NISTIR 7234

Implementation of Simulation Program
for Modeling the Effective Resistivity
of Nanometer Scale Film and Line
Interconnects

A. Emre Yarimbiyik
Harry A. Schafft
Richard A. Allen

Mona E. Zaghloul
David L. Blackburn

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

NISTIR 7234

Implementation of Simulation
Program for Modeling the Effective
Resistivity of Nanometer Scale Film

and Line Interconnects

A. Emre Yarimbiyik
Mona E. Zaghloul

The Department of Electric and Computer Engineering,
The George Washington University
Washington, DC 20052

Harry A. Schafft
Richard A. Allen
David L. Blackburn

Semiconductor Electronics Division
Electronics and Electrical Engineering Laboratory

February 2006

U.S. DEPARTMENT OF COMMERCE

Carlos M. Gutierrez, Secretary

TECHNOLOGY ADMINISTRATION

Under Secretary of Commerce for Technology, William Jeffrey (acting as)
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
William Jeffrey, Director

Implementation of Simulation Program
for Modeling the Effective Resistivity of Nanometer Scale
Film and Line Interconnects

A. Emre Yarimbiyikl’ 2 Harry A. Schafft’, Richard A. Allen®, Mona E. Zaghloull,
and David L. Blackburn®

1- The Department of Electric and Computer Engineering,
The George Washington University, Washington, DC 20052
2- Semiconductor Electronics Division,
National Institute of Standards and Technology, Gaithersburg, MD 20899

Abstract
A computer program that simulates the impact of the size effect on the effective
resistivity of line and film conductors is described. Flowcharts and the program code are
provided as appendices.

Introduction

A versatile program, with its flow chart and code, are provided to permit the
reader to simulate how the effective resistivity of a metal conductor increases as the
conductor cross sectional dimensions approach and become smaller than the bulk mean
free path, Amax, Of the conduction electrons (size effect). For copper Amax = 39 nm at room
temperature. As integrated circuits (IC) are continuing to be designed with ever small
conductor dimensions, the size effect on IC operating speed is a consideration of growing
importance. (ITRS 2004 suggests dimensions smaller than 45 nm beyond 2009.) Hence,
it is important to understand how grain size and the scattering characteristics of line and
grain boundaries can increase the effective resistivity of lines and the R-C delays
associated with the circuit wiring.

The program can model how scattering from surfaces and grain boundaries
impact the effective resistivity of a film or line conductor when these scattering
mechanisms act separately or simultaneously. The grain size, which may or may not be
influenced by the dimensions of the conductor, is an important adjustable parameter in
the program. The probability of an electron being scattered elastically from the surface
can be made to be different for each surface of the conductor. This version of the
program permits only one surface of a line to be different. Temperature effects are
modeled by changing the value for the mean free path of the conduction electrons in the
metal of interest. The application of this program was reported in another publication [1],
where it was used to explore size effects in copper metallizations. While this program
was designed for studying size effects in copper, it can be used equally well for other
metallizations, such as aluminum and silver.

Summary of the Simulation

The code is developed for rectangular prism-shaped structures. Grain boundaries
are assumed to be planes perpendicular to the sidewalls [3]. These planes are separated
by a distance made equal to the estimated mean size of the grains in the metal. The
simulation uses Sommerfeld’s conductivity theory as expressed in eq. 1 to calculate the
resistivity.

N,e’r
me (1)

o =

where N, is the number of electrons with energy near the Fermi energy per unit volume,
e is the unit charge, 7 is the relaxation time, and my, is the effective mass of an electron

in the lattice. To calculate the simulated resistivity, all that is needed is to calculate the
average relaxation time for the electrons in the conductor. This is what the program is
designed to do. Values for N, and the effective mass of the electron for a given metal

exist in the literature and may be found in solid state physics books such as by Kittel [4].

To calculate the average relaxation time for the electrons in the conductor, the
program simulates the movement of an electron in steps as it moves from one inelastic
scattering event to the next. After each inelastic scattering event, the motion of the
electron is modeled as moving at the Fermi speed, v, along a straight line that is directed
in a randomly selected direction in the metal. If the electron is not scattered inelastically
by a surface or grain boundary after it has traveled a distance equal to the bulk mean free
path, Amax, it is assumed to be inelastically scattered. The relaxation time for the electron
during this simulated step in its motion in the metal is set equal to its maximum value,
Tmax — Mmax / V. If the electron is inelastically scattered before this time, it is assigned a
value for the relaxation time that is equal to the product of t,.x and the fraction of Apax
that the electron has traveled during this step. The program calculates a value for the
average of the relaxation times for each of N individual carriers (electrons) over M steps
for a given geometry and grain size. Two parameters are used to characterize the
scattering: p is the probability of elastic (specular) scattering from a surface and ¢ is the
probability of inelastic scattering by a grain boundary. Each of the N simulation electrons
begins its first step by placing it in a randomly selected point in a grain and giving it a
speed vr in a randomly selected direction.

Setting the Parameters of the Program

The following parameters are initialized in the start of the main function.

MFP: Mean free path of electrons in metal. It is temperature dependent. This dependence
is discussed in reference 1.

