
Modeling Heterogeneous SoCs with SystemC:
A Digital/MEMS Case Study

Ankush Varma†‡, M. Yaqub Afridi‡, Akin Akturk†, Paul Klein*, Allen R. Hefner‡ 
and Bruce Jacob†

†University of Maryland, College Park, MD 20740
‡National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899

*Intel Corporation, Chandler, AZ 85248

{ankush, blj}@eng.umd.edu
ABSTRACT
Designers of SoCs with non-digital components, such as analog or
MEMS devices, can currently use high-level system design lan-
guages, such as SystemC, to model only the digital parts of a system.
This is a significant limitation, making it difficult to perform key
system design tasks — design space exploration, hardware-software
co-design and system verification — at an early stage. This paper
describes lumped analytical models of a class of complex non-digi-
tal devices — MEMS microhotplates — and presents techniques to
integrate them into a SystemC simulation of a heterogeneous Sys-
tem-on-a-Chip (SoC). This approach makes the MEMS component
behavior visible to a full-system simulation at higher levels,
enabling realistic system design and testing. The contributions made
in this work include the first SystemC models of a MEMS-based
SoC, the first modeling of MEMS thermal behavior in SystemC, and
a detailed case study of the application of these techniques to a real
system. In addition, this work provides insights into how MEMS
device-level design decisions can significantly impact system-level
behavior; it also describes how full-system modeling can help detect
such phenomena and help to address detected problems early in the
design flow.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits] Design Aids — Simulation. C.4 [Per-
formance of Systems] Modeling Techniques. I.6 [Simulation and
Modeling] Simulation Languages, Model Development, Applica-
tions.

General Terms
Design, Experimentation, Performance

Keywords
SystemC, MEMS, Modeling, Microhotplate, Gas Sensor, Power

1.  INTRODUCTION
Embedded systems are simultaneously growing more complex in
design and shrinking in physical size, resulting in an increasing
number and diversity of components being fabricated on a single
chip. The System-on-Chip (SoC) approach exploits increases in
transistor count to deliver simultaneous benefits in performance,
power dissipation, reliability, footprint and cost [13]. The emergence
of the SoC design paradigm has led to the development of system-
level design, modeling, and verification tools, such as SystemC, that
focus on digital systems at high levels of abstraction. These tools
enable system designers to perform detailed exploration of a wide
range of configurations early in the design flow. In addition, high-
level modeling also provides an “executable specification” that soft-
ware developers may use as a target, and that verification engineers
may use to generate test vectors. As a result, the software stack can
be developed in parallel with the later stages of hardware design,
significantly reducing time-to-market.

Modern SoCs can incorporate not only digital but also analog and
MEMS components on the same silicon substrate. Extensive
research has been done on analog and MEMS fabrication tech-
niques, with the result that many such components can now be fabri-
cated using processes compatible with standard digital CMOS
process technologies [4]. This gives designers a new capability but
raises a number of important questions. How are these non-digital
components to be modeled in system simulation? How is the soft-
ware driving heterogeneous components to be written, tested,
debugged and optimized? To exploit the wide range of components
and perform hardware-software co-design and validation, the high-
level models used must accurately represent all SoC components.

In practice, the requirement to model all SoC components faith-
fully can be relaxed under certain circumstances — for example, if
the communication between a non-digital and a digital component is
predominantly unidirectional or deterministic. During high-level
modeling, components such as pad drivers or clock generators can
be abstracted away conveniently and without significant loss of
accuracy because they do not usually impact high-level system
behavior in complex ways. 

However, this approach — abstracting away non-digital behavior
entirely — becomes invalid when there is feedback in the system,
such as in the case of microprocessors running control programs that
interact with analog or MEMS sensors and actuators. Components
with complex time-dependent behavior cannot be abstracted away
because the behavior of the digital system can depend on both time

Copyright 2006 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee, contrac-
tor or affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
CASES'06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010...$5.00.



and the state of the non-digital component. Unfortunately, current
high-level SoC design tools, such as SystemC, only allow digital
components to be modeled.

There is thus a gap between the high-level event-driven simula-
tion methodology used by the SoC designer and the FEM, SPICE or
MATLAB-based differential-equation-solving approach used for
design and analysis of non-digital components. Accurate modeling
of feedback systems containing heterogeneous components requires
bridging this gap. The alternative — waiting for a hardware proto-
type before performing software development and verification — is
undesirable for reasons of cost, complexity and time-to-market. Cur-
rent design flows demand that the complete system be modeled,
tested, debugged and verified well before the expensive fabrication
stage, where design modification costs become prohibitive.

This paper presents an approach for modeling the functionality,
performance, power, and thermal behavior of a complex class of
non-digital components — MEMS microhotplate-based gas sensors
— within a SystemC design framework. The components modeled
include both the digital components (such as microprocessors, bus-
ses and memory) and the MEMS devices comprising a gas sensor
SoC.

The contributions made in this work include the first SystemC
models of a MEMS-based SoC and the first SystemC models of
MEMS thermal behavior, as well as techniques for significantly
improving simulation speed. Towards demonstrating the effective-
ness of these techniques, a detailed case study of the application of
the proposed approach to a real heterogeneous SoC is also pre-
sented, providing some insights on how device-level design deci-
sions can have system-level impact, and how such issues can be
studied and addressed through integrated full-system modeling.

