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Closed-Form Expressions for the Current Densities
on the Ground Planes of Asymmetric

Stripline Structures
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Abstract—In this paper, closed-form expressions for the current
density on the ground planes of an asymmetric stripline structure
are derived. The derivation utilizes image theory in order to obtain
a suitable quasi-static Green’s function for this asymmetric geom-
etry. For the special case of a symmetric stripline geometry and the
limiting case of a microstrip line, it is demonstrated that the results
obtained here reduce to previously derived results. As expected,
it is illustrated that the current densities on the ground planes of
an arbitrary asymmetric stripline are bounded by the current dis-
tribution of a symmetric stripline and that of a microstrip line.
The validity of the analytical results is investigated by comparing
to numericaliy obtained results. Finally, expressions are presented
for the total ground-plane currents as fractions of the total current
on the signal trace.

Index Terms—Asymmetric stripline, current density, ground
plane, microstrip line, printed circuit board (PCB), signal integrity.

I. INTRODUCTION

S TRIPLINE transmission structures are currently used in nu-
merous high-speed electronic devices and products, rang-

ing from signal traces on multilayer printed circuit boards
(PCBs) to feeding networks in millimeter-wave and microwave
integrated circuit (MIMIC) components. The current distribu-
tion on the ground planes of the stripline can be important for
design considerations. Knowledge of these current distributions
can aid in determining the amount of coupling between adjacent
traces fabricated between two common ground planes, which is
important in signal-integrity analysis [1]–[5]. These current dis-
tributions can also help determine how wide a truncated ground
plane needs to be to ensure that edge effects are minimal.

The two-dimensional (2-D) asymmetric stripline geometry
of interest in this paper is illustrated in Fig. 1. The signal trace
(the center conductor) is infinitely long in the z direction and
is centered about the origin (i.e., x = y = 0). The signal trace
is assumed to be infinitely thin with a width w. The lower
ground plane is located at the y = −h1 plane, and the upper
ground plane is located at y = h2, giving a total plate separation
of l = h1 + h2. Both ground planes and the signal trace are
assumed to be perfect electric conductors (PECs).

Numerical techniques such as the finite element method
(FEM) or integral equation method of moments (MOM) can
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Fig. 1. Asymmetric stripline geometry.

be used to obtain the current distributions of the two ground
planes for an asymmetric stripline structure. These techniques
are very accurate; however, they can be computationally in-
tensive and, hence, do not lend themselves to simple design
procedures. Closed-form expressions for the current density
on the two ground planes can be derived from an integra-
tion of the current on the signal trace with a suitable Green’s
function for an asymmetric geometry. The required Green’s
function is obtained from image theory, which requires sum-
ming the infinite number of images produced by the two ground
planes. This paper presents such an approach. For a symmet-
ric stripline geometry, where h1 = h2, the current density on
the ground plane can be obtained from a spectral-domain ap-
proach; see [6] for details. The results in this paper reduce
to the results of [6] when h1 = h2. If we allow h2 → ∞, the
stripline geometry becomes a microstrip line. The current den-
sity for the ground plane of a microstrip line is given in [7].
The results here also reduce to those presented in [7] when we
allow h2 → ∞.

The paper is organized as follows: Section II presents the
Green’s function approach and illustrates how it is used to ob-
tain the current distributions. Section III presents the calculation
of the magnetic field H for a line source between two par-
allel planes. In Section IV, these magnetic field expressions
are used to obtain the needed Green’s function, and hence,
the desired closed-form current densities on the ground planes
are obtained. Section V investigates important special cases of
these closed-form expressions. The validity of these expressions
are demonstrated in Section VI, where comparisons are made
to numerical results for the ground plane current obtained from
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FEM calculations. In Section VII, expressions are presented for
the total current on each ground plane as a fraction of the to-
tal current on the signal trace for arbitrary h2/h1. Section VIII
summarizes the results presented here.

II. FORMULATION

For good conductors, the magnetic fields on the surface of
the ground planes is only slightly perturbed from that at a PEC.
Therefore, since we are interested in only the currents on the
ground planes (not the currents inside the conductors), we have
assumed PECs in this paper.