MAXTREL: Maximum relaxation time for electrons in the pure, bulk form of the metal.
The bulk resistivity of copper for different temperatures is listed in reference 5. The user
should calculate MAXTREL for copper using this information and equation 1.

pElastic: Surface scattering parameter, p, for three sides of the rectangular prism-shaped
structure. Default value is 0.1. pElastic can take values between 0 and 1.

pElasticFourthSide: p value for the top side of the line. Default value is 0.1.
pElasticFourthSide can take values between 0 and 1.

pGBSct: Grain boundary scattering parameter, g. Default value is 0.7. pGBSct can take
values between 0 and 1.

Meff: Effective mass of electrons in the metal. It can be entered in terms of “M,” the free
electron mass, which is a constant in the program.

N_fermi: Number of electrons nearby the Fermi energy per volume. Note that this value
is essentially temperature independent. For copper, it is equal to 8.47 X 10** [4].

N_simel: Number of simulation electrons. Default value is 500.
N_step: Number of steps taken by each electron. Default value is 2000.

N_simrange: Number of different geometries that are to be simulated in one run. Default
value is 30.

The parameters that define the dimensions are located in the “for” loop in the
main function.

yvalue and zvalue: Width and height dimensions (note that all the lengths are in
nanometers in the code) of the conductor line. For thin films, assigning 1000 times the
“yvalue” to “zvalue” is a reasonably good approximation of a thin film. As the default,
“yvalue” is 10 nm and is incremented by 10 nm in each loop. The number of loops is
determined by “N_simrange.”

grainSize: Average size of the grains. Grain size has crucial importance in taking the
grain boundary scattering into account. Following typical usage reported in the literature,
the default value for “grainSize” is the thickness of a film or the smaller cross sectional
dimension of a line. However, to obtain the most accurate simulation results, use the
value for the average size of the grains in the metallization determined from direct
measurements.

REFERENCES

[1] Yarimbiyik, A.E., Schafft, H.A., Allen, R.A., Zaghloul, M.E., Blackburn, D.L.
Modeling and Simulation of Resistivity of Nanometer Scale Copper, In press -
Microelectronics Reliability 2006.

[2] Barnat, E.V., Nagakura, D., Wang, P-l, Lu, T-M. Real Time Resistivity
Measurements During Sputter Deposition of Ultrathin Copper Films, JAP
2002;91:3:1667-72.

[3] Mayadas, A.F., Shatzkes, M. Electrical Resistivity Model for Polycrystalline Films:
the Case of Arbitrary Reflection at External Surfaces, Phys. Rev. B 1970;1:4:1382-9.

[4] Kittel, C., Introduction to Solid State Physics. New York; John Wiley & Sons, Inc.,
1996; p.150.

[5] Schuster, C.E., Vangel, M.G., Schafft, H.A. Improved Estimation of the Resistivity of
Pure Copper and Electrical Determination of Thin Copper Film Dimensions,
Microelectronics Reliability, 2001;41:239-52.

APPENDIX 1. Program Flowcharts

The following figures constitute the flowcharts of the Power Point file: FC_Cu.ppt.
Figure 1: Flowchart of the main routine.
Figure 2: Flowchart of the “Simulate Electron” function and a part of the main routine.
Figure 3: Flowchart of the elastic scattering routine.

Figure 4: Flowchart of the grain boundary check routine.

APPENDIX 2. Program Code

The code is given in a .java file, titled Copper.java.

Appendix 1 - Figure 1: Flowchart of the main routine

Initialization of simulation parameters and physical constants; Geomety Index=0

Geometry
Index>Number of different geometries

Setting the geometry & Grain boundaries

\ 4

End Program

Total relaxation time=0 ; Counter=0

; Initialization of position of electrons

>
)l
4

Electron
Index< Number of simulated electrons

Calculate average relaxation time

v

Calculate resistivity

v

Print dimensions & Resistivity

Yes

\ 4

Electron has taken the preset N steps.

No

Yes

Set new location & Calculate relaxation time (*)

y

Increase index by one

| * . Flowchart for this routine is given in Appendix Figure 2.

Appendix 1- Figure 2: Flowchart of the “Simulate Electron” function
and a part of the main routine

lectron on a grain boundary and

can not pass the grain boundary scattering
test (random number<g)

Relaxation time = 0 and the electron stays in the same location

Move electron

Yes
Grain boundary scattered? >

Noy

Relaxation time = Maximum

Yes Find location on the grain boundary &

Compute relaxation time until GB

Y

Inside?

No

Find trajectory-surface boundary intersection point

Grain boundary scattered?

No

Inelastic scattering?

No

Find location on grain boundary & Compute relaxation time until GB

Find location on the surface & Compute relaxation time until surface

Elastic scattering (*)

Set the electron location
& Return relaxation time

* . Flowchart for this routine is given in Appendix Figure 3.