The rest of this paper is organized as follows: section 2 provides
an overview of related work in literature, section 3 describes the
operation and architecture of the MEMS Gas Sensor SoC, section 4
discusses the methodology used for the characterization and model-
ing of system components, section 5 illustrates some of the results
and insights that can be obtained using integrated SoC simulation,
and section 6 presents conclusions and directions for future work.

2.  RELATED WORK
There has been relatively little work so far on modeling the behavior
of non-digital SoC components within standard SystemC frame-
works. Bjornsen et. al. [8] describe using SystemC to model the
transient behavior of high-speed analog-to-digital converters. They
found SystemC to be an effective modeling tool, with simulation
speeds significantly faster than HDL. Zhang et. al. [18] compared
Verilog, VHDL, C/C++ and SystemC as candidates for modeling
liquid flow in a microfluidic chemical handler, and found SystemC
to be the most suitable, since SystemC processes, events and mod-
ules are suitable building blocks for expressing fluid flow in a man-
ner analogous to dataflow. This paper presents the first SystemC
models of a MEMS-based SoC, the first SystemC models of MEMS
thermal behavior, techniques for improving simulation efficiency,
and a detailed case study of the application of this approach to a real
heterogeneous SoC. The rest of this section provides background
information on related work in literature.

Attempts at generalized modeling of mixed-signal elements for
large-scale hardware design include VHDL-AMS [10] and Verilog-
AMS [11], aimed at extending the VHDL and Verilog language def-
initions to include analog and mixed-signal regimes. These have

been moderately successful for mixed-domain component model-
ing; however, they are designed for implementation and end-of-
design verification late in the design flow, not for system-level
design and verification. Effective system-level design involves rep-
resenting entire systems at high levels of abstraction and modeling
them at high simulation speeds. These requirements are not ade-
quately met by HDL frameworks that primarily target component-
level design, creating the need for higher-level techniques and tools
that are more efficient at system-level design.

A recent key advance in system design has been the development
of higher-level languages and tools for expressing hardware con-
structs. In particular, SystemC [12] — a freely available C++-based
library that provides a variety of hardware-oriented constructs and
an event-based simulation kernel — has gained rapid acceptance. It
is now supported by a variety of EDA tools and IP vendors and has
been widely adopted as a standard modeling platform1 that enables
the development and exchange of fast system-level models and sup-
ports system-level software development, top-down design, IP core
integration, hardware-software co-design and system verification.
Designs can be expressed at a variety of levels of abstraction in Sys-
temC [9, 12]. In particular, accurate and high-speed simulation at
high levels of abstraction is a key tool, enabling designers to model
the behavior of large workloads on complex systems.

The SystemC 2.0 standard [14] addresses purely digital simula-
tion. However, increasing on-chip heterogeneity has led to the
demand for modeling both digital and non-digital components
within an integrated framework. Ongoing efforts such as SystemC-
AMS [17] and SEAMS [7] propose extensions to the SystemC lan-
guage definition and additions to the SystemC kernel to incorporate
analog and mixed-signal devices into the simulation framework. In
contrast, the techniques and models presented in this paper use a
standard, unmodified SystemC kernel and library to model non-digi-
tal components, and represent the first application of SystemC
design to a MEMS SoC.

3.  THE MEMS GAS SENSOR SOC
A microhotplate-based gas sensor exploits temperature-dependent
conductivity variations in certain thin films to facilitate the detection
of trace gases in the ambient atmosphere. The MEMS gas sensor
SoC presented here integrates an array of such sensors with on-chip
digital circuitry to enable programmable control and data gathering.
This SoC incorporates a wide range of components: a MEMS micro-
hotplate-based gas sensor array, an 8051 microcontroller, and on-
chip interconnect and peripherals. In such a system, one of the
design challenges is posed by the heterogeneity of the components
involved: issues regarding analog, digital and MEMS design all
need to be understood and taken into account. The following sec-
tions describe SoC design and operation, with section 3.1 presenting
the structure and operation of microhotplate-based gas sensors, and
section 3.2 describing overall SoC topology and system architecture.

3.1  The MEMS Microhotplate-Based Gas Sensor
The conductance of certain metal oxide films varies with the temper-
ature, concentration, and type of gas molecules adsorbed into the
film. Conductance-type gas microsensors use a MEMS microhot-
plate device to vary the temperature of the thin film to facilitate the

1. SystemC was approved as IEEE standard 1666 in December 2005.



detection of trace gases in the environment. Monolithic integrated
gas sensors have numerous possible applications such as detecting
food product freshness, detecting toxin leakage in chemical facili-
ties, or identifying hazardous chemical agents in public places.

A microhotplate is a MEMS device used to obtain high tempera-
tures over a localized area on a silicon chip. Bulk micromachining
techniques [4] can physically and thermally isolate the heating ele-
ments from the underlying silicon substrate, allowing surface tem-
peratures as high as 450ºC to be reached. Such structures feature
low power dissipation, low fabrication cost, and scalability to dif-
ferent process technologies, making them suitable for use in chemi-
cal microsensors [3] or as microscopic infrared sources [15]. 

Recent advances in MEMS fabrication have allowed these to be
scalably implemented with standard CMOS-compatible foundry
processes, enabling designers to integrate MEMS gas sensors, ana-
log components, and digital components into a single SoC [3, 4].
The microhotplate’s small size facilitates building the on-chip sensor
arrays needed for gas classification in complex sensing environ-
ments. 