We further assume that the fields can be computed quasistat-
ically. In general, all three vector components of currents and
fields may exist. However, in planar circuits, the longitudinal
component (Jz) of the current is usually the dominant one.
Schumacher [12] shows that up to 12 GHz, the ratio of the
transverse- to longitudinal-current components on striplines of
typical dimensions is less than 0.1, and Kobayashi [11] shows
that up to 20 GHz, this ratio is less than 0.15. Thus, as discussed
by Kobayashi, little generality is lost by assuming quasi-TEM
conditions, which allows the fields to be calculated from a 2-D
quasi-stastic analysis of the stripline.

From the boundary conditions for Maxwell’s equations on
perfect conductors, it is well known that if the H fields for a
stripline are known, then the current density on the two ground
planes can be determined. For the upper ground plane, we have

Jupper(x) = ān × H̄(x, y = h2) = Hx(x, y = h2) (1)

and for the lower ground plane, we have

Jlower(x) = ān × H̄(x, y = −h1) = −Hx(x, y = −h1). (2)

The H fields on the surface of the ground planes can be obtained
from a quasi-static Green’s function approach. In this approach,
the Green’s function for a line source between two parallel plates
is integrated over the signal trace of the actual stripline geometry
i.e.,

Hx(x, y) =
∫ w/2

−w/2

Jtrace(x′)G(x − x′, y) dx′. (3)

In this analysis, it is assumed that the current density of the
signal trace is approximated by a constant distribution

Jtrace(x′) =
I

w
. (4)

With this assumed trace-current density, the Hx fields on the
two ground planes can be expressed as

Hx(x, y = h2) =
I

w

∫ w/2

−w/2

G(x − x′, y = h2, y
′ = 0) dx′

(5)
for the upper conductor, and

Hx(x, y = −h1) =
I

w

∫ w/2

−w/2

G(x − x′, y = −h1, y
′ = 0) dx′.

(6)

Fig. 2. Asymmetric line source located between two PEC plates.

for the lower conductor. The Green’s function needed is essen-
tially the Hx field for an infinite line source between two PEC
parallel plates.

A word is in order about the assumed constant current dis-
tribution on the trace conductor and its consequences for the
ground plane current. In reality, the exact current density at
the edges of the trace must be singular and would be better
approximated by a distribution, which possesses this behav-
ior, such as the Maxwell or Kobayashi distribution [8]–[11].
In this paper, we show that for w/h1 < 0.5, the current distri-
bution on the ground planes resulting from assuming a con-
stant trace-current distribution is indistinguishable from nu-
merically computed results. For larger values of w/h1, some
error in the ground plane current density directly under the
trace occurs, but good correlation is obtained for the ground
plane current from the edges of the trace to large values of
|x|/w. Therefore, for practical geometries and applications, no
generality is lost by assuming a constant current on the trace
conductor.

III. H-FIELD OF A LINE SOURCE BETWEEN TWO

PARALLEL PLATES

In this section, the H-field of a line source between two
ground planes is obtained. The geometry of interest is shown
in Fig. 2. It consists of an infinite line source lying along the
z-axis and centered at the origin (i.e., x′ = y′ = 0). The lower
ground plane is located at the y = −h1 plane, and the upper
ground plane is located at y = h2. The total plate separation is
l = h1 + h2. Both ground planes are assumed to be PECs.

The H-fields can be obtained from the z-component of the
magnetic vector potential A [13]:

Hx =
1
µ0

∂

∂y
Az

Hy = − 1
µ0

∂

∂x
Az. (7)

The vector potential Az for the geometry in Fig. 2 can be derived
with the aid of image theory, wherein the ground planes in Fig. 2
are removed, and an infinite number of image sources are added;
see Fig. 3. Note the alternating signs of the image currents.
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Fig. 3. Image-theory representation of an asymmetrically located line source
between two PEC plates.

The vector potential for this infinite array of line sources is
(see [13] and [14])

Az = −µ0I

2π

∞∑
n=−∞

ln
ρna

ρnb
(8)

where ρna and ρnb are the distances from each line source (the
original source or one of the image sources) to an observation
point (x, y); see Fig. 3. These distances are given by

ρna =
√

x2 + (y − 2nl)2 (9)

and

ρnb =
√

x2 + (y + 2h1 − 2nl)2 (10)

where l = h1 + h2. Then, (8) can be expressed as

Az = −µ0I

4π
ln

[ ∞∏
n=−∞

(
x2 + (y − 2nl)2

x2 + (y + 2h1 − 2nl)2

)]
. (11)

In earlier work, Hague [14] determined the magnetic field of
a line source between two perfect iron regions (i.e., µ = ∞)
in a similar infinite product form. We will utilize his ba-
sic idea here. However, we modify Hague’s approach by
avoiding the appearance of divergent products that are found
in [14].