Find tajectory-surface bendary Intersection point | Appendix 1 - Figure 3: Flowchart of the elastic scattering routine

Compute time until the surface boundary (=tEL1) |

Find the position after elastic scattering |

Set location on the grain boundary

& Compute relaxation time until GB (=tGB)

Y
Grain boundary scattered?
No

Find trajectory-surface boundary intersection point |

#i Relaxation time = Maximum | | Relaxation time= tEL1 + tGB

Set location on grain boundary & Compute relaxation time until GB (= tGB)

Grain boundary scattered?
No

Compute time until the surface boundary (=tEL2) |

| Relaxation time=tEL1 + tGB

Set location on the surface & Set relaxation time until surface (tINEL=tEL2) [

Inelastic scattering?
No

Find the position after elastic scattering | | Relaxation time = tEL1 + tINEL

Set location on the grain boundary

& Compute relaxation time until GB (=tGB)

Y
Grain boundary scattered?
No

»| |

»| Relaxation time = Maximum |

Find trajectory-surface boundary intersection point |

| Relaxation time = tEL1 + tEL2 + tGB

P

Set location on grain boundary & Compute relaxation time until GB (= tGB)

Relaxation time = tEL1 + tEL2 + tGB

Set location on the surface & Set relaxation time until surface (tINEL=tEL3) [

| Relaxation time = tEL1 + tEL2 + tINEL

Set location on the grain boundary
& Compute relaxation time until GB (= tGB)

Yes
Grain boundary scattered?

No 1

#I Relaxation time = Maximum |

Find trajectory-surface boundary intersection point | | Relaxation time = tEL1 + tEL2 + tEL3 + tGB

|<7

Set location on grain boundary & Compute relaxation time until GB (= tGB)

[
Grain boundary scattered?
No

| Relaxation time = tEL1 + tEL2 + tEL3 + tGB

Set location on the surface & Compute relaxation time until surface (= tINEL) I—

Yes
Inelastic scattering?
No

| Relaxation time = tEL1 + tEL2 + tEL3 + tINEL <

A 4

A 4

Return relaxation time

Appendix 1 - Figure 4: Flowchart of the grain boundary check routine

Inputs; initial and end points

Yes

Grain boundary index>number of grain boundaries No grain boundary scattering; return -1

Yes Return time
from initial point to the
grain boundary

Grain boundary between initial and end points Random number< g

\ 4
Increase grain boundary index by one

The locations of the grain boundaries are stored in an array in the simulation. When the function that
checks for the grain boundary scattering is called, the elements of the array are checked to be
between the x coordinates of the initial and end points. If this condition is satisfied and the generated
random number is bigger than the g parameter, then the electron is scattered from the grain
boundary and the loop breaks. If this double check yields a positive result for none of the array
elements, then there is no grain boundary scattering. The “grain boundary scattering check” function
returns —1 for no grain boundary scattering. If there is grain boundary scattering, the electron’s
position is set to the location that the electron’s trajectory intersects with the grain boundary. In this
case the return value is the time that passes for the electron to travel from its initial position to the
grain boundary

APPENDIX 2 - JAVA Source Code

This code was written using the jJGRASP editor and has successfully been
compiled using the Java J2SE v 1.4.2 08 SDK source code. A soft copy of
the code is available from the authors.

/* Simulation program for size effects (surface scattering and grain boundary scattering)
in resistivity of metal (Cu, Al, etc) films amd line interconnects;
written by Arif Emre Yarimbiyik -- Version 1.0 */

import java.util.*;
import java.lang.Math;

public class Copper

{

public final double convertmnm = 10e9;
public final static double Ex = 4.0el0 ;
// electric field in -x direction; Note: Not used in this version !!!
public final static double MFP=39;
public final static double MAXTREL=3.1681716e-14;

// public final static double MFP=28.86;
// public final static double MAXTREL = 2.268e-14; //_ 125C

public final static double PI=3.1415926;

public static void main(String[largs)
{
final int N_simel = 500, N_simrange = 30;
final double N fermi = 8.47e28; // number of electrons nearby the Fermi energy per volume
final double simulation scale = N simel/N fermi;
final double g = 1.6e-19;
final double M = 9.035e-31; // C , kg
final double Meff = M * 1.3;
final double N step = 2000;
final double startBox = N _step * MFP;
final double xvalue = 2*startBox ;
final double pElastic=0.1;
final double pElasticFourthSide=0.1;
final double pGBSct=0.7; //1.0; //0.7;
final double gStdevRatio=0.0; // Stdev in grain size is not active currently
double yvalue=0.0 , zvalue=0.0;
double grainSize=0.0;
double grainSizeStdev=0.0;
double trel=0.0 , totalTrel=0.0 , totalStep=0.0;
double conductivity=0.0,resistivity=0.0;
double dummy=0.0;
int noway;
boolean onGB = false; // on a grain boundary ?

for (int i=0 ; i<N_simrange ; i++)
{
totalTrel = 0.0;
totalStep = 0L;
yvalue = 10.0 + (double)i*10.0;
zvalue = 1000*yvalue; // for thin film
grainSize=yvalue; // MS assumption
grainSizeStdev=gStdevRatio*grainSize; // Not active !!
Wire simwire = new
Wire (xvalue,yvalue, zvalue,N simel,pElastic,pElasticFourthSide, pGBSct,grainSize,grainSizeStdev);
totalTrel = 0.0;
for(int eIndex=0 ; eIndex<N simel ; eIndex++)
{
for(int gwe=0; gqwe<N step ; qwe++)
{
if (!simwire.eConfig[eIndex].isOnGB (simwire.grainBnds) ||
(simwire.eConfig[eIndex].isOnGB (simwire.grainBnds) && Math.random()>=pGBSct)
{
dummy=simwire.simulateElectron (eIndex) ;
totalTrel = totalTrel + dummy ;
noway = simwire.getEPosition (eIndex) .unallowedDirection (yvalue,zvalue);
simwire.getEPosition (eIndex) .moveInside (0.00000001,noway) ;
}
else totalTrel=totalTrel + 0.0;