Structural Components A microhotplate-based gas sensor con-
sists of a central platform supported at each corner by a cantilever
joining it to the substrate, as illustrated in Figure 1(a). The material
immediately below and around the platform is etched away in a sin-
gle postprocessing step, which physically and thermally isolates it
from the substrate. The central structure of the microhotplate is
physically suspended over empty space, with only the cantilevers at
the corners providing mechanical support.

Electrical Components Electrically, a microhotplate-based gas
sensor comprises three major components, shown in Figure 2(a): a
polysilicon heater, a temperature sensor, and a thin film gas sensor.
The cross-section of the microhotplate in Figure 1(b) illustrates their
physical implementation as conductive layers separated by insulat-
ing silicon oxide layers. A description of each component follows:
• Polysilicon Heater: Implemented as a serpentine resistor,
this generates heat to raise microhotplate temperature. The
heater current or voltage may be controlled. Note that the elec-
trical resistance of a polysilicon heater is not constant and
changes linearly with temperature within the range of opera-
tion.

Figure 1.  (a) Scanning Electron Microscope (SEM) micrograph of a microhotplate, showing it suspended above the
underlying substrate. Cantilever supports at the corners provide structural support and electrical pathways. The gold
electrodes, between which the thin sensor film is deposited, are also visible. The microhotplate is fabricated with a standard
digital CMOS foundry process, followed by an etching step to suspend the microstructure and chemical vapor deposition of the
metal oxide thin film.
(b) Cross-section of the suspended microhotplate. The figure shows the polysilicon heater, the Al temperature sensor, the
metal oxide sensing film and the insulating SiO2 layers. Cantilever supports are not shown.

(b)(a)

(b)

Figure 2. (a) Schematic showing the electrical components of the microhotplate-based gas sensor.
(b) Schematic illustrating digital encapsulation of a sensor array using an ADC/DAC array and multiplexing. A Digital
Gain Control (DGC) register may be used to improve accuracy and dynamic range.

(a)
   

R
eg

is
te

r  
 

Amp 1    DAC nDAC 1

DAC nDAC n Amp n    
   

R
eg

is
te

r  
 

ADC MUX

...

ADC MUX   Amp

   Register      Register      Register   

DGC

Sensor 1

Sensor n



• Temperature Sensor: Implemented in an Aluminum or
Polysilicon layer with a known temperature coefficient of
resistance (TCR). A small constant current is passed through
this, and the voltage drop across it is used to measure micro-
hotplate surface temperature.
• Gas Sensor Film: A thin film of tin or titanium oxide
(SnO2 or TiO2) is deposited between two gold electrodes onto
the top surface of the microhotplate, exposed to the external
atmosphere. The thin film conductivity changes when specific
molecules are adsorbed into it. The observed conductivity pat-
terns depend on the temperature, concentration and type of
adsorbed molecules, giving molecules a signature pattern that
facilitates chemical detection. Since different thin films inter-
act differently with gas molecules [4], individual elements in a
microhotplate array may differ in the type of sensor film used
to improve sensing ability. 

A microsensor array can be encapsulated behind a digital-only inter-
face as illustrated in Figure 2(b), facilitating integration into high-
level digital SoC designs. A digital-to-analog converter (DAC)
drives the polysilicon heater current and an ADC senses the voltage
drop across the temperature sensor. Multiplexing circuitry enables
the use of a single ADC, thus helping to reduce chip area. The ADC
and DAC are connected to registers that can be memory-mapped to
a system bus via control circuitry. 

3.2  System Architecture 
The system topology for the integrated MEMS gas sensor SoC is
illustrated in Figure 3. It consists of a microhotplate array, an 8051
microcontroller, and on-chip interconnect. The 8051 supports a sin-
gle-master on-chip Special Function Register (SFR) bus, to which
the gas sensor array is connected, allowing programs to access the
microhotplate array via memory-mapped I/O.

A high-speed cycle-accurate SystemC model of the microcon-
troller was created to facilitate hardware-software development and
testing. The HDL implementation of the microcontroller was syn-
thesized from a commercially available 8051 IP core. The primary
functions of the microcontroller software include controlling each

microhotplate, maintaining the appropriate surface temperature, and
collecting gas sensor data. A control algorithm monitors the temper-
ature sensor reading and varies the heater current to converge rap-
idly and stabilize at the required surface temperature. Gas sensor
conductivity readings are quickly taken at each temperature. This
last activity is simple timed data-gathering, with no feedback loop
involved. The gathered data may be processed on-chip or transmit-
ted by the SoC to a central location for remote analysis.

4.  METHODOLOGY
There are many challenges inherent in the integrated modeling of a
heterogeneous SoC. First, microhotplate behavior is dependent not
just on electrical parameters but also on the heating and cooling of
the microstructure. This is addressed by setting up a lumped parame-
ter model that correctly models the coupling between power dissipa-
tion, heating, and the electrical resistance of the heater. Even when
this is done, a problem is posed by the fact that the behavior of ana-
log and MEMS components is best represented by differential equa-
tions, not by the discrete-time event-based state machines used for
digital simulation in SystemC. This is solved by expressing micro-
hotplate behavior in discrete time, so that numerical methods can be
applied, and then integrating this efficiently into SystemC’s net-
work-of-communicating-processes model of computation. In addi-
tion, the values of the various simulation parameters must be known
to enable accurate system modeling. 

