
 Spectroscopic phase-dispersion optical coherence 
tomography measurements of scattering 

phantoms 
Shellee D. Dyer, Tasshi Dennis, Lara K. Street, and Shelley M. Etzel  

NIST, Optoelectronics Division, Mailstop 815.03, 325 Broadway, Boulder, CO 80305 
sdyer@boulder.nist.gov 

Thomas A. Germer  
NIST, Optical Technology Division, 100 Bureau Drive, Stop 8443, Gaithersburg, MD 20899-8442 

Andrew Dienstfrey 
NIST, Mathematical and Computational Sciences Division, Mailstop 891.01, 325 Broadway, Boulder, CO 80305 

 
Abstract: We demonstrate a novel technique to determine the size of Mie 
scatterers with high sensitivity.  Our technique is based on spectral domain 
optical coherence tomography measurements of the phase dispersion that is 
induced by the scattering process.  We use both Mie scattering predictions 
and dispersion measurements of phantoms to show that the scattering 
dispersion is very sensitive to small changes in the size and/or refractive 
index of the scatterer.  We also show the light scattered from a single sphere 
is, in some cases, non-minimum phase. Therefore, the phase is independent 
of the intensity of the scattered light, and both intensity and phase must be 
measured directly in order to characterize more completely the scattering 
problem.  Phase dispersion measurements may have application to 
distinguishing the size and refractive index of scattering particles in 
biological tissue samples. 
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1.  Introduction 

Light scattering spectroscopy (LSS) is a measurement of the intensity of light scattered from 
tissue samples as a function of wavelength and/or angle [1].  Cell nuclei, cellular membranes, 
and mitochondria are all strong scatterers of light in the visible to near IR wavelength range.  
LSS is extremely sensitive to small changes in tissue architecture and has application for 
general tissue morphology, but of particular interest for cancer screening is the light scattered 
from the cell nuclei.   LSS can detect small changes in the size and refractive index of cell 
nuclei.  It has been shown previously that nuclei can be modeled as spherical Mie scatterers 
with characteristic diameters of 4 to 7 μm for healthy samples and diameters as large as 20 
μm for dysplastic or cancerous samples [1].   

Optical coherence tomography (OCT) is a tissue imaging modality that is capable of 
generating high resolution in vivo images of tissue based on low-coherence interferometric 
measurements [2].  OCT can be implemented in a conventional time-domain configuration 
using a low-coherence light source or in a frequency-domain configuration using a swept-
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wavelength laser or spectrometer.  It has been demonstrated that the image contrast of OCT 
measurements can be enhanced through spectroscopic OCT in which the spectral content of 
the light is also determined [3, 4].  More recently, it has been demonstrated that LSS could be 
combined with spectroscopic OCT [5].  This combination enables coherence gating of the 
backscattered light, eliminating the diffuse scattering background that complicates LSS 
measurements.  It has been demonstrated that the size of the scatterer can be determined from 
low-coherence interferometric measurements of the intensity of the scattered light as a 
function of wavelength [5,6], as well as from measurements of the scattering as a function of 
angle [7-9].   

Conventionally, spectroscopic OCT has focused on measurement and analysis of the 
intensity of scattered light as a function of wavelength.  In this paper we demonstrate that 
OCT measurements of the dispersion of the scattered light as a function of wavelength can 
also provide valuable information that is independent from the intensity.  Dispersion is often 
viewed in terms of its deleterious effect on the resolution of OCT images.  However, it has 
recently been proposed that measurements of dispersion could be used for clinical diagnostics, 
for example, to characterize plaque morphology for heart disease screening [10].  
Additionally, it has been demonstrated that the phase velocity in a random medium is strongly 
influenced by scatterer size [11].  We demonstrate a spectral-domain OCT measurement 
technique that can determine the dispersion of a sample with high sensitivity. This technique 
could be applicable to the in vivo measurements of the sizes and refractive indices of 
scattering particles in biological tissue.  

Tissue dispersion has two components: material dispersion, which arises from the 
wavelength dependence of the refractive index, and scattering dispersion, which results from 
the wavelength dependence of the scattering that typically occurs in tissue.  Dispersion can be 
described by the group delay, which is defined as dφ/dω, where φ is the phase of the electric 
field and ω is the angular frequency.  We have developed Mie scattering analysis to predict 
the scattering group delay as a function of wavelength, simple phantoms to emulate the nuclei 
of cells, and a spectral domain OCT system capable of characterizing group delay as a 
function of wavelength with high resolution.  In this paper, we show that the group delay of 
the scattered field is also strongly affected by the diameter and refractive index of the 
scatterer.   