}

}
trel = totalTrel / (double) (N _step*N simel) ;

conductivity = calcConductivity (N fermi,qg,Meff, trel);

resistivity = 1.0 / conductivity;

System.out.println(/*"@@QREEQREEQAEE "+*/ /*yvalue + "

}

public static double smaller (double a,double b)
{

double small=a;

if (b<a) small=b;

return small;

}

"o+ trel + "

st™ + " "+*/resistivity);

public static double calcConductivity(double num,double g,double Meff,double tRelax)

{
return (num*g*g*tRelax) / Meff;

}

N o s
L1177 0777777707777 77177777777777

class Wire

{

private double xBound;

private double yBound;

private double zBound;

private int NN;

private double probElas;

private double probElasFourth;

private double probGrainbndScattering;
private double grainSize; // right now strict
private double grainSizeStdev;

public Coords|[] eConfig;

public Coords[] grainBnds;

Wire ()

{

}

double xBound=1000;

double yBound=30;

double zBound=60;

int NN=3;

double probElas=0.1;

double probGrainbndScattering=0.7;
double grainSize=yBound;

double grainSizeStdev=0.2*grainSize;

Wire (double xb,double yb,double zb,int num,double prob,double probFourth, double probgrainsct,

{

xBound = xb;

yBound = yb;

zBound = zb;

NN=num;

probElas=prob;
probElasFourth=probFourth;
probGrainbndScattering=probgrainsct;
eConfig = new Coords|[NN];
xBound=1000*Copper.MFP;

int nGbnd=(int) (xBound/gSize)+20;
grainBnds = new Coords[nGbnd];

[F* mmmmmm—— Setting the grain boundaries -------------- */

double gSize,

for (int a=0;a<nGbnd ;a++) grainBnds[a] = new Coords(0.0,0.0,0.0);

int dumInd=0;
for (int asd=0;asd<xBound ;asd++)
{
if (asd%gSize==0)
{
grainBnds[dumInd]=new Coords (asd,0.0,0.0);
dumInd++;

double gSizeStdev)

[F* —mmm——— Setting the initial position of electrons —---—--—--—--—- */
for(int i=0 ; i<eConfig.length ; i++)

eConfig[i] = new Coords((xBound/2.0)+ (Math.random()*100000)%gSize ,
(Math.random() *100000) $yBound , (Math.random()*100000)% zBound);
/* ___ */

public double simulateElectron (int elIndex)
{
boolean inside, 1sGBS, fourthSide;
int noway = 0;
double amount 0.0;
double timeInelas = 0.0 , timeElas=0.0 , timeNosct=0.0 , timeGBRSct=0.0 , trel=0.0;
boolean grainbndOnTheWay=false;
Coords newPosition = this.eConfig[elIndex];
Coords initialPosition = new Coords (newPosition.getX(),newPosition.getY (), newPosition.getZ());

newPosition.move (Copper.Ex) ;
isGBS=isGrainbndScattered (probGrainbndScattering) ;

inside = newPosition.checkifin(this.yBound, this.zBound) ;
if (inside)
{
timeGBSct=newPosition.gbSCT (initialPosition, this.grainBnds, probGrainbndScattering) ;
if (timeGBSct==-1.0)
{
timeNosct=Copper.MAXTREL;
trel=timeNosct;
}
else
{
trel=timeGBSct;
}
}
else
{
Coords newTempSurfacePosition = new Coords(newPosition.getX(),newPosition.get¥(),newPosition.getZ());
newTempSurfacePosition.findIntersect (initialPosition, this.yBound, this.zBound) ;
timeGBSct=newTempSurfacePosition.gbSCT (initialPosition, this.grainBnds, probGrainbndScattering) ;
if (timeGBSct==-1)
{
if (isElastic(probElas,probElasFourth, newTempSurfacePosition)==false)
{
timeInelas = newPosition.inelas (initialPosition,this.yBound,this.zBound);
trel = timelInelas;
}
else
{
timeElas = newPosition.elas(initialPosition, this.xBound, this.yBound, this.zBound,probElas,
probElasFourth, this.grainBnds, probGrainbndScattering) ;
trel = timeElas;

}
else
{
newPosition.setXYZ (newTempSurfacePosition.x,newTempSurfacePosition.y,newlTempSurfacePosition.z);
trel=timeGBSct;
// here newTempSurfacePosition is actually the position on the GB
}
}
this.eConfig[eIndex] = newPosition;
return trel;