There are thus four major issues that need to be addressed: mod-
eling the MEMS microhotplates, integrating these models with Sys-
temC, improving simulation efficiency, and obtaining the values of
various component parameters. The remainder of this section dis-
cusses each of these in detail.

4.1  Electrical And Thermal Modeling Of MEMS 
Microhotplates
The work presented in this paper focuses on modeling the electro-
thermal aspects of the microhotplate, not the electrochemical gas-
sensing aspects of the metal oxide thin film. A MEMS microhotplate
can be modeled using a lumped analytical model incorporating the
following state variables:

Figure 3. System topology for the integrated gas sensor SoC. A gas sensor array is connected to ADC/DAC and
multiplexing circuitry, which communicates with the microcontroller over an on-chip bus.

On-chip Processing Element:
8051 Micro-controller

RAM

ROM Serial 
Port

Real-time 
Timers

MEMS  Gas 
Sensor Array

ADC/
DAC 
blocks

Off-chip
Memory

Bus

Peripheral
Communication
Bus (SFR bus)

Temperature
Gas Sensor Reading
Hotplate Current Select
Sensor Element Select



• Polysilicon heater power dissipation (P).
• Microhotplate surface temperature (T), measured using
temperature sensor resistance.
• Ambient temperature (T0).
• Microhotplate thermal resistance (Rth).
• Microhotplate thermal capacitance (Cth)
• Polysilicon heater current (I), controlled by writing to a
DAC register.
• Polysilicon heater electrical resistance (Re).
• Polysilicon heater temperature coefficient of resistance
(TCR or α).

Of these Rth, Cth and α are treated as constant for a given microhot-
plate structure. System behavior can be expressed as a set of differ-
ential equations in these variables. Second-order effects in
microhotplate behavior, such as the slight (less than 5%) variation of
Rth with temperature, are not currently modeled.

The thermal equation governing heat flow is:

... (1)

Where t represents time. The heater electrical power dissipation can
be written simply as:

... (2)

And the heater electrical resistance varies with temperature as:

... (3)

Taking T' = T - T0, we use the above equations to obtain:

... (4)

which is a first-order Ordinary Differential Equation (ODE). 
Systems of differential equations are most commonly solved

using numerical methods, which have a wide range of applicability.
However, the above equation is simple enough to have an exact ana-
lytical solution. More complex systems, such as a collection of dis-
tributed heat sources on a chip [5, 6], typically require numerical
analysis. For this study, we used the exact solution but, for purposes
of completeness, also ran on the model with the numerical solution
to measure the effect on runtime. The two mechanisms produce
equivalent results, with the exact solution requiring less computa-
tion. Their impact on simulation speed is discussed in 4.3. 

The Euler Forward Method for numerically solving such ODEs
involves using a discrete-time representation of Equation 4 being
used to derive microhotplate surface temperature at time-step n+1
from the state variables at time-step n.

... (5)

This computation can be performed at runtime with the microhot-
plate implemented as a SystemC module with the parameters
defined at instantiation. A SystemC process calculates and updates
the state variables at each time-step. Since a microhotplate has a sep-
arate SystemC process, its time-step size can be varied indepen-
dently of the time-step size used for other system components. In
this case, the microcontroller runs on a 10ns time-step (a 100 MHz
core clock frequency), while microhotplate simulation reaches con-
vergence at a 100µs or smaller time-step. This is because the thermal
time constant of the microhotplate (τ = RthCth) is typically of the
order of milliseconds, and time-steps of τ/10 or smaller tend to con-
verge. Note that the time-step chosen must be sufficiently small to
ensure that the numerical solutions obtained are stable and conver-
gent (the error increases with the square of the time-step in Euler
Forward Iteration), yet not so small that too much simulation time is
spent modeling the MEMS component, impeding system simula-
tion. 

An exact analytical solution to Equation 4 (in terms of Tn and tn)
is given by:

... (6)

This computation is performed in a similar manner at runtime. How-
ever, since this is an exact solution, each time-step may be arbitrarily
large without significant loss of accuracy. The rest of this paper uses
the exact solution unless otherwise specified.

4.2  Integration with SystemC
A SystemC simulation consists of a hierarchical network of parallel
processes that exchange messages and concurrently update signal
and variable values under the control of a simulation kernel. Signal
assignment statements do not affect the target signals immediately,
and the new values become effective only in the next simulation
cycle. As shown in Figure 4, the kernel resumes when all the pro-
cesses become suspended, either by executing a wait statement or
upon reaching the last process statement. On resuming, the kernel
updates the signals and variables and suspends itself again while
scheduled processes resume execution. If the time of the next sched-
uled event is the current simulation time, the processes execute a
delta cycle, in which signal and variable values are updated without
incrementing the current time [12].

The microhotplate is modeled as a standard SystemC module. It
does not require any changes to the SystemC kernel or library, and it
obeys standard SystemC simulation semantics, running as a user-
defined process. Each time it is invoked, the microhotplate simula-

P
T T0–( )

Rth
-------------------- Cth

d T T0–( )
dt

-----------------------+=

P I2Re=

Re Re0 1 α T T0–( )+( )=

dT′
dt

--------
I2Re0 1 αT′+( ) T′ Rth⁄( )–

Cth
----------------------------------------------------------------=

T′n 1+ T′n

I2Re0 1 αT′n+( ) T′n Rth⁄–
Cth

----------------------------------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

δt

+=

T′n 1+ T′ne
a tn 1+ tn–( ) b e

a tn 1+ tn–( )
1–( )

a
-----------------------------------------

a

+

αIn
2Re0 1 Rth⁄–

Cth
----------------------------------------     b;

In
2Re0
Cth

---------------

=

= =



tion process calculates the amount of time elapsed since the last
update, solves the system state equations accordingly, updates the
state variables to reflect the new device state and finally suspends
execution until it is invoked again by the kernel.