When compared with OCT measurements of the scattered intensity as a function of 
wavelength, spectral phase-dispersion measurements are important for the following reasons: 

1. The intensity spectrum of the optical source provides a background signal that must 
be divided out to obtain an accurate measurement of the intensity spectrum of the 
scattered light.  Phase-dispersion measurements do not require this normalization. 

2. In this paper we will show that, in general, the scattering process must be treated as 
a non-minimum phase filter.  If the scattering were, instead, a minimum phase 
process, then the magnitude and phase of the backscattered light would be related 
by a Kramers-Kronig calculation, and the phase of the scattered light could, at least 
in theory, be reconstructed from a measurement of the magnitude [12, 13].  In this 
paper, we demonstrate that the light scattered from a single Mie sphere is, in 
general, a non-minimum phase function, and therefore a measurement of the phase 
will yield information about the scattering that is not available from a measurement 
of the intensity spectrum alone.   

3. Given the fact that the scattered magnitude and phase are, in general, independent 
of one another, both must be measured in order to provide a more complete 
characterization of a sample.  This will likely become even more important in the 
complex environment of multiple scattering that exists in biological tissue samples. 
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2.  Mie scattering calculations 

The complete solution to the scattering of an electromagnetic plane wave by a homogeneous 
sphere (absorbing or nonabsorbing) embedded in a homogeneous nonabsorbing infinite 
medium was found by Mie in 1908 [14-16].  We center our coordinate system at the center of 
the spherical scatterer.  Assuming an exp(-i2πft) time dependence of the fields, and an 
incident plane wave traveling in the positive z-direction, the scattered electric fields, sE�  and 

sE⊥ , in the far field are related to the incident fields by  
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where iE�  and iE⊥  are components of the incident electric field, r is the distance of the   

observation point from the center of the sphere, f is the frequency, and 02 /k nπ λ=  is the 

propagation constant.  The subscripts �  and ⊥  signify the components parallel and 
perpendicular to the plane containing the incident and scattered propagation directions, 
respectively.  The complex matrix elements 1( , )S fθ  and 2 ( , )S fθ  contain both the 

amplitude and the phase of the scattered light as a function of the scattering angle θ.  
Calculation of 1( , )S fθ  and 2 ( , )S fθ  is straightforward; public-domain software is available 
to perform this task [17].  In the case of scattering from a dielectric sphere, their functional 
forms depend in a nontrivial way on the sphere diameter and the refractive indices of the 
sphere and surrounding medium (D, ns and nm, respectively).  It is precisely this dependence 
that enables the “inversion” of spectral measurements for these physical parameters.  For both 
the experimental results and computational analysis that follows, we restrict our results to the 
“backscattering” or retro-reflection direction, in which case ( )1 2( , ) ( , )S f S f S fπ π= = . 
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Fig. 1. Relative group delay predicted from Mie theory for different sphere diameters. The 
group delay of 3 mm of water is also shown for comparison. 
 

The group delay is calculated from the complex scattering function S(f) as follows: 

 1 1 arg ( )

2 2g

d d S f
t

df df

φ
π π

≡ = . (2) 
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where arg(S(f)) is the phase of the scattering function. Care must be taken when implementing 
Eq. (2) numerically, because the complex argument exhibits discontinuities (often referred to 
as phase wraps).   

Figure 1 shows the predicted group delay as we vary the sphere’s diameter, assuming a 
single sphere with complex refractive index of ns = 1.576 + i0.003 in a homogeneous, lossless 
medium with refractive index nm = 1.346 + i0.000.  We chose these refractive index values to 
be consistent with our measurements described below.  In Fig. 1 we added an arbitrary 
constant to each of the group delay curves so that they are shifted with respect to each other to 
enhance the clarity of the plot.  This is consistent with our measurements results, which 
include an arbitrary constant and are described as relative group delay (RGD).  From Fig. 1 it 
is clear that the sphere size and the periodicity of the group delay are directly related and that 
the periodicity could potentially be applied to determine sphere size with high sensitivity.   
Also shown in Fig. 1 is the material dispersion of a 3 mm thick sample of water calculated 
from Schiebener’s formula [18].  The material dispersion of water is featureless compared 
with the scattering signatures, indicating that the material dispersion is not expected to have a 
significant effect on the results in measurements of water-based scattering samples, such as 
tissue. 

3.  Minimum and non-minimum phase response 

In this section we closely examine the analytic character of the phase response of the scattered 
fields.  We will demonstrate that the phase and the magnitude of the light scattered from a 
single sphere are independent.  Using the language of linear response theory, we show that 
phase of the frequency response function of a spherical scatterer can exhibit both minimum 
and non-minimum phase characteristics. A minimum-phase function has the property that, in 
principle, its phase can be computed from measurements of its magnitude over a broad 
bandwidth. Therefore, when a linear response function is non-minimum phase, its phase and 
magnitude are independent quantities and both must be measured for a more complete 
characterization of the sample. 