The infinite product in (11) can be expressed as

∞∏
n=−∞

(
x2 + (y − 2nl)2

x2 + (y + 2h1 − 2nl)2

)
=

∞∏
n=−∞


 1 +

(
x

y−2nl

)2

1 +
(

x
y+2h1−2nl

)2


 ×

∞∏
n=−∞

(
y − 2nl

y + 2h1 − 2nl

)2

.

(12)

The first product on the right-hand side of (12) can be trans-
formed as follows:

∞∏
n=−∞


 1+

(
x

y−2nl

)2

1+
(

x
y+2h1−2nl

)2


=

∞∏
n=−∞


 1+

(
πx/l

πy/l−2πn

)2

1+
(

πx/l
π(y+2h1)/l−2πn

)2




=
cosh

(
πx
l

)
− cos

(
πy
l

)
1 − cos

(
πy
l

) 1 − cos
(

π(y+2h1)
l

)
cosh

(
πx
l

)
− cos

(
π(y+2h1)

l

)
(13)

where we have used formula given in [15, eq. (1.438)] (see
also [14] and [16]–[18]). The second product on the right-and
side of (12) can be similarly transformed as

∞∏
n=−∞

(
y − 2nl

y + 2h1 − 2nl

)2

=
∞∏

n=−∞

(
n − y/2l

n − (y + 2h1)/2l

)2

=
(

y

y + 2h1

)2 ∞∏
n=1


 1 −

(
y

2nl

)2

1 −
(

y+2h1
2nl

)2




2

=
sin2

(
πy
2l

)
sin2

(
π(y+2h1)

2l

) (14)

where we have used formula given in [15, eq. (1.431.1)] (again,
see also [14] and [16]–[18]). Combining (13) and (14) in (12)
and using a trigonometric identity, (11) for the vector potential
can be reduced to

Az = −µ0I

4π
ln


 cosh

(
π x
l

)
− cos

(
π y
l

)
cosh

(
π x
l

)
− cos

(
π (y+2h1)

l

)

 . (15)

From (7), we obtain the H-fields by elementary
differentiation

Hx = − I

4 l

[
sin

(
π y
l

)
cosh

(
π x
l

)
− cos

(
π y
l

)

−
sin

(
π (y+2h1)

l

)
cosh

(
π x
l

)
− cos

(
π (y+2h1)

l

)

 (16)
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and

Hy =
I

4 l

[
sinh

(
π y
l

)
cosh

(
π x
l

)
− cos

(
π y
l

)

−
sinh

(
π (y+2h1)

l

)
cosh

(
π x
l

)
− cos

(
π (y+2h1)

l

)

 . (17)

Finally, Hx on the upper ground plane is found to be

Hx(x)|y=h2 = − I

2 l


 sin

(
π h2

h1+h2

)
cosh

(
π x

h1+h2

)
− cos

(
π h2

h1+h2

)

 (18)

and on the lower ground plane is found to be

Hx(x)|y=−h1 =
I

2 l


 sin

(
π h1

h1+h2

)
cosh

(
π x

h1+h2

)
− cos

(
π h1

h1+h2

)

 . (19)

IV. GROUND PLANE CURRENT DISTRIBUTIONS

From the results in (18) and (19), it is easily deduced that the
Green’s functions needed in (5) and (6) are given by

G(x−x′, y=h2)=− 1
2 l


 sin

(
π h2

h1+h2

)
cosh

(
π (x−x′)
h1+h2

)
− cos

(
π h2

h1+h2

)



(20)

and

G(x − x′, y = −h1)=
1
2 l


 sin

(
π h1

h1+h2

)
cosh

(
π (x−x′)
h1+h2

)
− cos

(
π h1

h1+h2

)

.