Each microhotplate has standard SystemC port/channel connec-
tions to the rest of the system. It communicates with actual micro-
controller C programs compiled and loaded into the SystemC model
of the microcontroller, rather than with mathematical idealizations
of program behavior. In particular, system interrupts, computation
time, microcontroller CPU states, and the busses are all cycle-accu-
rate representations of the hardware being designed, validated
against HDL simulations.

4.3  Simulation Efficiency
Effective design-space exploration depends on high simulation
speeds, making simulation efficiency a key design issue. This sec-
tion explores three avenues for improving simulation efficiency:
using more efficient SystemC processes, reducing SystemC kernel
synchronization overheads, and using exact solutions to reduce the
computational overheads involved in MEMS modeling. These pro-
vide a combined speedup of over 70x compared to simulation done
without these techniques.

SystemC provides two kinds of processes: SC_METHODS and
SC_THREADS [12]. The main difference in terms of simulation
semantics is that an SC_THREAD’s state is stored each time it is
suspended and is restored each time it resumes, allowing local vari-
able values to be preserved. A process resumes from the exact state
it left on suspension. Storing and restoring state across invocations
has obvious simulation overheads. SC_METHODs, on the other
hand, are similar to function calls and restart from the beginning
each time they are invoked. No local state is preserved across invo-
cations. We found that storing required state as class data fields to

allow the use of SC_METHODs instead of SC_THREADs raised
simulation speed from 56 KIPS (thousand instructions per second)
to 281 KIPS1.

Code profiling indicated that synchronization of the main CPU
process with the SystemC kernel at each suspend-resume was the
performance bottleneck, since the processor module incremented the
elapsed time after each executed instruction in order to be cycle-
accurate. To eliminate this bottleneck, we used free-running simula-
tion, where the CPU continuously fetches and executes instructions
while using an internal counter to keep track of elapsed cycles. This
continues until an event that requires synchronization with the sys-
tem occurs; events that trigger synchronization include interrupts,
communication with system components that have separate pro-
cesses, and reaching a user-defined limit on the maximum number
of free-running cycles. When a synchronization event occurs, the
processor informs the SystemC kernel of the time elapsed since the
last synchronization (based on the internal counter that tracks
elapsed cycles), updates any state required to ensure complete syn-
chronization, resets the internal counter, and continues execution.

A processor usually spends much of its time fetching and execut-
ing instructions rather than communicating with other system com-
ponents, so free-running simulation provides an elegant method for
reducing overheads while maintaining cycle-accuracy. An upper
bound can be put on the number of consecutive free-running cycles,
causing regular synchronization regardless of other activity. We
found that allowing up to 100 free-running cycles further sped up
simulation from 281 KIPS to 2.89 MIPS. Allowing up to 4000 free-

Figure 4. The execution semantics of SystemC. A number of interacting processes run until they end or execute a wait
statement. Once all processes have run, the kernel updates all signals and variables before running ready processes
again. The user can define specific conditions under which simulation should stop.

Simulation Start

Initialization

Process nProcess 1

All Processes Suspended

SystemC
Kernel 

Simulation
Stopped

...

1. All measurements of simulation speed were performed with a 1.6GHz 
Pentium M processor with 2MB of L2 cache and 768MB of PC2700 DDR 
SDRAM. Compilation was done using gcc 3.4.4 with 
-O2 compile-time flags.



running cycles further boosted simulation speed to 4.17 MIPS, after
which further increases led to no additional speedup. Profiling indi-
cated that, after this optimization, the simulator was spending time
in instruction processing and microhotplate modeling, not in syn-
chronization.

Lastly, solving the differential equations governing microhotplate
behavior also has a computational overhead. For a microhotplate
with nominal time constant of 1ms, accurate modeling requires a
time-step size smaller than 100µs while using the Euler Forward
Method. Other, more sophisticated, numerical methods may be used
that allow larger time-steps. Simulation efficiency is significantly
higher when the exact analytic solution to the system of equations is
used, since it allows the use of arbitrarily large time-steps without
significant loss of accuracy. In practical terms, the microhotplate
state only needs to be updated when the processor writes to it to
change the DAC input or reads from it to find out the temperature,
leading to lowered computational overheads. In the simulation
framework presented here, system modeling proceeds at 4.17 MIPS
using the exact solution and 3.71MIPS using the numerical solution
(See section 4.1 for details on the two approaches)

4.4  Component Characterization
For characterization, the 8051 microcontroller IP core was synthe-
sized to TSMC 0.25µm CMOS technology using Synopsys Design
Compiler. Gate-level power simulation, with SAIF back-annotation
[16] of activity was performed using Synopsys Power Compiler.
Layout and back-annotation of delays and capacitance were per-
formed using Tanner L-Edit. The microcontroller has a simple two-
state power model, consuming 4.4mW when active (at 100MHz)
and 0.25mW when idle. This state-machine based power model was
observed to be accurate within 5% of gate-level power simulation
for all programs run. 

