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Outline
1. Business case

– Is it worth doing?
2. Requirements Model

– What problem are we trying to solve?
3. Architectural Model

– Highest level of design
– Determines basic approach

4. Design Model
– The solution. The Standard.

5. Test Model
– Meets requirements?
– Conforms to design?

6. Prototype / Proof-of-concept
– Prove it works, get buy-in

Standard is
built here

Preparation
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Why?
• Not enough time already… how can we add:

– Business case
– Requirements Model
– Architectural Model

• Because up-front preparation:
– Preemptively settles scope squabbles
– Defines the boundaries of the solution
– Reduces thrashing / rework later

• Because tests + prototype prove design is valid
• Because it’s cheaper in the long run



What is a model?
• A simplified representation

– Like a scale model of a building
– Helps everyone imagine finished product

• An abstraction
– Boiled down to some essential aspect
– Clarifies that aspect
– Helps participants think about that aspect
– Helps explain that aspect
– Helps orient new participants
– Constrains later stages of development



1. Business Case
• Sketches problem to be solved
• Estimates cost, risk, and benefits
• Management uses it:

– Go / NoGo  decision
– Get commitments from participants
– Resource allocation 

• Domain experts
• Prototype developers
• Compliance test developers

• After requirements capture, revisit



Business Case Artifacts
• Vision statement

– High level description of problems to be solved
• Cost benefit analysis

– Ballpark benefits
• Solution, scope not certain yet

– Ballpark cost
• Requirements not certain yet
• Solution not certain yet

– Cost estimation tools:
• Comparison with finished standards
• Function Point Analysis of prototype
• Constructive Cost Model II
• Putnam model

• Risk Assessment



2. Requirements Model

• Understand the problem
– Business Case rarely clear enough
– Who are stakeholders?
– How do they benefit?
– What’s involved in solving the problem?

• Stakeholder - developer contract
– Nails down scope
– Nails down expected benefits

• Input to Architecture Model and Design Model



Requirements Model Artifacts
• Scope in/out list
• Use cases (next slide)

– Specify how “actors” use implementation
• Use case & actor catalog

– Organizes, categorizes use cases & actors
• UML Use case diagrams

– Show actor - use case relationships
• Analysis model

– Supports use cases
– Provides background



What is a Use Case?
• Describes how stakeholders derive value

– Contract between stakeholders & developers
• Describes usage scenarios: 

– Preconditions
– Triggers
– What happens (next slide)
– Postconditions

• Written in the vocabulary of the user
– Avoids implementation details

• Includes
– “Business rules”
– Issues and their resolution



Specifying “What Happens” I
• UML Sequence diagram

– Emphasize: actor - system interaction
– Shows interactions as function of time
– Structure is not present

• UML Collaboration diagram
– Emphasize: actor - system interaction
– Shows interactions in context of structure
– Sequence is present, but hard to follow



Specifying “What Happens” II
• UML Statechart diagram

– Emphasize: internal states
– Describes behavior resulting from internal states
– Shows how internal states respond to stimuli

• UML Activity diagram
– Emphasize: things that get done
– Shows sequence of activities
– Allows for parallel activities
– A special form of state diagram, useful when:

• States have activities
• Automatically exit state when activity is finished



Many Kinds1 of Use Cases
• Scope:

– Business2        Probably not useful for standards
– System2          How implementation is used
– Component     Used by other components

• Goal-Level:
– Summary        Organizes User-Goals
– User-Goal       Why Actor uses system
– Subfunction     Subgoal
                            Necessary but not interesting by itself

1.  Writing Effective Use Cases, Alistair Cockburn
2.  Cockburn distinguishes black box and white box versions



Analysis Model
• Part of Requirements Model
• Analysis of use cases
• Describes domain “things”

– Classifies
– Shows structure 
– Describes relationships
– Describes behaviors



Analysis Model Artifacts
• Domain Structure

– UML Class diagrams
• Abstract: considers all instances together as a class
• Enumerates (but does not describe) behaviors

– UML Object diagrams
• Concrete: shows individual instances
• Rarely necessary
• Supplements, explains class diagram
• Can be mixed into class diagrams