(21)

These Green’s functions are substituted into the expressions in
(5) and (6) to obtain the H-fields. In order to determine the
H-fields (and, in turn, the current densities) on the ground plane
of an asymmetric stripline, the indefinite integral∫

sin a dz

cosh z − cos a
= 2 tan−1

[
ez − cos a

sin a

]
(22)

is needed.
Substituting the Green’s functions from (20) and (21) into (5)

and (6), and using (22), the current density on the upper ground
plane is found to be

Jupper(x) =
I

πw

[
tan−1

(
e

π (x−w /2)
l − cos(πh2

l )

sin(πh2
l )

)

− tan−1

(
e

π (x+w /2)
l − cos(πh2

l )

sin(πh2
l )

)]
(23)

and that on the lower ground plane is

Jlower(x) =
I

πw

[
tan−1

(
e

π (x−w /2)
l − cos(πh1

l )

sin(πh1
l )

)

− tan−1

(
e

π (x+w /2)
l − cos(πh1

l )

sin(πh1
l )

)]
. (24)

V. SPECIAL CASES

In this section, three special cases are examined: 1) a symmet-
ric stripline where h1 = h2; 2) a microstrip line where h2 → ∞;
and 3) an asymmetric stripline where h2 = 2h1. The first two
cases are used as a means of validating the expressions for
ground plane current density against previously obtained re-
sults, while the third case is a particular geometry that occurs
often in multi-layer PCB layouts.

A. Symmetric Stripline (h1 = h2)

For a symmetric stripline geometry (h1 = h2), (23) and (24)
reduce to the same expression. By substituting h2 = h1 into
these expressions, the current density on both ground planes
reduces to

J(x) =
I

πw

[
tan−1

(
e

π (x−w /2)
2h1

)
− tan−1

(
e

π (x+w /2)
2h1

)]
.

(25)
This is the same result obtained in [6], which was derived from
a spectral-domain approach. A different, empirically fit expres-
sion for this case had been given earlier by Zehentner [19], but
it is valid only over a limited range of parameters.

As an additional validation, this expression can be integrated
over the whole of either ground plane; such an integral gives∫ ∞
−∞ J(x)dx = −I/2. For a symmetric stripline, the current is

equally divided between both ground planes; thus, the sum of
the currents on both planes is −I .

B. Microstrip Line (h2 → ∞)

For a microstrip line, the upper ground is absent. This case
can be obtained by taking the limit of the expressions given in
(23) and (24) as h2 → ∞ (although care must be exercized). We
examine (24) for the current density on the lower ground plane.
It can be shown that

lim
u→∞

ea/u − cos(b/u)
sin(b/u)

=
a

b
. (26)

Thus, the argument in the first term of (24) reduces to

lim
h2→∞

e
π (x−w /2)

l − cos(πh1
l )

sin(πh1
l )

=
2x − w

2h1
(27)

with a similar result for the argument in the second term. There-
fore, as h2 → ∞, the current density on the lower ground plane
reduces to

Jlower(x)|h2→∞

=
I

πw

[
tan−1

(
2x − w

2h1

)
− tan−1

(
2x + w

2h1

)]
. (28)
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Fig. 4. Normalized current densities for w/h1 = 0.1.

This is the same result obtained in [7] directly from a Green’s
function approach for the case of only one ground plane.
Holloway and Kuester [7] compare this expression to both ex-
perimental and numerical results, and excellent agreement was
found. Similarly, one can show that

Jupper(x)|h2→∞ → 0. (29)

As an additional validation, these two expressions can be in-
tegrated over their respective ground planes; the upper ground
plane current is obviously zero, while

∫ ∞
−∞ Jlower(x) dx = −I .

C. Asymmetric Stripline With h2 = 2h1

This particular configuration occurs for some multilayer
PCBs. If we set h2 = 2h1 in (23) and (24), the following is
obtained for the currents on the upper and lower ground planes,
respectively:

Jupper(x) =
I

πw

[
tan−1

(
1.1547 e

π (x−w /2)
3h1 + 0.57735

)
− tan−1

(
1.1547 e

π (x+w /2)
3h1 + 0.57735

)]
(30)

and

Jlower(x) =
I

πw

[
tan−1

(
1.1547 e

π (x−w /2)
3h1 − 0.57735

)
− tan−1

(
1.1547 e

π (x+w /2)
3h1 − 0.57735

)]
. (31)

The sum of the integrals of both these expressions over their
respective ground planes equals −I .

These two expressions are plotted in Figs. 4–7 for vari-
ous values of x/w and w/h1. Fig. 4 and 5 show results for
the current densities normalized to J(0) for w/h1 = 0.1 and
w/h1 = 10, respectively. As a comparison, the results for a
symmetric stripline and microstrip line are also shown in these

Fig. 5. Normalized current densities for w/h1 = 10.

