

Practical Aspects Impacting *Time Synchronization Data Quality* in Semiconductor Manufacturing

James Moyne, Jonathan Parrott, Naveen Kalappa and Ya-Shian Li

moyne@umich.edu

October 2006

POSIUM XVIII

September 30 - October 5, 2006 • Westminster, CO

Outline

 Why is time synchronization so important in semiconductor manufacturing?

- Components in the end-to-end synchronization problem
- Currents efforts in semiconductor manufacturing time synchronization data quality
 - NIST and the University of Michigan
 - SEMI Standards
- Key points and future efforts

Motivation: The Move to Networks

18th AEC/APC Symposium

Why Synchronize Time?

Manufacturing Automation

- Process Control
- Coordination among tools
- Scheduling/Dispatching

Fault Diagnosis for Power Industry

Robotics Coordination for Auto Industry

- **Test and Measurement**
 - Fault Diagnosis
- **Network Operations**
 - Security
 - QoS measurement

Slide 4 18th AEC/APC Symposium

Motivation in Chip Manufacturing

Precision Time Stamping to Merge Various Data Streams

Advanced Process Control:

- Fault Detection Classification
- Process Optimization

Precision Time Stamping:

- Merging data from heterogeneous sources
- Maintain data and event ordering
- Improve multivariate, advanced correlation and analysis
- Expose new cause-effect relationships

Slide 5 18th AEC/APC Symposium

Common Time Sync. Pain Points in APC

- Events and data are received out-of-order
- Inability to support high data collection rates
 with good data quality
- Cannot synchronize data across multiple systems (e.g., equipment & metrology systems)
- "False Positives" in fault detection systems bring equipment down unnecessarily
 - Out-of-order data, poor timestamping
 - Timestamping at point of sending instead of point of event occurrence
- "Out-of-control" situations for R2R controllers
 - Poor data quality due to delay and <u>delay variability</u>
- Inability to migrate from the equipment level to the factorywide level with APC systems

Etc...

Slide 6 18th AEC/APC Symposium

How Does Time Synchronization Work?

How Does Time Synchronization Work (2)

Solutions for Time Synchronization

- NTP 4.0 or SNTP 4.0
 - Software only
 - 50 us to 50 ms accuracy, depending largely on software + network environment
 - More mature
- ANSI/IEEE 1588 (IEC 61588)
 - Software and hardware
 - Approx 100ns accuracy
 - Infancy in standard and solutions

Slide 9 18th AEC/APC Symposium

What Needs To Be Synchronized?

Clocks have

-Offset from absolute time

–Skew, rate difference from frequency source

- Due to clock imperfections, temperature, etc.
- Typical computer system clocks can reach several hundreds parts per million (PPM)
- Several seconds off per day

Time

Today's Factories

- Switched Fast Ethernet (100Mbps)
 - No collisions, Low utilization
- Protocols on top of Ethernet for end-to-end communication diagnostics, security, etc.
 - UDP and TCP for end-to-end connectivity
 - Equipment Data Acquisition (E134, interface "A") and OPC for diagnostics (SCADA)
 - VPN for security (E132, interface "C")
- A lot of data traveling to a lot of places
- So where is the weak link??

Slide 11 18th AEC/APC Symposium

Components of Delay

- Total end-to-end delay is the sum of
 - Pre-processing time: microprocessor
 - Waiting time: network protocol MAC
 - Transmission time: data rate & length
 - Post-processing time: microprocessor

Device

Delays

A Simple Switched-Ethernet Experiment

- Where are the sources of delay and variability?
 - Network and nodes

Slide 13 18th AEC/APC Symposium

One-way Delay Contributions

Application level delays

- Mean = 0.33ms, max = 1.89ms
- Stdev = 0.03ms
- Network round-trip time: 0.035ms

Slide 15

18th AEC/APC Symposium

The Delay and delay Variability is in the <u>Node Software</u>

Stdev = 0.81ms

Mean = 1.5ms, max = 16.8ms

Varying packet size

 UDP round-trip delays (100Mbs switched network)

- Slope = 0.411µs/bit
 - Theory: 0.32 $\mu\text{s/bit}$
- Intercept: 0.285ms

Slide 16 18th AEC/APC Symposium VPN round-trip delays (100Mbs switched network)

- Slope = 0.848µs/bit
- Intercept: 1.07ms
- Using DES (data encrypt. std)

Test Results Summary

	UDP	VPN (UDP)	OPC (TCP)	DeviceNet
Delay Average (ms)	0.33	1.21	1.48	0.3-1.2
Delay Variation (3σ) (ms)	0.09	0.49	2.43	0.005-0.2
Min. Ntwrk. Contrbutn (ms)	0.035	0.035	0.035	0.188
% of Delay Due to Network	11%	3%	2%	63%

The Message:

- <u>We need time synchronization and time stamping</u> to mitigate delay and delay variability disturbances of end-to-end network communication
- We need standards for time synchronization and when to time stamp information in the end-to-end communication path
- Using synchronization and time stamping, we can decouple application node time from communication network time

Outline

- Why is time synchronization so important in semiconductor manufacturing?
 - Components in the end-to-end synchronization problem
- Currents efforts in semiconductor manufacturing time synchronization data quality
 - NIST and the University of Michigan
 - SEMI Standards
 - Key points and future efforts