Through the detailed computations below, we show that even the simplest case of 
potential biological interest, back-scattering off an isolated sphere, exhibits multiple 
resonances in its group delay as a function of wavelength. Some of these resonances can be 
explained entirely by minimum phase computations. Others cannot. The underlying physics 
generating the two classes of response are not entirely understood. We intend to pursue this in 
the future as it is indicative of a fundamental distinction in the classification of 
electromagnetic resonance phenomena that would transcend the present application of OCT 
measurements of biological tissue. This question aside, the results below establish the 
independence of phase and intensity. 

3.1 Linear system theory 

The theory of linear systems is large and well-developed. We briefly present definitions and 
results below and refer to [19] for more detailed discussions.  In the time domain, the 
response of a linear, time-invariant system to an arbitrary input is given by a convolution 

 ( ) ( ) ( )y t h s x t s ds
∞

−∞
= −∫ , (3) 

where x(t) represents the system input, y(t) is the system output, and h(t) is the time-domain 
impulse response function.  We limit our consideration to causal systems where, by definition, 
h(t) = 0 for t < 0, and the lower limit of the convolution integral above can be changed to 0.  
The system’s frequency response function H(f) is given by 

 
0

( ) ( ) exp( 2 ) .H f h t i ft dtπ
∞

= ∫  (4) 
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In the frequency domain, the implications of causality are subtle but well known. The 
resulting statement is that a complex-valued function H(f) = Hr(f) + iHi(f) may be continued as 
an analytic function for f in the upper half of the complex plane, C+ = {z = f +iγ, γ > 0}. As a 
result of this analyticity, one derives the usual “Kramers-Kronig” (KK) relations between 
Hr(f) and Hi(f).  

The derivation of the KK relations requires that the impulse response be linear, time-
invariant, causal, and real. Although this may appear restrictive, in fact these properties are 
sufficiently generic that in essence they define the classical analysis of linear response 
functions.  By contrast, minimum phase is both a more restrictive and subtle type of linear 
response function.  Minimum phase is easiest to define in the frequency domain. We write 

( )( ) exp( ( )),H f f i fρ φ=  where ρ(f) represents the magnitude and φ(f) is the phase of the 

electric field.  Taking a logarithm, we have 

 ( )ln( ( )) ln ( ).H f f i fρ φ= +  (5) 

If ln(H(f)) has the same analyticity properties as H(f) itself, then phase may be computed from 
magnitude from the appropriate KK relation [12,19], 

 ( )( ) 2 20

2 1
( ) ln .

f
f f ds

f s
φ ρ

π
∞

=
−∫  (6) 

The integral operator in Eq. (6) is singular at the “target” frequency, s = f, and is interpreted in 
a principal value sense. Functions whose phase and magnitude satisfy this relationship are 
called minimum phase.   

3.2 Dielectric sphere 

As in Sec. 2, we study the phase of the frequency response of a dielectric sphere in the back-
scattering direction, S1(f, π) = S2(f, π) = S(f).  The sphere is situated at the origin in a non-
absorbing medium with refractive index nm = 1.33. The diameter is D = 10 μm.  In one case, 
the refractive index of the sphere is ns = 1.39 + i0.003; in another case, it is ns = 1.41 + i0.003. 
The imaginary part was chosen to match that of polystyrene microspheres. 

Assuming an incident plane wave traveling in the positive z-direction, linearly polarized 
along the x-axis, the back-scattered electric field along the same axis was computed from Eq. 
(1) as discussed in Sec. 2.  In Fig. 2 we show the logarithm of the magnitude of the response 
as a function of wavelength in nanometers, and we observe the characteristic resonances. The 
uniform shift of the resonances toward smaller wavelengths for the smaller refractive index is 
expected from the notion that a geometrically induced resonance should occur at invariant 
points of kD = 2πnsD/λ. 

We compute the minimum phase from the logarithm of the intensity using the singular 
integral operator in Eq. (6).  The group delay of the true phase (calculated from the Mie 
analysis) and that of the minimum phase are plotted for both refractive indices in Fig. 3.  Note 
that while the true and minimum phase group delays agree for the Re(ns) = 1.39 case, 
indicating that this case is indeed minimum phase, there are sign differences at λ = 1313 nm 
and 1373 nm for the Re(ns) = 1.41 case, indicating that its scattering function is non-minimum 
phase. 