}

public boolean isGrainbndScattered (double pGbSct)
{
boolean gbSct=false;
if(Math.random() < pGbSct) gbSct=true;
return gbSct;
}

public boolean isElastic(double pel,double pelFourth,Coords intersec)
{

boolean elasticSct=false;

boolean sideFour=false;

if (isBetween (intersec.get¥Y(),-0.01,0.01)==true) sideFour=true;

if (sideFour)

if(Math.random() < pelFourth) elasticSct=true;

if(Math.random() < pel) elasticSct=true;
}
return elasticSct;

}

boolean isBetween (double g, double boundOne, double boundTwo)

{ boolean between = false;
if ((g>boundOne && g<boundTwo) || (g<boundOne && g>boundTwo))
{ between = true;
ieturn between;

}
public Coords getEPosition(int i) { return this.eConfig[i]; }
}

N o N,
L1117 0777077777777 77777777 7777777777777777777777777777777777777717777777777777777777717777

class Coords

{

double x;
double y;
double z;

Coords ()

{
double x = 1.0;
double y = 1.0;
double z = 1.0;

}

Coords (double xCoord,double yCoord,double zCoord)
{

x = xCoord;

y = yCoord;

zZ

= zCoord;
}
public void setY (double q) { y=q; }
public void setXYZ(double p,double g,double r) { x=p; y=q9 ; z=r; }

public double getX() { return x; }
public double getY() { return y; }
public double getZ() { return z; }
public boolean isElastic(double pel,double pelFourth,Coords intersec)
{
boolean elasticSct=false;
boolean sideFour=false;
if (isBetween (intersec.get¥Y(),-0.01,0.01)==true) sideFour=true;
if (sideFour)
{
if(Math.random() < pelFourth) elasticSct=true;

if(Math.random() < pel) elasticSct=true;
}
return elasticSct;

}

public double inelas (Coords initialPosition,double yBound,double zBound)
{
int noway = 0;
double amount = yBound*0.0001;
double timeInelas=0.0;
noway = initialPosition.unallowedDirection (yBound, zBound) ;
initialPosition.moveInside (amount,noway) ;
this.findIntersect(initialPosition, yBound, zBound) ;
noway = this.unallowedDirection (yBound, zBound) ;
timeInelas = this.timePassed (Copper.MAXTREL, initialPosition);
this.moveInside (amount, noway) ;

return timelInelas;

}

public double elas(Coords initialPosition,double xBound,double yBound,double zBound,double
probElas,double probElasFourth,Coords[] grainB,double probGBS)
{
double timeElas=0.0 , timeInelas=0.0;
double timeGBSct=0.0;
int noway;
Coords symmetric = new Coords (this.getX(),this.getY(),this.getZ());
this.findIntersect(initialPosition, yBound, zBound) ;
double t elasfirst = this.timePassed(Copper.MAXTREL,initialPosition);
double t elassecond=0.0;
initialPosition.setXYZ (this.getX (), this.get¥Y(),this.getZ());
noway = initialPosition.unallowedDirection (yBound, zBound) ;
initialPosition.moveInside (0.00001, noway) ;
this.findElastic (symmetric, yBound, zBound) ;
boolean inside = this.checkifin (yBound, zBound) ;
if (inside)
{
timeGBSct=this.gbSCT (initialPosition, grainB, probGBS) ;
if (timeGBSct==-1.0)
{
timeElas = Copper.MAXTREL ;
timeInelas = 0.0;
}
else
{
timeInelas=timeGBSct;
timeElas=t elasfirst;

}
else
{
Coords newTempSurfacePosition = new Coords(this.getX(),this.getY(),this.getZz());
newTempSurfacePosition.findIntersect (initialPosition, yBound, zBound) ;
timeGBSct=newTempSurfacePosition.gbSCT (initialPosition,grainB, probGBS) ;
if (timeGBSct==-1)
{
if (isElastic(probElas, probElasFourth, newlTempSurfacePosition)==false)
{
timeInelas = this.inelas(initialPosition, yBound, zBound) ;
timeElas=t elasfirst;
}
else // iiiiiiiiiiia.. 2nd (+4) €1aS. ettt ittt i
{
Coords symmetricTwo = new Coords (this.getX(),this.getY(),this.getZ());
this.setXYZ (newTempSurfacePosition.getX (), newTempSurfacePosition.getY (),
newTempSurfacePosition.getZ());
noway = this.unallowedDirection (yBound, zBound) ;
this.moveInside (0.00001,noway) ;
t elassecond = this.timePassed (Copper.MAXTREL, initialPosition);
initialPosition.setXYZ (this.getX (), this.getY (), this.getZ());
this.findElastic (symmetricTwo, yBound, zBound) ;
inside = this.checkifin (yBound, zBound) ;
if (inside)
{
timeGBSct=this.gbSCT (initialPosition,grainB, probGBS) ;
if (timeGBSct==-1.0)
{
timeElas = Copper.MAXTREL;
timeInelas = 0.0;
}
else
{
timeInelas=timeGBSct;
timeElas=t elasfirst + t_elassecond;
}
inside=this.checkifin (yBound, zBound) ;
}
else // 2nd elas out ..
{
Coords nTempSurfPosTwo = new Coords (this.getX(),this.getY(),this.getZ());
Coords checky = new Coords (this.getX(),this.get¥Y(),this.getZ());
noway = initialPosition.unallowedDirection (yBound, zBound) ;
initialPosition.moveInside (0.00001, noway) ;
nTempSurfPosTwo.findIntersect (initialPosition, yBound, zBound) ;
noway = nTempSurfPosTwo.unallowedDirection (yBound, zBound) ;
nTempSurfPosTwo.moveInside (0.00001, noway) ;
timeGBSct=nTempSurfPosTwo.gbSCT (initialPosition,grainB, probGBS) ;

if (timeGBSct!=-1)

