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Abstract—We develop an empirical model for the warm-up drift
in a harmonic phase standard used to calibrate the phase distor-
tion of a nonlinear vector network analyzer. The model enables us
to estimate the time at which the standard reaches stability.

Index Terms—Drift, empirical, harmonic, model, phase,
standard, warm-up.

I. INTRODUCTION

NONLINEAR vector network analyzers (NVNAs) are ca-
pable of characterizing nonlinear devices under realistic

large-signal operating conditions [1], [2]. To do this, com-
plex traveling waves are measured at the ports of a device
both at the stimulus frequency (or frequencies) and at other
frequencies that are part of the large-signal response. These
include harmonics and intermodulation products created by the
nonlinearity of the device, in conjunction with impedance mis-
matches between the system and the device. The calibration of a
commercial NVNA consists of three steps: a relative calibration
identical to that used in a linear vector network analyzer, an
amplitude calibration that makes use of a power meter, and a
phase distortion calibration that makes use of a harmonic phase
standard (HPS). All are performed on a frequency grid related
to the source tones and the anticipated nonlinear response of the
device.

A commercial HPS is driven at a fundamental frequency
and produces a harmonic-series output signal. The HPS, which
is used as a transfer standard, is characterized by a sampling
oscilloscope, which in turn is characterized by a nose-to-nose
calibration [3]. In this way, we transfer the phase-dispersion cal-
ibration of an oscilloscope to “knowing” the phase relationship
of each harmonic of the HPS.

In a previous paper [4], we presented a repeatability study of
two commercial HPSs measured by an NVNA. By performing
multiple calibrations and measurements, we determined the
repeatability bounds for the phases and magnitudes of each har-
monic component by utilizing the propagation-of-errors (POEs)
method to compute expanded uncertainties. We also studied the
possibility of warm-up drift in the two devices and discovered
considerable drift as a function of time, with an estimated 1/e
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Fig. 1. Phase angles of the fifth harmonic of the HPS along with the estimated
curve using an exponential decay model for a typical run.

time constant of around 1000 s, which is much longer than
the warm-up time of 120 s set by the manufacturer’s control
software.

In this paper, we expand upon our work done in [5] and
develop an empirical model for the warm-up drift of an HPS
device, which enables us to estimate its phase-angle response
stability time point.

II. DRIFT MODEL OF THE PHASE ANGLE RESPONSE

Fig. 1 shows a typical set of measured phase angles of the
fifth harmonic, along with an estimated curve for the true phase
angle, which is based on an empirical drift model discussed in
the following. In this experiment, we obtained 1500 repeated
measurements of the 20-GHz HPS using a fundamental fre-
quency of 600 MHz, with a 5-s pause between each measure-
ment. The deviations or residuals of the measured values from
the fitted curve are shown in Fig. 2. The apparent randomness
and homogeneity of variance of the residuals are consistent with
the assumptions that we make about random noise in the drift
model.

While searching for a suitable empirical drift model, we
found that two first-order decay terms with an intercept pro-
duced excellent fits to all drift data collected to date in repeated
calibration runs on the HPS device. The nonlinear decay model
for drifting phase measurements of a given harmonic is

E (p|t) = φ + α1e
−β1t + α2e

−β2t (1)
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Fig. 2. Residuals from the fitted curve in Fig. 1.

where E(p|t) denotes the expected phase angle at time t > 0, φ
is the true stable phase value after warm up, α1 > 0 and β1 > 0
are the unknown parameters of the first decay term, and α2 > 0
and β2 > 0 are the unknown parameters of the second decay
term. It is not too surprising that this particular empirical model
for the expected phase works well, considering that each HPS
contains two nonlinear components, namely, an amplifier and a
step-recovery diode.

Given a set of repeated measurements (m1, p1),
(m2, p2), . . . , (mn, pn) of magnitude and phase, taken at
time points t1, t2, . . . , tn, our statistical model for phase
measurements is

pi = φ + α1e
−β1ti + α2e

−β2ti + w
1/2
i εi, i = 1, . . . , n

(2)

where the εi(i = 1, . . . , n) are random errors with mean zero
and unknown standard deviation σ, and the wi(i = 1, . . . , n)
are weights that may be specified to account for possibly
different error variances of drifting phase measurements.

