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Abstract:  We present a frequency-resolved coherent LIDAR (FReCL) based on a frequency 
comb source that provides higher performance than that of conventional pulsed range/Doppler 
LIDARs, reduces local oscillator timing requirements, and compensates for path dispersion.   
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Femtosecond frequency combs provide broadband, coherent light sources and have revolutionized optical 

frequency metrology [1].  It is natural to consider extending their use to remote sensing, in particular, to coherent 
light detection and ranging (CLIDAR), since the broad spectrum supports high range resolution and the narrow 
linewidths of each comb tooth support high Doppler resolution.  Fiber laser-based frequency combs at 1.5 µm [2, 3]  
are eye-safe and compatible with high-power erbium-doped fiber amplifiers (EDFA).  Their kilohertz level 
linewidth [4, 5] is sufficient for long range applications and lower linewidths may be possible [6].  Indeed frequency 
combs have been employed in a ranging LIDAR [7] and proposed for measuring absolute distance in space [8]. 

 
However, several factors complicate CLIDAR with a wide source bandwidth, λBW, reflecting from a remote 

rough surface.  First, high range resolution is achieved only if the return signal is detected, which requires the local 
oscillator (LO) and signal reach the detector simultaneously; for λBW =25 nm, the LO must arrive within ~150 fs of 
the signal regardless of the relative motion between the source and surface.  Second, differential dispersion between 
the LO and signal arms degrades the range resolution since it stretches the signal pulse in time or range with respect 
to the LO.  Third, any typical surface is rough on the wavelength scale, leading to speckle.  Speckle limits the signal-
to-noise ratio (SNR) to unity over a speckle correlation time, regardless of the transmitted laser power, and broadens 
the frequency spectrum to the speckle bandwidth, which is the inverse of the time for a speckle lobe to cross the 
receive aperture.   

 
To effectively deal with these issues, we demonstrate a Frequency-Resolved Coherent LIDAR (FReCL) [9] in 

which the heterodyne signal is spectrally resolved into N channels with an arrayed waveguide grating (AWG).  The 
data are processed incoherently to produce a vibration profile or coherently to produce a range image. In either case, 
this system has performance N-times superior to that of a single-channel, conventional CLIDAR, removes the tight 
requirements on the delay line, and permits phase-compensation to account for phase distortions caused by 
differential dispersion between the signal and LO arms. Our system differs significantly from previous demonstrated 
or proposed comb-based LIDARs [7] [8], and shares features of spectrally diverse CLIDARs [10, 11]  and Fourier-
Domain Optical Coherence Tomography (FdOCT) [12] .  As with spectrally diverse CLIDARs, the Doppler 
(vibrometry) return is improved by averaging over the N spectral channels; provided the target’s range depth is 
sufficiently large, these channels are uncorrelated, reducing the measurement’s variance by a factor of N. Previous 
spectrally diverse LIDARs used either two narrowly spaced modes of a multimode CW laser [10] or two distinct 
CW lasers [11]; the single femtosecond laser represents a convenient, compact source that provides a large number 
of coherent modes. We achieved a Doppler sensitivity of  ± 153 Hz (0.12 mm/sec) at a 10 ms averaging time for our 
N = 6 channels, despite a return signal speckle-broadened to a 14 kHz full-width half-maximum (FWHM).  Higher 
channel numbers would further improve the Doppler sensitivity.  As with FdOCT, the range image is generated as 
the Fourier transform of the N detected channels after any necessary phase compensation for signal path dispersion, 
and requires no precisely adjustable delay line. Here we achieve a range resolution of 60 µm FWHM after phase 
compensation (applied in data processing), despite the extra dispersion from 1 km of optical fiber (corresponding to 
a ~10 km air path), a 20-fold improvement over the uncompensated image’s resolution and only 25 % larger than 
the 48 µm FWHM resolution imposed by the 25 nm source bandwidth. Our range ambiguity is 250 µm; however, 
higher channel numbers would support larger range ambiguities. 
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Fig. 1. System layout.  Heavy solid lines are fiber paths, dotted lines are air paths. The variable delay line precisely adjusts 
the relative delay between the two arms and allows scanning the conventional LIDAR’s range. AOM: acousto-optic 
modulator, EDFA: Erbium-doped fiber amplifier, SMF: 800 m of single-mode fiber.  Inset: Output spectrum of the 
amplified source (dashed line) and the individual spectra of the filtered FReCL channels (solid line). 
 