We found the appearance of non-minimum phase behavior shown in Fig. 3 to be 
somewhat surprising, so we went to great lengths to verify that this is indeed a non-minimum 
phase example and not a computational error.  First, we ensured convergence of our 
computations to 10 digits, so that we were confident that we were not making an error in our 
numerical analysis.  We were also careful to implement phase unwrapping correctly, but 
clearly phase wraps would appear as abrupt features, rather than the smooth curves of Fig. 3. 
Additionally, our most important verification came from a comparison of the deviations from 
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minimum phase to a fundamental theorem that describes the structure of non-minimum phase 
functions [19].  This comparison is described in detail in Appendix A, but to summarize our 
findings, we found that the deviations from minimum phase shown in Fig. 3 are entirely 
consistent with the theoretical structure of non-minimum phase functions; therefore we 
conclude that this is truly an example of a non-minimum phase function rather than a 
computational error. 

 

 
Fig. 2. Predicted magnitudes of the backscattered light from a single 10 μm sphere, calculated 
for two different refractive indices of the sphere. 
 

 
Fig. 3. Group delay of computed “true” phase (solid) and minimum phase (dashed).  Note that 
for Re(ns) = 1.41, the true group delay resonances at λ = 1313 nm and 1373 nm have opposite 
sign compared to the resonances predicted assuming minimum phase.   

 
One important point comes from a comparison of the shape of the curves in Figs. 1 and 3. 

In Fig. 1, the RGD curves are approximately sinusoidal, while in Fig. 3 the curves are 
approximate delta functions.  We found that the shape of the RGD curve is determined by the 
refractive index contrast between the sphere and the surrounding medium.  The refractive 
indices (high index contrast) used to calculate Fig. 1 was chosen to match the materials used 
in our measurements of phantoms described below.  The refractive indices (low index 
contrast) used to calculate Fig. 3 were chosen to be closer to what one might expect to see in 
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actual tissue.  The key point is that the light scattered from a single sphere is, in general, not 
minimum phase, and it is logical to expect that the more complex geometries present in tissue 
would be non-minimum phase as well. 

Returning to the absorptive part of the refractive index of the sphere, Im(ns) = 0.003, we 
found that specific details of the phase response depend quite sensitively on this choice.  In 
fact, it appears that a stable and sensitive procedure could be developed to invert direct 
measurements of scattered phase to yield this absorptive coefficient.   It is not clear whether 
this would be of biological value, as most research to date involving the use of LSS-OCT as a 
medical diagnostic tool has focused on inversion of intensity scattering data for the cell 
nucleus size and real part of the refractive index.  Performing several computations over a 
range of values from 0 Im( ) 0.006,sn≤ ≤  we observed non-minimum phase resonances at 
some of the frequencies corresponding to resonances in the magnitude response.  Where the 
non-minimum phase character occurs, and why, are topics for future study.  Nevertheless, the 
persistence was clear. In general, given any arbitrary combination of one or more scatterers, 
our conclusion is that one must assume the sample is non-minimum phase unless specifically 
proven otherwise.  Furthermore, if a sample is non-minimum phase, then both magnitude and 
phase carry independent information about the sample properties and both must be measured 
for a more full characterization of the sample.   

4.  Measurement 

Our spectral domain OCT system is shown in Fig. 4.  The system consists of two fiber-optic 
Michelson interferometers: a reference interferometer to track the wavelength of the tunable 
laser as it is swept, and a measurement interferometer.  Our tunable laser has a nominal 
wavelength of 1300 nm, a 117 nm tuning range, and a maximum sweep speed of 80 nm/sec. 
The phantom (sample) is placed in one arm of the measurement interferometer and is coarsely 
aligned by monitoring the light scattered off the sample with the microscope’s IR camera. 
After the coarse alignment step, the sample alignment is optimized by monitoring the power 
of the backscattered light that is coupled back into the interferometer.  After sample 
alignment, the laser is swept while the signal from the reference interferometer is sent to a 
zero-crossing circuit, which is used to trigger sampling of the measurement interferometer 
signal. 
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Fig. 4. Diagram of the OCT system used for dispersion metrology. 
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Our measurement technique is similar to that used in previously demonstrated spectral 
domain measurements of the RGD of optical fiber components, particularly fiber Bragg 
gratings [20].   As we did in Sec. 3, we treat our sample as a linear filter, and we describe its 

complex spectral frequency response as ( ) ( ) ( )( )expH f f i fρ φ= .  We model the detected 

power at the output of the measurement interferometer as  

 ( )
2 2 2

20 0 0 1 2
det 1

2 2
( ) ( )cos ( )

