of Michigan
 – SEMI Standards

• Key points and future efforts
NIST / University of Michigan Project

• Performance testing of IEEE 1588 for semiconductor manufacturing applications
 – Data collection
 – Remote monitoring

• IEEE 1588 testbed in operation
 – 1588 hardware I/O cards
 – XML traffic generators
 – Routines for encapsulation, e.g., VPN, OPC, UDP, as necessary
 – Performance analysis software
NIST / University of Michigan Project

- Benchmark common protocol scenarios (XML, VPN, etc.)
- Interface “A” traffic volume analysis and performance benchmarking
 - Simple equipment EDA traffic simulators
- APC scenarios performance analysis
 - Equipment EDA and PCS simulators; control scenarios

- Exploration of Time Synchronization for Semiconductor Manufacturing
 - Identification of weak links in equipment, software systems, standards, etc.
 - Input into SEMI standards effort
Characterized processes from I/O level up through MES in terms of timing accuracy and precision requirements

Surveyed existing SEMI standards to determine current time protocols and timing needs

Developed ballot standard
- “Provisional Specification for the Usage and Definition of Time Synchronization”
 - Defines key requirements for factory applications and equipment to maintain and manage data and time accurately
 - Currently out for early balloting

Impact on existing I&CC standards is expected
- EDA, sensor bus, PCS, etc.
Sample Time Synchronization Requirements

<table>
<thead>
<tr>
<th>Application</th>
<th>Description/Needs</th>
<th>Absolute Accuracy</th>
<th>Relative Accuracy</th>
<th>Min Data Sampl Interval</th>
<th>Precision Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-Time Data Base (Data Repository, Historian)</td>
<td>Provide high-speed storage and retrieval of detailed equipment and process data to support wide range of application needs.</td>
<td>5 sec</td>
<td>10 ms</td>
<td>20 ms</td>
<td>1 ms</td>
</tr>
<tr>
<td>Control / Fault Model Development</td>
<td>Analyze equipment, process, metrology, and yield information to development control models used for APC applications.</td>
<td>10 sec</td>
<td>10 ms</td>
<td>1 min</td>
<td>1 ms</td>
</tr>
<tr>
<td>Statistical Process Control (SPC)</td>
<td>Track equipment / process parameters and flag SPC rule violations; not a real-time control technique.</td>
<td>5 sec</td>
<td>100 ms</td>
<td>1 sec</td>
<td>1 ms</td>
</tr>
<tr>
<td>Run-to-Run Control (R2R)</td>
<td>Adjust recipe parameters between individual production runs (wafer, lot, batch) based on results of previous runs; uses combination of metrology and equipment data to calculate adjustments.</td>
<td>5 sec</td>
<td>50 ms</td>
<td>100 ms</td>
<td>1 ms</td>
</tr>
<tr>
<td>Fault Detection and Classification (FDC)</td>
<td>Analyze equipment and process parameters to ensure tool is in its acceptable operating envelope; identify and classify (or prevent) equipment faults and interrupt processing accordingly.</td>
<td>5 sec</td>
<td>10 ms</td>
<td>50 ms (in process)</td>
<td>1 ms</td>
</tr>
<tr>
<td>Event / Alarm Management</td>
<td>Capture, analyze, communicate, and support user response to events and alarms across the production environment.</td>
<td>5 sec</td>
<td>1 sec</td>
<td>1 sec</td>
<td>1 ms</td>
</tr>
<tr>
<td>Scheduling/Dispatching (RTD)</td>
<td>Provides ability to accurately estimate time of completion, arrival of wafers, and to prepare a tool for wafer processing.</td>
<td>5 sec</td>
<td>2 sec</td>
<td>2 sec</td>
<td>1 ms</td>
</tr>
<tr>
<td>Factory Time Synchronization</td>
<td>Maintain and provide reference time for all systems in the fab.</td>
<td>5 sec</td>
<td>1 ms</td>
<td>10 sec</td>
<td>1 ms</td>
</tr>
</tbody>
</table>
Outline

- Why is time synchronization so important in semiconductor manufacturing?
 - Components in the end-to-end synchronization problem

- Currents efforts in semiconductor manufacturing time synchronization data quality
 - NIST and the University of Michigan
 - SEMI Standards

- Key points and future efforts
Key Points

- Many efforts in implementing EDA and PCS implementation will fail if data quality is not addressed.
- Lack of time synchronization and accurate time stamping is a common source of poor data quality.
- The weak link is often the tool software performance, so where you time stamp is very important.
- NIST, The University of Michigan and SEMI are working together to address this issue, with the end result being standards and prototypes that will impact PCS, EDA and e-diagnostics.
Future Efforts

- Identify and quantify the weak links in timing and time synchronization for APC
- Provide cost / benefit analysis
 - What level of time synchronization is needed at various places throughout the fab; e.g., is hardware time synchronization required?
- SEMI standards for time synchronization and time stamping
- Raise awareness
 - APC applications are only as good as the data and data quality is usually the weak link
 - Lack of time synchronization is hindering our movement to fab-wide APC, especially for Fault Detection
 - Techniques are available to provide enterprise-wide time synchronization
- Education
 - When and how to apply time synchronization
- Impact the ITRS; indicate importance of time synchronization, time stamping and data quality in general
Thank You !! 😊

• For further information
 – James Moyne: moyne@umich.edu
 – UM-ERC-RMS: http://erc.engin.umich.edu

• Acknowledgments
 – NIST
 – NSF Engineering Research Center for Reconfigurable Manufacturing Systems (UM-ERC-RMS)
 – ISMI and SEMI
 – Jonathan Parrott and Dawn Tilbury

• Questions?

Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.
Slide 26
18th AEC/APC Symposium