{
this.setXYZ (nTempSurfPosTwo.x,nTempSurfPosTwo.y,nTempSurfPosTwo.z) ;
timeElas=t_elasfirst+t_elassecond;
timeInelas=timeGBSct;
// here newTempSurfacePosition is actually the position on the GB
noway = this.unallowedDirection (yBound, zBound) ;
this.moveInside (0.00001,noway) ;
inside=this.checkifin (yBound, zBound) ;

}

else

{

if (isElastic(probElas,probElasFourth,nTempSurfPosTwo)==false)

{
timeInelas = this.inelas(initialPosition, yBound, zBound) ;
noway = this.unallowedDirection (yBound, zBound) ;
this.moveInside (0.00001,noway) ;
timeElas=t_elasfirst+t_elassecond;
inside=this.checkifin (yBound, zBound) ;

}

else // i 37d €1aS .t ittt ittt

{
double t elasthird=0.0;
inside=initialPosition.checkifin (yBound, zBound) ;

// 3rd elas starts ///////77
Coords symmetricThree = new Coords (this.getX(),this.getY(),this.getZ());
this.findIntersect(initialPosition, yBound, zBound) ;
noway = this.unallowedDirection (yBound, zBound) ;
this.moveInside (0.00001,noway) ;

t elasthird = this.timePassed (Copper.MAXTREL,initialPosition);
initialPosition.setXYZ (this.getX (), this.getY (), this.getZ());
this.findElastic (symmetricThree, yBound, zBound) ;
inside = this.checkifin (yBound, zBound) ;
if (inside)
{
timeGBSct=0.0;
timeGBSct=this.gbSCT (initialPosition,grainB, probGBS) ;
if (timeGBSct==-1.0)
{
timeElas = Copper.MAXTREL;
timeInelas 0.0;

}
else
{
timeInelas=timeGBSct;
timeElas=t elasfirst + t elassecond + t elasthird;
}
inside=this.checkifin (yBound, zBound) ;
}
else // 3rd elas out
{
Coords nTSPThree = new Coords (this.getX(),this.getY(),this.getZ());
noway = initialPosition.unallowedDirection (yBound, zBound) ;
initialPosition.moveInside (0.00001, noway) ;
nTSPThree.findIntersect (initialPosition, yBound, zBound) ;
noway = nTSPThree.unallowedDirection (yBound, zBound) ;
nTSPThree.moveInside (0.00001, noway) ;
timeGBSct=nTSPThree.gbSCT (initialPosition,grainB, probGBS) ;
if (timeGBSct!=-1)
{
this.setXYZ (nTSPThree.x,nTSPThree.y,nTSPThree.z);
timeElas = t elasfirst + t elassecond + t elasthird;
timeInelas=timeGBSct;
noway = this.unallowedDirection (yBound, zBound) ;
this.moveInside (0.00001,noway) ;
inside=this.checkifin (yBound, zBound) ;
}
else
{
if (isElastic(probElas, probElasFourth,nTSPThree)==false)
{
timeInelas = this.inelas(initialPosition, yBound, zBound) ;
noway = this.unallowedDirection (yBound, zBound) ;
this.moveInside (0.00001,noway) ;
timeElas=t elasfirst+t elassecond+t elasthird;
inside=this.checkifin (yBound, zBound) ;
}
else // i 111 NO 4th (and ++) elas ALLOWED !!!
{

timeInelas = this.inelas(initialPosition, yBound, zBound) ;

//

noway = this.unallowedDirection (yBound, zBound) ;
this.moveInside (0.00001,noway) ;
timeElas=t elasfirst+t elassecond+t elasthird;
inside=this.checkifin (yBound, zBound) ;
}
}

}
3rd elas ends ///////1/11777
}
}

}
else
{
this.setXYZ (newTempSurfacePosition.x,newTempSurfacePosition.y, newTempSurfacePosition.z);
timeElas=t elasfirst;
timeInelas=timeGBSct; // here newTempSurfacePosition is actually the position on the GB
inside=this.checkifin (yBound, zBound) ;
}
}
return timeElas+timeInelas;

}

public void findElastic(Coords sym , double yBound , double zBound)
{
Coords middle = new Coords();
double eps=0.01;
if (isBetween (this.z, zBound-eps, zBound+eps))
{
middle.z = zBound;
middle.y = sym.y;
}
if (isBetween (this.z,0.0-eps,0.0+eps))
{
middle.z = 0.0;
middle.y = sym.y;
}
if (isBetween (this.y, yBound-eps, yBound+eps))
{
middle.y = yBound;
middle.z = sym.z;
}
if (isBetween(this.y,0.0-eps,0.0+eps))
{
middle.y = 0.0;
middle.z = sym.z;
}
this.y = 2.0 * middle.y - sym.y ;
this.z 2.0 * middle.z - sym.z ;
this.x = sym.x ;