4 8 2 2

E E E fX fX
P C f f f S f

c c

π πρ ρ φ
⎡ ⎤⎛ ⎞= + + + −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
, (7) 

where E0 is the field incident on the interferometer, X1 and X2 are the optical path lengths of 
the two arms of the measurement interferometer, S(f) is the power spectrum of the source, and 
C1 is a constant.  We perform an inverse Fourier transform of this signal to obtain 
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, (8) 

where FT-1 represents the inverse Fourier transform and ( )
~
h t  is the analytic version of the 

impulse response of the sample [2].  We then use a window to remove the DC and 
autocorrelation terms [the first and second terms of Eq. (8)] and one of the complex conjugate 
impulse response terms.  The one remaining term is the complex time-domain interferogram 
I(t).  We can calculate the RGD from the following formula [21]: 

 
( )( )
( )( )

1 ( )
( ) Re

2g

FT tI td f
t f

df FT I t

φ
π

⎧ ⎫⎪ ⎪≡ = ⎨ ⎬
⎪ ⎪⎩ ⎭

, (9) 

where tg is the relative group delay and Re represents the real part of the function.  The 
wavelength resolution of the RGD result is determined by the width of the window.  The 
optimal window width is a tradeoff between wavelength resolution, depth resolution, and 
RGD resolution; larger windows give better wavelength resolution but worse depth 
resolution.  Also, larger windows include more noise, thereby degrading the RGD resolution.   

From the shift theorem of Fourier transforms, we know that the function φ(f) includes a 
linear term, the slope of which is determined by the choice of the t = 0 point of the function  
I(t).  For this reason, our group delay results include an additive arbitrary constant and are 
described as relative group delay. 

Another important point to note is that we have configured our reference interferometer 
with a 1.5 m fiber length imbalance, which creates single-pass optical path difference (OPD) 
of approximately 2 m.  This gives a high frequency reference signal, which requires a rapid 
data acquisition card (100 ksamples/s assuming the laser is swept at 40 nm/s).  This results in 
significant oversampling of our frequency domain signal and a very large range of our time 
domain signal (corresponding to approximately 300,000 data points or 2 m of total depth 
range).  Scattering and absorption limit the total penetration depth of light in tissue to less 
than 3 mm, so the additional range creates large regions of the time domain signal that are 
unused, creating the notion of “wasted data.”  Practically, the disadvantage of oversampling is 
the computational overhead created by the large arrays.  However, the advantages of 
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oversampling include slight improvements in noise performance, reduced sensitivity to 
sampling errors, and reduced need for exact path matching of the measurement 
interferometer.  In the future we will likely reduce our sample rate and array size in the 
interest of reducing computation time, as well as increase the laser sweep speed to be 
compatible with in vivo imaging; but for now our efforts are focused on proof of principle 
rather than measurement speed. 

As a result of our large depth range, we can configure our measurement interferometer 
with a large OPD, eliminating any possibility of aliasing of the terms in Eq. (8) and 
simplifying our windowing process.  However, we did approximately match the lengths of 
fiber in the sample and reference arms of our measurement interferometer so that the only 
dispersion in the interferometer was introduced by our sample.   

A recent investigation has made the claim that, in a frequency-domain OCT measurement, 
the effective scattering function of tissue is either minimum phase or close to minimum phase, 
based on the intuitive notion that the time domain impulse response of any minimum phase 
function has a first or primary lobe that is dominant to all later responses and reflections [22].  
In Eq. (8) the delta function could be thought of as a dominant first lobe.  However, that delta 
function is windowed out in our analysis.   Clearly the intent of the experiment is not to 
measure the reflectance of the mirror but rather the reflections generated by the sample.  For 
scattering samples, such as tissue, these are inherently smaller than those generated by the 
mirror.  Although it may be true that the combined response function (mirror and tissue 
sample reflections) is minimum phase, analysis of the combined response would relegate the 
signal of interest to small perturbations of the large and uninteresting reflection caused by the 
mirror.  Although the analysis described in Ref. [22] may be useful in cases where the 
autocorrelation term of Eq. (8) aliases the other terms, it does not affect our derivation in Sec. 
3 above, where we find that even a single spherical Mie scatterer is, in general, non-minimum 
phase. 

We tested our measurement system by measuring the RGD of a 5 cm thick sample of well 
characterized commercial high-index glass.  We compared our result with the change in RGD 
with wavelength predicted from the Sellmeier equation for that glass and found agreement 
better than 20 fs over a 45 nm wavelength range (representing the central 65 % of the laser 
tuning range, as measured using our older laser, which was capable of tuning only over a 70 
nm range).  We limited our wavelength range for this comparison because our RGD results 
are less accurate at the extreme ends of the tuning range, which may result from edge effects 
in the Fourier transform calculation or from uncertainties created by the laser tuning as it 
starts and finishes a wavelength sweep, combined with the limited frequency response of the 
zero-crossing trigger circuit.   