The setup is shown in Fig. 1.  The signal beam scatters off the edge of a rough target rotating at about 10 Hz, 
resulting in a speckle bandwidth of ~2-15 kHz, depending on target tilt.  The LO arm is equal to the signal arm 
modulo the laser repetition rate of 50 MHz.  Alternatively, a second phase-locked fiber comb can serve as a phase-
locked LO to remove this restriction.  The signal bandwidth of λBW =25 nm is sampled directly in the conventional 
channel, but is spectrally filtered in the FReCL channels.  Here we sparsely sampled the return with N=6 discrete 
detectors evenly spaced by λsp=4.8 nm, resulting in a range ambiguity of λ2/(2λsp) ~ 250 µm, but retaining the full 
range resolution of λ2/(2λBW) ~ 50 µm.  The AOMs were adjusted to generate a heterodyne signal at ~30 kHz, which 
was processed in software to generate a signal Vn(t), for the nth channel.  The FReCL signals are processed 
coherently to generate a range image or incoherently to generate a Doppler signature of the target.   

 
To generate an image, we construct a range gate at a virtual delay τ by ( ) ( ) ( )0

, exp 2
N

n
V t t i nVτ π ν τ

=
= ∆∑ , where 

∆ν is the channel spacing and ∆νnτ is a phase shift added to the nth channel.  Figure 2a shows a conventional 
CLIDAR image taken with fine (0.1 ps) delay line steps.  A wobble of ~100 µm in the disk position is evident (and 
was confirmed by mechanical measurement).  Figure 2b shows the single stripe of data representing one target 
rotation available from the conventional channel at a single fixed delay, while Fig. 2c shows the image acquired by 
the FReCL data at the same single fixed delay.  Figure 3 shows a similar data set where the signal path was 
increased by 1 km of fiber.  Dispersion completely destroys the resolution of the conventional channel, while 
through phase compensation applied in processing [12], the resolution is restored for the FReCL data.    

 

 
 
 

 
 
 
 
 
 
 
Fig. 2. Range image of the disk for one full rotation (0.12 sec), balanced signal and LO arms.  The data are averaged over 
10 ms. (a) Data from conventional system at 17 LO delays. (b) Conventional data for a fixed delay.  (c) FReCL data at the 
same fixed delay.  Zero padding smooths the image.  TA is the total acquisition time. 
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Fig. 3. Range image with 1 km of fiber in the signal path for (a) Conventional data at 27 delay steps of 0.5 ps each, and for 
(b) FReCL data at a fixed LO delay after phase compensation.  Note the ~10x larger range scale in (a) versus that in (b). 

Now consider the Doppler signal obtained by incoherently processing the FReCL data.  If the target tilt provides 
sufficient range depth (> 250 µm) the N FReCL channels are decorrelated and incoherent summing can directly 
improve the SNR, as demonstrated in Fig 4a, and providing an N-times lower variance, as shown in Fig. 4b.  Fig. 4c 
shows the resulting improvement in the measurement of a 50 Hz vibration.    

 

 

 

 

 

 

 

 

 
 
 

Fig. 4 (a) Example power spectrum: conventional (dashed line) and FReCL data (solid line) for tgate = 10 ms. (b) variance 
versus the inverse gate time (tgate) for the conventional (dashed line) and FReCL data (solid line). (c) Example vibration 
measurement. The means of the FReCL channel measurements (solid squares) are in good agreement with the applied 
vibration (solid line).  For a single measurement (one target rotation), the standard deviation for the summed FReCL data is 
280 Hz (light grey region), and for the single conventional channel is 700  Hz (dark grey region) for a 3 ms gate time. 
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