Fig. 6. Current densities of the different geometries for w/h1 = 0.10.

figures. These normalized results illustrate how tightly confined
under the signal trace the ground plane current is distributed.
As expected, the results show that the current is more confined
under the signal trace for the current on the lower ground plane
than the current on the upper ground plane. This is expected, for
when the signal trace becomes closer to a ground plane, more
current is forced under the trace. This is also observed for a
microstrip line; see [7]. Fig. 6 and 7 show results for the non-
normalized current densities for w/h1 = 0.1 and w/h1 = 10,
respectively. These results illustrate the relative magnitudes for
the different geometries.
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Fig. 7. Current densities of the different geometries for w/h1 = 10.

VI. VALIDITY OF ANALYTICAL EXPRESSIONS: COMPARISON TO

NUMERICAL CALCULATIONS

In order to validate the analytical expressions for the cur-
rent density on the ground planes, we make comparisons to a
full-numerical model of the stripline geometry. For this nu-
merical comparison, the FEM technique was used [20]. In the
numerical model, the ground planes were given widths of 10w.
Fig. 8 shows the analytical and numerical results for the cur-
rent density on the lower ground plane for w/h1 = 0.5 and
w/h1 = 1.0. Both these results are for h2 = 2h1. In this com-
parison, we see excellent correlation between the analytical and
numerical results for w/h1 = 0.5. For w/h1 = 1.0, we see some
deviation for points directly under the trace (i.e., x/w < 0.5).
However, we see that the analytical results do an excellent job
of representing the current beyond the edge of the trace (i.e.,
x/w > 0.5), even for the relatively large value of w/h1 = 1.0.
This is emphasized in Fig. 9, where we have replotted the results
in Fig. 8 on a log scale. Excellent agreement to numerical results
for the current on the upper ground plane was also obtained, and
a comparison is shown in Fig. 10. Similar conclusions for the
case of microstrip with even larger values of w/h1 were reached
in [7].

The deviation of the current density in the small region di-
rectly under the trace for large values of w/h1 is due to the
assumed constant current distribution on the trace, which was
used in obtaining the analytical expressions. These results show
that the effect of the current singularity at the edges of the trace
shows up only for large w/h1. More importantly, the error is
significant only for points directly under the trace, but once away
from the trace, the ground plane current density obtained using a
constant trace current does an excellent job of predicting the the
correct distribution. In fact, in many applications (e.g., for signal
integrity considerations and coupling issues), we are only inter-

Fig. 8. Comparison of analytical and numerical results for the current on the
lower ground plane for h2 = 2h1.

Fig. 9. Log scale comparison of analytical and numerical results for the current
on the lower ground plane for h2 = 2h1.

ested in the ground plane current beyond the trace edges, and this
is where the expressions presented here are most accurate for all
values of w/h1. In any case, for most practical geometries in use
today, such large values of w/h1 are not encountered (typically
w/h1 < 0.5), and the analytical expressions presented here are
quite accurate for all values of x/w.

Our analytical expressions were obtained by assuming that
the ground planes extended to infinity. Obviously, in realistic
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Fig. 10. Log scale comparison of analytical and numerical results for the
current on the upper ground plane for h2 = 2h1.

structures, the ground planes will be large but not infinite. The
numerical results for ground planes of width 10w allow us to
illustrate the effects of a truncated ground plane. The slight
increase in current density at the edges of the ground planes
is shown in Figs. 8–10. Since the analytical results assume
an infinite ground plane, they do not capture this effect. The
increase in the current at the ground plane edges only occurs
in a small region, and we see that the analytical expressions
correlate quite well with the numerical results, except very
near the edge. We should note that even though the current
density increases at the edges, this effect contributes only a
small percentage of the total current flowing on the ground
planes. Obviously, the larger the ground planes are as compared
to w and h1, the smaller the edge effects will be. It might be
possible to modify the analytical results presented here in order
to incorporate the edge effects. However, such a modification
would be very involved and beyond the scope of this paper.
This point will be the topic of future work.