We developed phantoms by embedding a low density (approximately 8 spheres per mm3) 
of small polystyrene spheres in a 20 % by weight glycerin/water solution.  We placed a small 
drop of the glycerin/water/spheres mixture on a microscope slide and topped it with a cover 
slip.  The glycerin/water solution matches the density of the polystyrene spheres, providing a 
neutral buoyancy for the spheres in solution [23]. The real part of the refractive index of 
polystyrene at a wavelength of 1300 nm is given by Re(ns) = 1.576 ± 0.004, while the 
absorptive part is given by Im(ns) = 0.003 ± 0.001 [24].   

We both calculated and measured the refractive index of the glycerin/water solution.  We 
calculated the refractive index from the following formula:  

 

2 2 2

2 2 2

1 1 1
,

2 2 2
m A A A B B B

A Bm A B

n n f M n f MM

n n nρ ρ ρ
− − −= +
+ + +

 (10) 

where nm is the refractive index, M is the molecular weight, and ρ is the density of the 
composite solution, while A and B are the two composite materials with mole fractions fA and 
fB, molecular weights MA and MB, and densities ρA and ρB [25].  We used the refractive indices 
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of water [26] and glycerin [27] at a wavelength of 1300 nm in the calculation.  From this, we 
obtained a refractive index of 1.346, compared with the 1.357 published value for the 
glycerin/water solution [23]; the difference between the two values might be attributed to the 
change in refractive index with wavelength.  We also determined the refractive index from an 
OCT measurement of the optical path difference of a 1 mm thick cuvette filled with the 
glycerin/water solution.  We obtained a measured refractive index of 1.38 ± 0.03. 

We measured our phantoms by first collimating the light from the sample arm of our OCT 
system to a diameter of 1.3 mm. We then focused on the sample using a 10X objective, giving 
a focal spot size of approximately 25 μm with an effective numerical aperture of 0.04.   The 
microscope slide was tilted with respect to the incident beam to avoid specular reflections 
from the slide.  We aligned the sample as described above. We then measured the frequency-
domain interference and calculated the RGD of each sphere using the calculations described 
above.  We applied a Hamming window to the time domain interferogram corresponding to a 
truncation length of 240 μm.  This gives a wavelength resolution in the RGD of 
approximately 7 nm.  Figure 5 shows the RGD determined from a single, unaveraged 
measurement of four different sizes of spheres in the glycerin/water solution.  
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Fig. 5. Comparison of measured and predicted group delay of phantoms constructed from 
polystyrene spheres embedded in a glycerin/water solution.  We added arbitrary constants to 
each of the curves to separate them.   

 
From Fig. 5, we see good qualitative agreement between theory and experiment (i.e., the 

periodicity of the RGD oscillations matches that predicted by theory).  We think that the main 
factor inhibiting exact agreement of our measured and predicted RGD is the uncertainty 
associated with independent measurements of sphere size and refractive indices, combined 
with the fact that the Mie prediction is very sensitive to small changes in these numbers.  For 
example, changing the surrounding refractive index from our predicted value of 1.346 to the 
measured value of 1.38 dramatically affects the locations of the RGD peaks.  The Mie 
scattering predictions are also strongly affected by small changes in sphere diameter.  We 
attempted to obtain accurate and independent measurements of the diameter of each sphere 
using a microscope with a reticule eyepiece, but we discovered that the uncertainty of that 
measurement is no better than the uncertainty of sphere size specifications provided by the 
sphere manufacturer (5.0 ± 0.5 μm, 8.0 ± 0.8 μm, 10.0 ± 1.0 μm, and 14.5 ± 1.0 μm).  
Intensity-scattering measurements exhibit a similar sensitivity to small changes in diameter 
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and refractive index, and researchers have addressed this by determining sphere diameter 
and/or refractive index directly from the Mie scattering measurements.  This can either be 
done by performing a Fourier transform on the measured data to determine the principal 
frequency [5], or by calculating the χ2 difference between measurement and a database of Mie 
predictions as a function of diameter and refractive index [9].  Other factors affecting our 
measurement uncertainty include the wavelength scale of our RGD results, which may 
include an uncertainty as large as 1 nm.  Also, the Mie predictions were calculated assuming 
plane wave illumination and direct backscattering, whereas our measurements were made 
with a focused beam to increase the total backscattered power collected.  However, for the 
case of intensity-scattering OCT measurements, it has been demonstrated that the Mie 
predictions are not strongly affected by focusing, provided that the beam waist is large 
compared with the wavelength [6], as is the case in our measurements.  