The values of the critical thermal and electrical parameters for the
microhotplate — electrical resistance, temperature coefficient of
resistance, thermal resistance and thermal capacitance — were the
nominal design parameters and were verified experimentally on
standalone hotplates fabricated through MOSIS, using the standard
techniques described by Afridi et. al. [2, 3, 4].

5.  RESULTS
The ability to model the complete system in detail enables designers
to find answers easily and quickly to questions about overall system
behavior. Such questions can range from how a microhotplate
responds to a given input to finding out whether a given piece of
code running on a microcontroller can meet desired performance
parameters while controlling one or more MEMS devices. This sec-

tion first presents a validation of the SystemC microhotplate model
by comparing expected and observed behavior to a simple input.
Further, this section discusses the observed results when a given
temperature controller program is used to run a microhotplate and
illustrates the kind of detailed observations that can be drawn from
this. Lastly, it provides an example of how full-system simulation
can help detect undesirable effects caused by valid low-level deci-
sions that are suboptimal at the system level.

5.1  Model Validation
Validation of the microhotplate model was performed by using a
function generator to apply a step voltage across a stand-alone
microhotplate (implemented through MOSIS) and comparing the
experimental data obtained against the SystemC model of such a
device. Figure 5 shows such a comparison, and the high degree of
correlation between simulation and experimental behavior is
clearly seen. The simulated peak temperature is about 3% lower
due to a small difference (caused by the slight temperature-depen-
dence of thermal resistance) between the simulated and observed
values of Rth. Figure 5 also shows a thermomicrograph sequence of
a MEMS microhotplate heating up, illustrating the high surface
temperatures that can be attained over a localized area.

5.2  Simulation With a Controller Program
The above test provides crucial experimental validation for the
microhotplate models used; however, system designers need to
know how the system as a whole behaves when configured with a
given topology and loaded with specific software. The results from
SystemC simulation enable total SoC power dissipation and micro-
hotplate behavior to be modeled in an integrated environment. This
enables designers to observe the time-domain behavior of the entire
system when running specific software. 

To illustrate this, a test C program implementing a simple propor-
tional controller was implemented, to control surface temperature in
a single-microhotplate system. It was given a setpoint of 380ºC for
20ms followed by a setpoint of 200ºC for a further 20ms, after
which the program turned the microhotplate off. This simplified pro-
gram was chosen for illustration here because it is representative of
the control aspects of the software stack used for microhotplate-
based gas sensor applications.

Figure 6 illustrates the output of the simulation. The X axis repre-
sents system time in milliseconds, while microhotplate temperature,
power, and current, as well as microcontroller power dissipation, are
suitably scaled to be shown on the Y axis. The results shown here
are based on a SystemC simulation incorporating both the cycle-

TABLE 1. Techniques for enhancing simulation efficiency, and their impact on performance. The exact 
analytical model for the microhotplates is used unless otherwise specified.

Technique Simulation speed (MIPS)
SC_THREAD only 0.056
SC_METHOD only 0.281
SC_METHOD with up to 100 free-running cycles 2.89
SC_METHOD with up to 4000 free-running cycles 4.17
SC_METHOD with up to 4000 free-running cycles (Numerical model) 3.71



accurate behavior of the microcontroller and the electrothermal
behavior of the microhotplate. A discussion of the behavior of the
four variables plotted follows.

The microhotplate heater current, directly controlled by the
microcontroller, changes step-wise, since it is incremented in dis-
crete steps through a DAC. The microhotplate power dissipation
changes step-wise when current changes and smoothly at other
times. It does not change in fixed size steps, since a) It is propor-
tional to the square of the current and b) It depends on the electrical
resistance of the polysilicon heater, which increases linearly with
surface temperature. For example, between 3ms and 5ms, heater
current is constant, yet microhotplate power dissipation rises
smoothly in a classic asymptotic exponential curve. This is because
the steadily increasing temperature raises the electrical resistance of
the polysilicon heater (Equation 3), leading to an increase in power
dissipation at a constant current. Note that the large change in micro-
hotplate power dissipation around 22ms corresponds to only a small
variation in heater current, since they are quadratically related.

The microhotplate surface temperature changes smoothly, since
the thermal capacitance of the microhotplate causes the temperature
to be continuous in time, always varying smoothly. Around t=5 ms,
the surface temperature first overshoots and then undershoots the
setpoint of 380ºC before settling at it. This overshoot-and-stabilize
behavior is typical of the proportional controller algorithm used. The
same is true of the undershoot at t=25 ms. At t=40ms, the controller

sets the heater current to 0, immediately dropping microhotplate
power to 0. However, surface temperature follows a decaying expo-
nential as it cools off, finally stabilizing at 30ºC, since that was set as
the ambient room temperature in the simulation. 

The “jagged” nature of the CPU power plot is due to the CPU
waking up periodically in response to a timer interrupt, performing
the computation required to run the controller, sending control sig-
nals to the microhotplate DACs, and then going into a low-power
mode. The tiny “blips” in CPU power dissipation after t=40ms are
due to interrupts being processed, but in these instances no feedback
control computations are performed, leading to a much shorter
active CPU duty cycle.

5.3  System-Level Effects of Low-Level Design 
Decisions
At the microhotplate design level, using a controlled-current or a
controlled-voltage source to drive the heater is an implementation
detail, with circuit-level concerns typically deciding the choice of
one over the other. However, we found that such decisions could sig-
nificantly impact system-level behavior, with integrated SystemC
modeling of the MEMS device helping both to detect such behavior
and to ensure optimal design. 