• Domain Behavior
– Our old friends from “Specifying what happens”

• UML Sequence diagrams
• UML Collaboration diagrams
• UML Statechart diagrams
• UML Activity diagrams



3. Architectural Model
• Selects physical & logical components meeting:

– Functional requirements
– Non-functional requirements

• Performance, security, reliability
– Reuse goals, fit to other standards

• Specifies 
– Protocols 

• Communication
• Data access

– Component dependencies
– Component logical-to-physical mapping
– Facade / Interface behaviors

S
up

po
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Architectural Model Artifacts
• UML Component Diagram

– Dependencies among components
– Composition of components

• UML Deployment Diagram
– Allocates logical components to physical components

• Component-Scoped use cases
• Alternatives considered 

– Why rejected



4. Design Model
• Describes the solution
• Everything should be traceable to use cases
• Contains information from Analysis Model

– Sometimes a direct copy
– Sometimes almost unrecognizable
– Does not contain peripheral domain objects

• Contains extras (unknown to domain experts)
– Abstractions
– Factorizations
– Patterns1

Perhaps meta-info parameterized

1.  Design Patterns, by Erich Gamma, et al



Design Model Artifacts
• The same diagram types as Analysis Model

– Structure
• UML Class diagrams
• UML Object diagrams

– Behavior
• UML Sequence diagrams
• UML Collaboration diagrams
• UML Statechart diagrams
• UML Activity diagrams

• The content is different
– We are describing the solution instead of the domain



Caution - Standards Specific
• Need to distinguish

– General part of design
• Applicable to all implementations
• Must be tested against all implementations

– Ensures implementation interoperability

– Parts of design specific to prototype
• Helps build the prototype
• Must be tested only against the prototype

• Diagrams could distinguish by stereotype
– Stereotypes could be color-coded
– Color coding could conflict with other classifications1

1.  Java Modeling In Color With UML: Enterprise Components and Process, Peter Coad, et al



5. Test Model
• Tests for conformance to standard

– Applicable to all implementations 
– Conformance to general part of design

• Ensures interoperability with other implementations
– Conformance to use cases

• Ensures value delivered to stakeholders
• Ensures interoperability with other standards

• May define additional tests for prototype
– Often “white-box” tests
– Embarrassing if vendors test against buggy prototype



Test Artifacts
• Test case

– Traceable to one use case, or to design
– One use case can result in many test cases
– Required: executable code
– Optional: human readable description
– Specifies:

• Initial condition of system
– Load (on system under test, and/or infrastructure)

• Event or stimulus
• Response
• Timing of response
• Final condition of system

• Separate 
– Prototype specific & general tests
– Integration tests & component-level regression tests



6. Prototype
• Mitigates risk
• Ensures the standard will:

– Be self consistent
– Operate correctly
– Perform
– Interoperate with other standards

• Reduces extraneous content of standard
• Resolves ambiguities
• Reference for implementation interoperability tests
• Key testbed component
• Keeps participants focused
• Promotes buy-in
• Jump starts vendor implementations



UML References

• Martin Fowler. UML Distilled: A Brief Guide to the 
Standard Object Modeling Language, Third Edition. 
Boston: Addison Wesley (2003)

• Official specifications: http://www.uml.org/
• J. Rumbaugh, I. Jacobson, G. Booch. The Unified 

Modeling Language Reference Manual, Second 
Edition. Boston: Addison Wesley (2004)



UML References

Authoritative at one time… dated, but useful
– J. Rumbaugh et al. Object-Oriented Modeling and Design. 

Prentice-Hall (1990)
• Describes OMT, a UML predecessor

– G. Booch, J. Rumbaugh, I. Jacobson. The Unified 
Modeling Language User Guide. Boston: Addison Wesley 
(1998)

– I. Jacobson, G. Booch, J. Rumbaugh. The Unified 
Software Development Process. Boston: Addison Wesley 
(1999)

– J. Warmer, A. Kleppe. The Object Constraint Language: 
Getting Your Models Ready for MDA, Second Edition. 
Boston: Addison Wesley (2003)