VII. DEPENDENCE OF GROUND PLANE CURRENTS ON h2/h1

In this section, the dependence of the current distributions
on h2/h1 is studied. If one starts with a symmetric geometry
(i.e., h2 = h1) and lets h2 increase, the current on the lower
ground plane should start at the distribution of the symmetric
case and approach the current distribution of a microstrip,
while the current on the upper ground plane should start
at the distribution of the symmetric case and go to zero. In
other words, the current densities on the ground planes for
an arbitrary asymmetric stripline are bounded by the current
distributions of a symmetric stripline and that of a microstrip
line. This is illustrated in Fig. 11 for w/h1 = 10. It is interesting
to observe that for h2 = 10h1, the current on the lower ground

Fig. 11. Current densities of the different geometries for w/h1 = 10 and
various values of h2/h1.

Fig. 12. Current densities of the different geometries for w/h1 = 10 and
various values of h2/h1.

plane is well approximated by the expression for the ground
plane current of the microstrip line.

The results in Fig. 11 are replotted in Fig. 12 on a log-log scale
in order to emphasize the current distributions beyond the edge
of the trace. Notice that for a given h2/h1, the current densities
on the two ground planes approach the same value as x/w gets
larger. We also notice that for larger values of h2/h1, the point
where these two current distributions become equivalent occurs
at larger values of x/w, which should be expected.
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At times, it is important to know the relative amounts of total
current flowing on the two ground planes. The fractional total
current (normalized to the total current on the signal trace) on
the lower ground plane of an asymmetric stripline is given by

Ilower = −1
I

∫ ∞

−∞
Jlower dx (32)

and the fractional total current (normalized to the total current
on the signal trace) on the upper ground plane of an asymmetric
stripline is given by

Iupper = −1
I

∫ ∞

−∞
Jupper dx (33)

where Jlower and Jupper are given in (24) and (23), respectively.
With a little effort, these integrals can be evaluated in closed
form, from which it can be shown that the percentage of the
total current on the ground planes (relative to the total current
on the signal trace) can be expressed as

Ilower(%) =
(

1 − h1

l

)
× 100

Iupper(%) =
h1

l
× 100 (34)

Notice that Ilower and Iupper are linear with respect to h1/l.
As expected, for h1/h2 = 1.0, 50% of the total current on the

signal trace flows on each ground plane. As h1/l → 0, Ilower →
100% and Iupper → 0%; as h1/l → 1, Ilower → 0%, and
Iupper → 100%. Note that h1/l → 0 when either h1 → 0 or
l → ∞ (recall that l → ∞ is the microstrip limit). The ex-
pressions in (34) were verified by numerically evaluating the
integrals in (32) and (33), and the resulting values were indis-
tinguishable from those obtained using the expressions in (34).

VIII. DISCUSSION AND CONCLUSION

In this paper, closed-form expressions for the current density
on the ground planes of an asymmetric-stripline structure were
derived. Three special cases of this stripline were studied: a
symmetric stripline, a microstrip line, and a certain asymmet-
ric stripline, where h2 = 2h1. The first two cases were used
as validation of the expressions derived here, while the third
occurs often in multilayer board layouts. For a symmetric-
stripline geometry, the results presented here reduce to those
of [6] and were derived with a different approach. If h2 → ∞,
the stripline geometry becomes a microstrip line, and the re-
sults in the present paper reduce to those of [7]. It was illus-
trated that the current densities on the ground planes for an
arbitrary asymmetric stripline are bounded by the current dis-
tributions of a symmetric stripline and of a microstrip line.
For arbitrary values of h2/h1, the current densities on the two
different ground planes were shown to approach the same val-
ues outside the edges of the ground planes (i.e., at locations
removed from under the signal trace). The analytical expres-
sions present here were validated by comparisons to numerical
results.

In this paper, we also presented expressions for the fraction of
total current flowing on each of the ground planes for arbitrary

values of h2/h1, where it was shown that these expressions are
linear with respect to h1/l. As expected, for h1/h2 = 1.0, 50%
of the total current on the signal trace flows on each ground
plane, and as h1/h2 (or h1/l) becomes small, the total amount
of current flowing on the lower ground plane (relative to the
total current on the signal trace) approaches 100%.

The expressions derived here lend themselves to simple de-
sign procedures, whereas knowledge of these current distribu-
tions can aid in determining the amount of coupling between
adjacent traces fabricated between two common ground planes,
which is important for signal integrity considerations [1]–[5].
These current distributions can also aid in determining how
wide-truncated ground planes need to be in order to ensure
that edge effects are minimal. Knowing the current distribution
can also aid in determining the loss due to the finite conduc-
tivity of the ground planes, procedures similar to those used
in [6], [7], [21], and [22] can be used to determine this loss and
will be the topic of future work.
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