In weighted least squares, weights should be proportional
to the inverse of the variance of the measured values. For
our phase measurements, a reasonable choice of the weights
is based on a general POE formula presented in [4] for the
approximate variance of a phase measurement derived from
a complex-valued measurement z = x + jy. Our experience
with several data sets like the one shown in Fig. 1 suggests that
it is reasonable to assume that the random errors in the real and
imaginary parts of z are uncorrelated and have equal variances,
in which case, the POE variance of a measured phase angle p
is inversely proportional to the true squared magnitude of the
measurement [4]. Since we do not know the true magnitudes,
we substitute the estimated weights

ŵi = m2
i , i = 1, . . . , n (3)

using the measured magnitudes. Estimates of the unknown
parameters (φ, α1, β1, α2, β2) in (2) can be obtained from the

usual weighted nonlinear least square solution that minimizes
the error sum of squares

S(φ̂, α̂1, β̂1, α̂2, β̂2) =
n∑

i=1

ŵi(pi − p̂i)2 (4)

where

p̂i = φ̂ + α̂1e
−β̂1ti + α̂2e

−β̂2ti (5)

is the predicted value of the ith measured phase angle. Here, we
have used the convention of denoting the least square estimates
of the parameters by placing a caret over the respective symbols
for the unknown parameters.

Given the least square solution, the variance of the random
error ε in (2) is estimated in the usual way from the residual
sum of squares as

σ̂2 =
n∑

i=1

ŵi(pi − p̂i)2/(n − 5) (6)

where the degrees of freedom of the estimated noise variance
is n − 5, after adjusting for the five parameters estimated in
(4). The least square analysis also provides estimated variances
and covariances of the decay parameter estimates, which may
be used to approximate the uncertainties of relevant functions
of the parameter estimates. In the next section, we use this
approach to estimate an approximate standard deviation of the
least square estimate of the actual phase-angle error at any time
during the warm-up period.

The weighted nonlinear least square estimates of the model
parameters are listed in Table I for each of seven repeated runs
at harmonics 5, 10, . . ., 30. Estimates of each of the four decay
parameters versus harmonic number are displayed graphically
in Figs. 3–6, respectively. The plots of α̂1 and α̂2 suggest that
the parameters increase almost linearly with harmonic number.
That the variance of estimates of these two parameters increases
with harmonic number is not surprising since the magnitudes
of the harmonics are decreasing. The estimates of β̂1 and β̂2,
which are shown in Figs. 4 and 6, are fairly stable across
harmonic numbers.

III. ESTIMATION OF STABLE PHASE-ANGLE TIME POINT

When a phase measurement is consistent with the decay
model of (2), the measured phase differs from the stable value
φ by a systematic offset that depends on time, plus a random
error. The actual offset of a measurement at time t, which is
denoted by δ(t), is

δ(t) = E(p|t) − φ = α1e
−β1t + α2e

−β2t (7)

where E(p|t) is the expected value of a phase angle measure-
ment at time t. Given the estimates of the decay parameters
from a warm-up experiment, an appropriate estimate of δ(t) is

δ̂(t) = α̂1e
−β̂1t + α̂2e

−β̂2t. (8)
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TABLE I
WEIGHTED NONLINEAR LEAST SQUARE ESTIMATES OF DECAY-MODEL PARAMETERS

FROM SEVEN WARM-UP EXPERIMENTS FOR SELECTED HARMONICS

Fig. 3. Parameter estimate α̂1 versus harmonic index for seven repeated runs. Fig. 4. Parameter estimate β̂1 versus harmonic index for seven repeated runs.
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Fig. 5. Parameter estimate α̂2 versus harmonic index for seven repeated runs.

Fig. 6. Parameter estimate β̂2 versus harmonic index for seven repeated runs.

Since the error δ(t) is decreasing in time, we define the true
stable time point to be the time t when δ(t) = ∆◦, where ∆ is a
phase-error bound judged to be acceptable for the intended use
of a phase-angle measurement. Since δ(t) depends on unknown
parameters, statistical methods are required to estimate the
stable time point. An estimate of the minimum time at which
phase error is not greater than ∆ may be taken to be the solution
for t̂ in the estimating equation

α̂1e
−β̂1 t̂ + α̂2e

−β̂2 t̂ = ∆. (9)

The solution of (9) for the estimated waiting time t̂ can be
obtained by numerical methods. Monte Carlo methods may
be used to estimate a variance of t̂ from solutions t̂j(j =
1, . . . , N) of (9) calculated from N simulated vectors from a
multivariate Gaussian distribution with mean vector (α̂1, β̂1,
α̂2, β̂2) and with variances and covariances for the parameter
estimates that are typically produced by nonlinear least square
software. The asymptotic or large-sample theory of nonlinear
least square estimates suggests that a Gaussian approximation
to the distribution of the decay parameters may be acceptable.