}

public double distanceFrom(Coords second)
{
//finds the distance between 2 points in 3-D space
double dist;
dist=Math.sqgrt (Math.pow((this.x-second.x),2.0)+Math.pow((this.y-second.y),2.0)+
Math.pow ((this.z-second.z),2.0));
return dist;

}

public void move (double E field)

{

// move sph.shell without direction restrictions
Coords onsphere = new Coords();
double theta,phi,convert = Copper.PI/180.0 ;

theta = ((Math.random()*100000) % 360) * convert;
phi = ((Math.random()*100000) % 180) * convert;

onsphere.x = Copper.MFP * Math.sin(phi) * Math.cos (theta);
onsphere.y = Copper.MFP * Math.sin(phi) * Math.sin(theta);
onsphere.z = Copper.MFP * Math.cos (phi);

this.x = this.x + onsphere.x;

this.y = this.y + onsphere.y;

this.z = this.z + onsphere.z;

}

public boolean checkifin(double yBound,double zBound)
{

boolean in = false;

Coords eCheck = thi
if (eCheck.y >= 0.
{

s;
0 && eCheck.z >= 0.0 && eCheck.y <= yBound && eCheck.z <= zBound)

in = true;
}

return in;

int unallowedDirection (double yBound,double zBound)
{
// noway=1 no east noway=-1 no west
// noway=2 no north noway=-2 no south
// noway=0 all directions allowed
int noway=0;
double eps=0.0001;

if (this.isBetween('z', zBound-eps, zBound+eps)) noway = 1;
else if(this.isBetween('z',0.0-eps,0.0+eps)) noway =-1;
else 1if(this.isBetween('y',yBound-eps, yBound+eps)) noway = 2;
else if(this.isBetween('y',0.0-eps,0.0+eps)) noway =-2;

return noway;

}

boolean isBetween (char side, double boundOne,double boundTwo)
{

boolean between = false;

double g = 0.0;

if(side=='y') gq = this.y;

else if(side=='z"') g= this.z;
if ((g>boundOne && g<boundTwo) || (g<boundOne && g>boundTwo))
{

between = true;

}
return between;

}

boolean isBetween (double g, double boundOne,double boundTwo)

{

boolean between = false;
if ((g>boundOne && g<boundTwo) || (g<boundOne && g>boundTwo))
{

between = true;

}
return between;

}

public void moveInside (double amountin,int noway)

{

if (noway==1) this.z = this.z - amountin;
else if (noway==-1) this.z = this.z + amountin;
else if (noway== 2) this.y = this.y - amountin;
else if (noway==-2) this.y = this.y + amountin;

}

double 1line3D(double c,double bl,double b2,double cl,double c2)
{

/* Finds the needed coordinate of a point (of which one coordinate is known) on a 3D line

Evaluates
y-vl
Z = ———————= (z2-z1) + z1
y2-yl
for line3D(intersection.y, zone, ztwo, yone, ytwo) ;
// 'z = 1line3D(intersection.y, zone, ztwo, yone, ytwo) ;
// a bl b2 cl c2

*/
double bSeeked;
bSeeked = ((c-cl)/(c2-cl)) * (b2-bl) + bl;
return bSeeked;

public void findIntersect (Coords initPos,double yBound,double zBound)

{

/* Assumption: Projection of electron's trajectory is a line in 3D
Its projection on yz plane is a line that starts at (yl,zl)
and ends at (y2,z2)

//

}

public

{

}

public boolean isGrainbndScattered (double pGbSct)

{

z2-z1

and b =

(= z=(y-b)/a

yl-a*zl

Our wire is in rectengular prism shape.
Intersections of the trajectory with the lines
and z=maxZ are found.
Then, the intersection point which is actually on the boundaries of the
rectengular prism is determined

y=0 , z=

*/

0 , y=maxY¥

double yone
double xone
double max¥Y
double a,b;
double solnUp= -1.0,solnDown=-1.0,solnLeft=-1.0,s0lnRight=-1.0;

z;y=maxY¥Y

a =

b

if ((ytwo-yone)

{

z;y=0

(ytwo-yone) /

initPos.y ,
initPos.x , xtwo
yBound , maxZ

yv;z=0

= yone-a*zone;

1= 0.0)

// z=(y-b)/a
= (maxY-b)/a;
= -b/a;

soln
soln

}

if ((ztwo-zone)

{

solnRight

soln

}

if (isBetween (solnUp,0.0,maxz)

{

this.

this
this
}
else 1f(

{

this.
this.

this
}
else 1f(

{
this

this.

this
}
else 1f(

{
this

this.

this

if (Math.abs(this.y)<0.0000001) this.y
if (Math.abs (this.z)<0.0000001) this.z

// finds the time passed till an e's path intersects

// fir

// that are inelastically scattered from the surface

double r
double w

Up
Down

Left

7z =

Y =
X =

isBetween (solnDown, 0.0, maxZz)

7z =
y =
X =

isBetween (solnRight, 0.0, maxyY)

LY =
7z =
X =

isBetween (solnLeft, 0.0, maxyY)