NIST / University of Michigan Project

VPN/Time Server/Gateway C

- Performance testing of IEEE 1588 for semiconductor manufacturing applications
 - Data collection
 - Remote monitoring

Time/Event Producer ATime/Event Producer B

- IEEE 1588 testbed in operation
 - 1588 hardware I/O cards
 - XML traffic generators
 - Routines for encapsulation, e.g., VPN, OPC, UDP, as necessary
 - Performance analysis software

Slide 19 18th AEC/APC Symposium

NIST / University of Michigan Project

- Benchmark common protocol scenarios (XML, VPN, etc.)
- Interface "A" traffic volume analysis and performance benchmarking
 - Simple equipment EDA traffic simulators
- APC scenarios performance analysis
 - Equipment EDA and PCS simulators; control scenarios

- Exploration of Time Synchronization for Semiconductor Manufacturing
 - Identification of weak links in equipment, software systems, standards, etc.
 - Input into SEMI standards effort

Slide 20 18th AEC/APC Symposium

SEMI *Time Synchronization Task Force* **Progress**

- Characterized processes from I/O level up through MES in terms of timing accuracy and precision requirements
- Surveyed existing SEMI standards to determine current time protocols and timing needs

Developed ballot standard

- "Provisional Specification for the Usage and Definition of Time Synchronization"
 - Defines key requirements for factory applications and equipment to maintain and manage data and time accurately
 - Currently out for early balloting
- Impact on existing I&CC standards is expected
 - EDA, sensor bus, PCS, etc.

Slide 21 18th AEC/APC Symposium

Sample Time Synchronization Requirements

Application	Description/Needs	Absolute Accuracy	Relative Accuracy	Min Data Sampl Interval	Precision Required
Real-Time Data Base (Data Repository, Historian)	Provide high-speed storage and retrieval of detailed equipment and process data to support wide range of application needs.	5 sec	10 ms	20 ms	1 ms
Control / Fault Model Development	Analyze equipment, process, metrology, and yield information to development control models used for APC applications.	10 sec	10 ms	1 min	1 ms
Statistical Process Control (SPC)	Track equipment / process parameters and flag SPC rule violations; not a real-time control technique.	5 sec	100 ms	1 sec	1 ms
Run-to-Run Control (R2R)	Adjust recipe parameters between individual production runs (wafer, lot, batch) based on results of previous runs; uses combination of metrology and equipment data to calculate adjustments.	5 sec	50 ms	100 ms	1 ms
Fault Detection and Classification (FDC)	Analyze equipment and process parameters to ensure tool is in its acceptable operating envelope; identify and classify (or prevent) equipment faults and interrupt processing accordingly.	5 sec	10 ms	50 ms (in process) 20 sec (post-process)	1 ms
Event / Alarm Management	Capture, analyze, communicate, and support user response to events and alarms across the production environment.	5 sec	1 sec	1 sec	1 ms
Scheduling/ Dispatching (RTD)	Provides ability to accurately estimate time of completion, arrival of wafers, and to prepare a tool for wafer processing.	5 sec	2 sec	2 sec	1 ms
Factory Time Synchronization	Maintain and provide reference time for all systems in the fab.	5 sec	1 ms	10 sec	1 ms

Outline

- Why is time synchronization so important in semiconductor manufacturing?
 - Components in the end-to-end synchronization problem
- Currents efforts in semiconductor manufacturing time synchronization data quality
 - NIST and the University of Michigan
 - SEMI Standards

Key points and future efforts

Slide 23 18th AEC/APC Symposium

Key Points

- Many efforts in implementing EDA and PCS implementation will fail if data quality is not addressed
- Lack of time synchronization and accurate time stamping is a common source of poor data quality

- The weak link is often the tool software performance, so where you time stamp is very important
- NIST, The University of Michigan and SEMI are working together to address this issue, with the end result being standards and prototypes that will impact PCS, EDA and e-diagnostics

Slide 24 18th AEC/APC Symposium

Future Efforts

- Identify and quantify the weak links in timing and time synchronization for APC
- Provide cost / benefit analysis
 - What level of time synchronization is needed at various places throughout the fab; e.g., is hardware time synchronization required?

- SEMI standards for time synchronization and time stamping
- Raise awareness
 - APC applications are only as good as the data and data quality is usually the weak link
 - Lack of time synchronization is hindering our movement to fab-wide APC, especially for Fault Detection
 - Techniques are available to provide enterprise-wide time synchronization
- Education
 - When and how to apply time synchronization
- Impact the ITRS; indicate importance of time synchronization, time stamping and data quality in general

Thank You !! ©

- For further information
 - James Moyne: moyne@umich.edu
 - UM-ERC-RMS: http://erc.engin.umich.edu
 - J. T. Parrott, J. R. Moyne, D. M. Tilbury, "Experimental Determination of Network Quality of Service in Ethernet: UDP, OPC, and VPN," *Proceedings of the American Control Conference,* Minneapolis, MN, June 2006.

Acknowledgments

- NIST
- NSF Engineering Research Center for Reconfigurable Manufacturing Systems (UM-ERC-RMS)
- ISMI and SEMI
- Jonathan Parrott and Dawn Tilbury

• Questions?

Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States. Slide 26 18th AEC/APC Symposium