Fig. 7. Percent contribution of the first (dashed curve) and second (solid
curve) decay terms to the total error in (8) for the fifth harmonic. Vertical lines
indicate t̂ for ∆ = 5, 3, 1, 0.5◦ from left to right.

Fig. 8. Percent contribution of the first (dashed curve) and second (solid
curve) decay terms to the total error in (8) for the 30th harmonic. Vertical lines
indicate t̂ for ∆ = 10, 5, 3, 1, 0.5◦ from left to right.

An analysis using the decay parameter estimates in Table I
shows that the second decay term in (8) rapidly becomes the
dominant part of the phase error as the HPS warms up. Figs. 7
and 8 illustrate this point using the estimated error (9) for
the fifth and 30th harmonics, respectively. The solid curves in
the figures show the increasing percentage 100(α̂2e

−β̂2t/δ̂(t))
contribution of the second decay term to the total error dur-
ing warm-up, while the dashed lines show the decreasing
contribution of the first decay term. Vertical lines, which are
in order, are positioned at the estimated warm-up times for
achieving expected error bounds ∆ = 5, 3, 1, 0.5◦ for the fifth
harmonic [Fig. 7], and ∆ = 10, 5, 3, 1, 0.5◦ for the 30th har-
monic [Fig. 8]. For the 30th harmonic, we see that the second
decay term accounts for nearly 100% of the error for values
of ∆ as large as 10◦, but for the fifth harmonic, values of ∆
as large as 3◦ still show a considerable contribution of the first
decay term to the total error.
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Figs. 7 and 8 suggest that for any given harmonic and
small enough values of ∆, a closed-form approximation to the
solution for t̂ of (9) will work well for the drift data produced
by our HPS. That is, there is a sufficiently small ∆ ≤ α̂2 for
which the waiting time estimate

t̃ =
−1

β̂2

ln
(

∆
α̂2

)
(10)

is a good approximation to the value of t̂. The POE formula for
the variance of t̃ is

var(t̃) =
(
α−2

2 β−2
2

)
var(α̂2) + β−4

2

(
ln

(
∆
α2

))2

× var(β̂2) + 2α−1
2 β−3

2 ln
(

∆
α2

)
cov(α̂2, β̂2) (11)

where the variances and covariance involving α̂2 and β̂2 are
theoretical quantities that are functions of the unknown decay
parameters and error variance. As usual, in a POE uncertainty
analysis, an estimate of var(t̃) would be computed by sub-
stituting appropriate estimates of the decay parameters and
covariances appearing in (11) from the least square fits of the
decay model.

The procedure outlined previously is useful for retrospective
analysis of a single drift experiment or a combined analysis
of two or more runs where the drift parameters are believed
to be constant regardless of the measurement occasion. If we
assume that the four decay parameters in the statistical model
in (2) are fixed or unchanging between measurement occa-
sions, then variations among fitted curves are the usual results
of independent phase-measurement random errors arising in
successive runs. Under the assumption of fixed values of the
model parameters, it would be appropriate to pool the data
sets and obtain the least square solution in Section II from the
combined data, resulting in more precise estimates for model
parameters and, subsequently, a better determination of the
necessary waiting time.

Run-to-run variations among decay curves for our seven
drift experiments, which spanned a period of several weeks,
probably cannot be explained solely by the effects of random
measurement errors in the statistical model of (2). A more
realistic model allows for the possibility that the true values
of the decay parameters may vary significantly from run to
run, owing to changing environmental and other conditions,
even though the same experimental protocol leading to the first
measurement was followed for each run.

Run-to-run differences among true error curves can be mod-
eled by treating the decay parameters as a vector of (possibly
correlated) random coefficients. By this assumption, there is
not just one true waiting time that is common to all runs;
rather, there is a distribution of waiting times corresponding
to the multivariate distribution of the four decay parameters.
A sensible approach in this case is to combine the data from
all available runs in order to estimate the average or expected
time to stability and an associated uncertainty that could be
used to specify a suitable HPS warm-up time for a future phase-
calibration run.