LY =
7z =
X =

st 1

atio
ay =

= b;

'=0.0)

zone

= initPos.z
= this.x;
zBound;

(ztwo-zone) ;

// y=a*z+b
= a*maxZ+b;

solnUp;
1ine3D(this.z, yone, ytwo, zone, ztwo) ;
1line3D(this.z, xone, xtwo, zone, ztwo) ;

solnDown;
1line3D(this.z, yone, ytwo, zone, ztwo) ;
line3D(this.z, xone, xtwo, zone, ztwo) ;

solnRight;
1ine3D(this.y, zone, ztwo, yone, ytwo) ;
line3D(this.y, xone, xtwo, yone, ytwo) ;

solnLeft;
1line3D(this.y, zone, ztwo, yone, ytwo) ;
1line3D(this.y, xone, xtwo, yone, ytwo) ;

&& isBetween (solnUp, zone, ztwo)

; last 2 ; intersect 3
// computes the relaxation time for the electrons

= 1.0;
0.0;

way = this.distanceFrom(second) ;
way / Copper.MFP;
return tmax * ratio;

ratio =

boolean gbSct=false;
if(Math.random/()

< pGbSct)

gbSct=true;

’

0.0;
0.0

ytwo

Y; z=maxz

’

double timePassed (double tmax,Coords second)

this.y ,

ztwo

this.

&& isBetween (solnDown, zone, ztwo)

&& isBetween (solnRight, yone, ytwo)

&& isBetween (solnLeft, yone, ytwo)

with the boundary

return gbSct;
}

public boolean checkGrain (Coords initPos,Coords[] grainB)
{
boolean gInBetween=false;
int i;
for (i=0; i<grainB.length;i++)
{
if | (this.x > grainB[i].getX () && initPos.getX () < grainB[i].getX()) Il
(this.x < grainB[i].getX() && initPos.getX() > grainB[i].getX()))
{
gInBetween=true;
break;
}
}
return gInBetween;

}

public double grainSct (Coords initPos,Coords[] grainB)
{
// first find the intersection(the point which the carrier is scattered on the grain boundary)
// then compute time passed
double timeTillSct, tmax;
int i;
double xCoordIntersect, yCoordIntersect,zCoordIntersect;
Coords pointOnGb=new Coords(0.0,0.0,0.0);
for (i=0; i<grainB.length;i++)
{
if | (this.x > grainB[i].getX() && initPos.getX() < grainB[i].getX()) [
(this.x < grainB[i].getX() && initPos.getX() > grainB[i].getX()))
{
xCoordIntersect = grainB[i].x;
yCoordIntersect = this.y + ((xCoordIntersect-this.x) / ((this.x-initPos.x) /
this.y-initPos.y)));
zCoordIntersect = this.z + ((xCoordIntersect-this.x) / ((this.x-initPos.x) /
(this.z-initPos.z)));
pointOnGb = new Coords (xCoordIntersect,yCoordIntersect, zCoordIntersect) ;
break;

}

tmax=Copper .MAXTREL;
timeTillSct = Math.abs(initPos.timePassed (tmax,pointOnGb)) ;
this.x=pointOnGb.x;
this.y=pointOnGb.y;
this.z=pointOnGb.z;
return timeTillSct;

}

public double gbSCT (Coords initPos,Coords[] grainB,double pGBS)
{
double timeTillSct, tmax;
int i;
double xCoordIntersect,yCoordIntersect,zCoordIntersect;
boolean gbScattered=false;
int randDirection=0;
Coords pointOnGb=new Coords(0.0,0.0,0.0);
for (i=0;1i<grainB.length;i++)
{
if | (this.x > grainB[i].getX () && initPos.getX() < grainB[i].getX()) [l
(this.x < grainB[i].getX () && initPos.getX () > grainB[i].getX()))
(
if (isGrainbndScattered (pGBS)==true)
{

xCoordIntersect = grainB[i].x;

yCoordIntersect = this.y + ((xCoordIntersect-this.x) / ((this.x-initPos.x) /
(this.y-initPos.y)));
zCoordIntersect = this.z + ((xCoordIntersect-this.x) / ((this.x-initPos.x) /

(this.z-initPos.z)));
pointOnGb = new Coords (xCoordIntersect,yCoordIntersect, zCoordIntersect) ;
gbScattered=true;
break;

}

if (gbScattered==false) return -1.0;
else

{

}

tmax=Copper .MAXTREL;

timeTillSct = Math.abs (initPos.timePassed (tmax,pointOnGb)) ;

this.x=pointOnGb.x;
this.y=pointOnGb.y;
this.z=pointOnGb.z;
return timeTillSct;

public boolean isOnGB (Coords[] gbs)

{

boolean onaGB=false;
for(int i=0; i<gbs.length ;i++)
{
if(this.x == gbs[i].getX ())
{
onaGB=true;
break;
}
}

return onaGB;

public void tooString/()

{
System.out.println("™ (" + this.x + " , " + this.y + "

}

+ this.z + "

)

"

)i

	NIST_IR#7234 Title&Text.pdf
	NIST_IR#7234 Appendix 1.pdf
	Appendix 1 - Figure 1: Flowchart of the main routine

	Copper-java source - prettyB.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