In the previous example, a controlled current source was used to
drive the microhotplate heater. However, exploring the design space
using SystemC indicated that the behavior would be very different,

Figure 5. A comparison of experimental and simulated microhotplate behavior. A 2V voltage pulse is applied between 4
and 14ms. The observed changes in surface temperature are compared against those predicted by simulation. The plot on the
left is “noisier” and less sharp simply because of the small, but unavoidable, experimental noise. The bottom strip shows a
thermomicrograph sequence of a microhotplate structure heating up [1].

ºC



exhibiting much less overshoot-undershoot behavior, if the hotplates
heaters were driven by a controlled voltage source rather than a con-
trolled current source. At first glance, this seems counter-intuitive,
but it is borne out by the SystemC simulation (see Figure 7). 

The reason that this seemingly minor device-level design deci-
sion has broader impact is that heater resistance increases with tem-
perature, so power dissipation increases with temperature at constant
current; but at constant voltage, microhotplate power dissipation
falls with increasing temperature (since P = I2R = V2/R). A current-
driven microhotplate thus has a small implicit positive feedback
effect: higher power dissipation drives temperature up, which tends
to cause a rise in power dissipation. A voltage-driven microhotplate,
on the other hand, has a small implicit negative feedback effect:
higher temperature causes higher heater resistance, which tends to
reduce power dissipation. These loops interact with the overriding
feedback loop implemented in software. 

Figure 7 shows system behavior for the same control program
when heater voltage, and not current, is directly controlled. The neg-
ative feedback loop leads to significantly more stable behavior, with
considerably smaller and fewer overshoots. Also note that power
decreases when voltage is constant and temperature is rising (around
7ms). This is because the rising temperature raises microhotplate
resistance, and the power dissipated is inversely proportional to this
resistance. The increased feedback stability was an easily-over-
looked factor that can now be used to guide system-level, compo-
nent-level, and software-level decisions for the SoC presented here.

Unanticipated feedback behavior is a serious issue, since, depending
upon severity, it can lead to suboptimal performance or oscillatory
behavior and may neccessitate software fixes or even require the
system to be modified and re-fabricated. 

Integrated simulation of both digital and MEMS components
proved to be an extremely useful tool in the hardware-software co-
design for this SoC:
• Full-system simulation results were among the inputs in
the decision to use voltage-driven, rather than current-driven,
microhotplates. 
• Integrated simulations were used to assess system robust-
ness while facing process variations in device parameters.
• Running the software stack under realistic conditions
enables more thorough testing, leading to better defect detec-
tion before the system is fabricated.
• Interrupt routines, timer settings, operating frequency, I/O
and control algorithm parameters can be better optimized
when realistic simulation results are available. In the absence
of these, designers need to allow larger margins of error to
account for the uncertainty in the final performance of the sys-
tem.

Complex system-level interactions, such as those illustrated above,
need to be taken into account by system, software, and component
designers, and integrated modeling of both microcontroller and
MEMS device behavior in SystemC enabled precisely that.

Figure 6. An example illustrating the use of integrated functional, power and thermal modeling in a heterogeneous
system. The X axis represents system time in milliseconds, while other variables are suitably scaled to be shown on the Y
axis. A feedback loop, in the form of a proportional controller program, is loaded into the SystemC simulator and given a
surface temperature setpoint of 380ºC for 20ms, followed by a setpoint of 200ºC for another 20ms, and finally turns the
microhotplate off at t=40ms. 

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  5  10  15  20  25  30  35  40  45  50
Time (ms)

SystemC Power Modeling of a MEMS Microhotplate-based SoC

Surface Temperature (ºC)

Microhotplate Power (mW) x 10

Microhotplate Current (mA) x 10

CPU Power (mW)) x 10



6.  CONCLUSION
This paper describes an approach for modeling the functionality,
power, performance and thermal behavior of a complex class of
MEMS components — MEMS microhotplate-based gas sensors —
within a standard SystemC design framework. The system compo-
nents modeled include both standard digital components (micropro-
cessors, busses and memory) and MEMS devices. 

The contributions made in this work include the first SystemC
models of a MEMS-based SoC, the first modeling of MEMS ther-
mal behavior in SystemC, techniques for attaining significant (over
70x) improvement in simulation speed and a detailed case study of
the application of the proposed models and techniques to a real sys-
tem. It also provides insights on how device-level design decisions
can have system-level impact, which can be captured and addressed
through accurate modeling of the entire system, including non-digi-
tal components.

Future work will include more detailed hotplate models that
include second-order effects, analytical studies of microhotplate
feedback behavior and application of the presented techniques to
other components of heterogeneous SoCs.

ACKNOWLEDGMENTS
The work of Bruce Jacob is supported in part by MURI award
AFOSRF496200110374, the Laboratory of Physical Sciences in
College Park, MD, Cray, NIST, IBM, and the Department of
Defense. The authors would also like to thank Neil Goldsman and
George Metze for their contributions to making some of the work
presented here possible.

REFERENCES
[1] AFRIDI, M., BERNING, D., HEFNER, A., SUEHLE, J.,

ZAGHLOUL, M., KELLEY, E., PARRILLA, Z., AND ELLEN-
WOOD, C. Transient heating study of microhotplates using a
high-speed thermal imaging system. In Semiconductor Ther-
mal Measurement, Modeling, and Management Symposium
(SEMI-THERM) (San Jose, CA, March 2002).