A detailed analysis of the uncertainty of the scatterer sizes determined from phase 
dispersion measurements is beyond the scope of this paper.  However, we can say that, when 
calculating the diameter of the scatterer from a Fourier transform of the group delay, a key 
factor in the uncertainty is the resolution.  Given that our laser can only tune over a 117 nm 
wavelength range, the resolution of a Fourier-transform sizing calculation is 5 μm (assuming 
that the scatterer has a refractive index of 1.4).  We are currently developing a system with a 
broader wavelength range to overcome this resolution limit. 

As we mentioned above, the group delay can appear sinusoidal or as a combination of 
delta functions, depending on the ratio of the refractive index of the sphere to that of the 
surrounding medium.  In Fig. 6, we show an experimental result where the group delay takes 
the form of a combination of approximate delta functions.  This measurement was obtained 
from an 18 μm polystyrene sphere embedded in a porcine gelatin (10 % by weight gelatin in 
water), under the same focusing, alignment, windowing, and calculation conditions as 
described above.   In Fig. 6 there is an obvious sign reversal between the peaks, possibly 
indicating that this is an example of a non-minimum phase function, as described in Sec. 3.   
We were unable to find published data for the refractive index of 10 % by weight gelatin, but 
given that a 1 % by weight gelatin sample has a refractive index of 1.5118 [28], we believe 
that our polystyrene sphere in a 10 % by weight gelatin sample would likely be a low-index 
contrast example. 
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Fig. 6. Measured RGD of an 18 μm sphere embedded in porcine gelatin.  The curve has the 
shape of approximate delta functions, and there is a clear sign reversal between peaks, 
qualitatively similar to that predicted by the non-minimum phase analysis. 

We limited our considerations to single scatterers in the above examples to better facilitate 
comparisons of predicted and measured data.  However, given the multitude of scatterers that 
exist within a biological tissue sample, it is critical to consider situations under which more 
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than one scatterer is simultaneously illuminated.  In Fig. 7 we show measured group delay 
from a single 15 μm polystyrene sphere on a microscope slide surrounded by air.  This sample 
was aligned and measured as described above.  Also shown in Fig. 7 is a measurement of the 
group delay from a monolayer of 15 μm polystyrene spheres on a slide.  The monolayer was 
illuminated with a collimated beam (1.3 mm diameter) normally incident on the rear side of 
the microscope slide.  The RGD was calculated from the interference of the light scattered 
from the monolayer with of the rear surface reflection from the microscope slide. These 
results are preliminary, but the important conclusion of Fig. 7 is that, although the group delay 
amplitude is reduced in the case of multiple scatterers, the periodicity of the group delay is 
unchanged. 
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Fig. 7. Comparison of the RGD measured from a single 15 μm sphere measured with a focused 
beam and the RGD from a monolayer of 15 μm spheres measured with a 1.3 mm diameter 
collimated beam.  The sphere monolayer data was multiplied by a factor of 5 so that both 
curves could be shown on the same graph.  Although amplitudes are different and the curves 
are phase shifted with respect to each other, both curves appear to have the same period. 
 

5.  Conclusions 

To measure the size of optical Mie scatterers, we have demonstrated a new technique that is 
based on OCT measurements of the group delay of the scattered light.  This technique is 
potentially very sensitive to small differences in the size and refractive index of scatterers.  
Additionally, we have demonstrated that a single spherical scatterer is a non-minimum phase 
function, which means that the phase spectrum is independent of the intensity spectrum of the 
scattered light.  Therefore, the group delay provides information about the scatterer that is not 
available from a measurement of intensity alone. Given that single sphere scattering is non-
minimum phase, we believe it is likely that the more complex structures present in tissue 
would be non-minimum phase as well.  Measurements of group delay, either alone or in 
combination with intensity measurements, may have application to general tissue morphology 
measurements and the in vivo detection of precancerous dysplasia.  Our future efforts will 
focus on extending the scattering predictions, minimum phase analysis, and our measurements 
to include the interactions between multiple scatterers.  Additionally, we plan to perform 
measurements on more complex tissue phantoms and real tissue samples. 
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Appendix A 

In this section, we closely examine the properties of minimum phase functions with the goal 
of verifying our conclusion that our example of single sphere scattering shown in Fig. 3 is 
indeed non-minimum phase.  We start with Eq. (6), which follows from analyticity, thus 
minimum phase is equivalent to the analyticity of ln[H(z)] in C+.  As H(z) is analytic in this 

half-plane, one obstruction to H(z)  being minimum phase would be a point nz C+∈  such that 