TABLE II
WARM-UP TIME ESTIMATE t̂ AND ITS SIMULATION-BASED STANDARD

DEVIATION st̂, ALONG WITH AN APPROXIMATE ESTIMATE t̃ AND POE
STANDARD DEVIATIONS s

t̃
, FOR SELECTED HARMONICS. MISSING

VALUES ARE DUE TO INSTANCES WHERE THERE IS NO

SUFFICIENTLY SMALL ∆ ≤ α̂2

To illustrate one way that we can account for variation of the
decay parameters from multiple drift experiments and still use
waiting-time formulas discussed previously, we use the results
of the seven warm-up experiments summarized in Table I.
Table II lists the results of some combined-run analyses for
each harmonic and selected values of the error bound ∆. An
entry in column three of Table II is the solution for t̂ in (9) but
with the single-run vector (α̂1, β̂1, α̂2, β̂2) replaced by the mean
vector (α1, β1, α2, β2), where the overbar notation signifies the
averages of seven single-run estimates of parameters shown in
columns 4–7 of Table I.

The fourth column in Table II shows estimated standard
deviations st̂ of the warm-up times in column 3. Monte Carlo
methods were used to estimate the variance of t̂ from a pseudo-
random sample {t̂j , j = 1, . . . , N} of the solutions of (9),
calculated from N = 100 000 simulated vectors from a four-
variate Gaussian distribution with mean vector (α1, β1, α2, β2)
and with covariance matrix formed from the sample variances
and covariances of the seven vectors of decay parameters in
Table I for a given harmonic.

The final two columns in Table II are included for com-
parison of the approximate warm-up time estimate t̃ in (10)
and POE standard deviation st̃ from (11) to the estimate and
simulation-based uncertainty in columns 3 and 4. We see that
for values of ∆ ≤ 1◦, the two solutions are essentially the
same for practical purposes, at least for harmonics 5 or greater.
A more detailed view of the adequacy of the approximate
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Fig. 9. Difference t̂ − t̃ between exact and approximate warm-up time esti-
mates versus ∆ for harmonic numbers 5, 10, 15, 20, 25, and 30 clockwise or
from the left.

warm-up time solution (11), which is always less than the exact
solution for our data, is shown in Fig. 9, which shows the actual
error t̂ − t̃ and is based on the mean vectors of our seven warm-
up experiments.

IV. ESTIMATE OF THE WARM-UP TIME

Finally, there is the practical question of how our data can
be used to specify a warm-up time for the next calibration
occasion using the HPS. Since we have assumed that there is
a distribution of warm-up times, any of the estimated times t̂ in
Table II probably have about 50% chance of meeting a specified
error bound ∆ in a future run. To obtain a higher degree of
confidence that a predetermined warm-up time achieves the
tolerance ∆, we may calculate a one-sided prediction interval
for the next (unknown) warm-up time. An approximate one-
sided 100(1 − α)% upper prediction limit for the warm-up time
of a future run

t̃ + c′(1−α,n)st̃
(12)

where c′(1−α,n) is a table value based on n previously sam-
pled observations from a normal distribution [6, p. 61]. For
example, we estimated t̃ = 1347.1 s and s

t̃
= 52.3 s for the

fifth harmonic using the one-term approximation (∆ = 1.0◦

and n = 7); therefore, the resulting upper bound for a 95%
prediction interval using c′(0.95,7) = 2.08 is

1347.1 + 2.08(52.3) = 1455.9 s.

Thus, we are 95% confident that a future warm-up time will be
less than or equal to 1455.9 s. In other words, if we wait at least
1455.9 s before taking measurements, we will be 95% confident
that the phase angle is stable.

V. CONCLUSION

An empirical nonlinear model with two first-order decay
terms was found to describe the behavior of phase-angle drift

over time in a commercial HPS. The model was used to develop
a statistical procedure for estimating the warm-up time required
to assure, with acceptable uncertainty, that the expected phase-
angle error of a subsequent HPS measurement is not greater
than a stated error bound ∆◦. We performed simulation studies
to evaluate the performance of the procedure and found that
it works well depending on the harmonic number and the
chosen value ∆◦. An example based on seven runs on an HPS
illustrated how to calculate an approximate upper prediction
limit for the warm-up time required to ensure that phase-angle
stability is achieved with a stated level of 95% confidence.

The procedure to determine phase angle stability described
in this paper was developed for a specific HPS device; other
devices have different estimated parameter values and waiting
times. We consider this procedure to be a first step in the
process of determining a real-time general methodology for
determining phase-angle stability.

We measured the time evolution of the port impedance
during these experiments and did not observe a significant drift.
Furthermore, we have not observed a drift of this magnitude in
other long-term repeatability studies conducting on our system
with other types of devices. We submit these data as evidence
of a long-term time-constant thermal effect in our HPSs.
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