[2] AFRIDI, M., HEFNER, A., BERNING, D., ELLENWOOD, C.,
VARMA, A., JACOB, B., AND SEMANCIK, S. MEMS-based
embedded sensor virtual components for SoC. In Proceed-
ings of the International Semiconductor Device Research
Symposium (2003).

[3] AFRIDI, M., HEFNER, A., BERNING, D., ELLENWOOD, C.,
VARMA, A., JACOB, B., AND SEMANCIK, S. MEMS-based
embedded sensor virtual components for System-on-a-Chip
(SoC). Journal of Solid-State Electronics 48, 10-11 (October-
November 2004), 1777–1781.

[4] AFRIDI, M. Y., SUEHLE, J. S., ZAGHLOUL, M. E., BERNING,
D. W., HEFNER, A. R., CAVICCHI, R. E., SEMANCIK, S.,
MONTGOMERY, C. B., AND TAYLOR, C. J. A monolithic
CMOS microhotplate-based gas sensor system. IEEE Sen-
sors Journal 2, 6 (2002), 644–655.

[5] AKTURK, A., GOLDSMAN, N., AND METZE, G. Self-consistent
modeling of heating and MOSFET performance in 3-d inte-
grated circuits. IEEE TRANSACTIONS ON ELECTRON
DEVICES 52, 11 (November 2005), 2395–2403.

Figure 7. SystemC Power and Thermal modeling of a microhotplate driven by controlled-voltage source rather than a
controlled-current source. A small inherent negative feedback loop introduced leads to much more stable behavior, with
much smaller overshoots and a faster settling time (compare with the overshoot-undershoot behavior in Figure 6).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  5  10  15  20  25  30  35  40  45  50
Time (ms)

SystemC Power Modeling of a MEMS Microhotplate-based SoC

Surface Temperature (ºC)

Microhotplate Power (mW) x 10

Microhotplate Voltage (V) x 40

CPU Power (mW)) x 10

Smaller overshoots



[6] AKTURK, A., GOLDSMAN, N., PARKER, L., AND METZE, G.
Mixed-mode temperature modeling of full-chip based on
individual non-isothermal device operations. Solid-State
Electronics 49, 7 (2005), 1127 – 1134.

[7] ALJUNAID, H., AND KAZMIERSKI, T. J. SEAMS - a SystemC
environment with analog and mixed-signal extensions. In
International Symposium on Circuits and Systems (2004).

[8] BJORNSEN, J., AND YTTERDAL, T. Behavioral modeling and
simulation of high-speed analog-to-digital converters using
SystemC. In International Symposium on Circuits and Sys-
tems (2003).

[9] CAI, L., AND GAJSKI, D. Transaction Level Modeling: An
overview. In Intl. Conf. of Hardware-Software Codesign and
System Synthesis (CODES+ISSS) (2003).

[10] DOBOLI, A., AND VEMURI, R. Behavioral modeling for high-
level synthesis of analog and mixed-signal systems from
VHDL-AMS. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 22, 11 (November 2003),
1504 – 1520.

[11] FREY, P., AND O’RIORDAN, D. Verilog-AMS: Mixed-signal
simulation and cross domain connect modules. In IEEE/ACM
International Workshop on Behavioral Modeling and Simula-
tion (2000).

[12] GRÖTKER, T., LIAO, S., MARTIN, G., AND SWAN, S. System
Design With SystemC. Kluwer Academic Publishers, 2002.

[13] INTERNATIONAL ROADMAP COMMITTEE AND ITWGS. Inter-
national technology roadmap for semiconductors (ITRS):
Design. Tech. rep., SIA, 2003.

[14] OPEN SYSTEMC INITIATIVE. SystemC 2.0.1 Language Refer-
ence Manual. Open SystemC Initiative, 2003.

[15] PARAMESWARAN, M., ROBINSON, A. M., BLACKBURN, D. L.,
GAITAN, M., , AND GEIST, J. Micromachined thermal radia-
tion emitter from a commercial CMOS process. IEEE Elec-
tron Device Letters 12, 2 (1991), 57–59.

[16] SYNOPSYS. Power Compiler User Guide. Synopsys Inc., Jan-
uary 2005.

[17] VACHOUX, A., GRIMM, C., AND EINWICH, K. SystemC-AMS
requirements, design objectives and rationale. In Design
Automation and Test in Europe (DATE) (2003).

[18] ZHANG, T., CHAKRABARTY, K., AND FAIR, R. Integrated hier-
archical design of microelectrofluidic systems using Sys-
temC. In International Conference on Modeling and
Simulation of Microsystems (2002).


	1. Introduction
	2. Related Work
	3. The MEMS Gas Sensor SoC
	3.1 The MEMS Microhotplate-Based Gas Sensor
	3.2 System Architecture

	4. Methodology
	4.1 Electrical And Thermal Modeling Of MEMS Microhotplates
	4.2 Integration with SystemC
	4.3 Simulation Efficiency
	4.4 Component Characterization

	5. Results
	5.1 Model Validation
	5.2 Simulation With a Controller Program
	5.3 System-Level Effects of Low-Level Design Decisions

	6. Conclusion
	Modeling Heterogeneous SoCs with SystemC: A Digital/MEMS Case Study


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