H(zn) = 0, as ln[H(z)] would then have a branch point at .n n nz z f iγ= = +  
One example of a non-minimum phase function is the all-pass, or Blaschke factor, defined 

as 

 
*

( ) ,n

n

f z
B f

f z

−
=

−
 (A1) 

where .nz C+∈   We readily verify that B is analytic in the upper half plane, it has a zero 
there, and that |B(f)| ≡ 1 for all real f.  Forming the logarithm we find (see below for choice of 
branch for the inverse trig function) 
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We find that the real part of ln(B(f)) is zero, yet the function has a nontrivial phase; therefore, 
as expected, B(f) is not a minimum phase function.   

A fundamental theorem states that, assuming causality, any arbitrary frequency response 
function can be expressed as a product of all-pass factors and a minimum phase function as 
follows [19]: 
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π τ −
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In Eq. (A3), Hmp(f) is minimum phase, τ is real, and the product of all-pass terms is over all of 
the upper half plane zeros of H(z).  We note that |Hmp(f)| = |H(f)| regardless of whether H(f) is 
or is not minimum phase.  If H(f) itself is minimum phase, then the exponential and all-pass 
terms in Eq. (A3) are identically equal to 1, i.e., τ = 0 and {zn} = ∅ .  The point of this 
discussion is to show that, using Eq. (6), one may compute any system’s minimum phase 
response φ mp(f) from a measurement of the magnitude of the system frequency response.  If 
the true phase of the frequency response, φΕ(f), is known independently, then the difference (if 
any) necessarily can be expressed as 
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Thus the factorization given in Eq. (A3) restricts the theoretical structure of deviations from 
minimum phase.   
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One key technical point: the time-domain impulse response functions of interest are 
always real.  Parity considerations of standard Fourier analysis then imply that nontrivial all-
pass terms occur in pairs; i.e., if the product in Eq. (A3) contains a term with a zero at 

n n nz f iγ= + , then it also has a term with a zero at '
*
n n nn

z z f iγ= − = − + .  In this analysis, the 

symmetry is accounted for implicitly, and we discuss only the terms with resonances at 
positive real parts.  Additionally, the choice of cos-1 as the inverse trig function in Eq. (A2) 
has the virtue that it unwraps the phase as the frequency f sweeps over the resonances nf , 
thus it may be differentiated with respect to f [see Eq. (A5)].  However, when summing over 
multiple terms corresponding to the individual factors of the product in Eq. (A3), we should 
subtract 2πm from the result where m is the number of paired factors to maintain the Fourier 
parity.  This constant term shifts the overall branch but does not affect the group delay results. 

We can now test the Re(ns) = 1.41 case of Fig. 3 to verify our conclusion that it is a non-
minimum phase function as follows.  We found that it is easier to express the deviations from 
minimum phase in terms of group delay rather than phase.  Differentiating Eq. (A2), we find 
that the group delay of an all-pass term is given by 
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Equation (A5) is recognizable as an “approximate delta function” centered at fn with a height 
1/(πγn).  We differentiate Eq. (A4), so that we can express the deviations from minimum 
phase in terms of group delay rather than phase, giving 
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For the Re(ns) = 1.41 case of Fig. 3, we performed a nonlinear curve fit to the difference 
between the RGD computed from the Mie calculations and the minimum phase RGD for two 
“all-pass” zeros as well as a constant offset, i.e., two frequencies fn and heights γn, and a non-
trivial τ.  For the Re(ns) = 1.39 case, we fit the same difference for τ alone.  In Fig. 8 we plot 
the difference between the true RGD and the minimum phase RGD after subtracting out these 
curve fits.  Note that the resonances of Fig. 3 are removed entirely, and the residual is smooth.  
The deviations at the minimum and maximum wavelengths are created by the truncation of 
the integral in Eq. (6) [29].  We conclude that the discrepancy between the Mie calculation 
and minimum phase results is entirely explained by a fundamental theorem that describes the 
shape of non-minimum phase functions [Eq. (A3)], therefore the Re(ns) = 1.41 case truly is 
non-minimum phase.  
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Fig. 8. Plot of the difference between true and minimum phase group delays after subtracting 
the all-pass and linear terms determined from a nonlinear fit.  This is consistent with Eq. (A3), 
and indicates that the Re(ns) = 1.41 case is truly an example of a non-minimum phase scattering 
function.  The dashed vertical lines show the positions of the resonances for reference.  The 
small features at λ = 1237 nm and 1294 nm are numerical artifacts. 
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