Single photon generation and detection technology

Sae Woo Nam National Institute of Standards and Technology Quantum Information ...

Encodes information in quantum mechanical states

Involves the manipulation and measurement of quantum states

 Atoms, Ions, Spins, Superconductors, Cavity-QED, Photons

We need a toolbox to generate, manipulate, and measure (detect) photons.

Single Photon Sources - Properties

- One and only one
- Wavelength
- Efficient
- Timestamp / On demand
- Polarization
- Spatial Mode

Commercially available / Manufacturable?

Metrology of Single Photon Sources

- Photon Number Resolving Detector
- Hanbury-Brown-Twiss Interferometer (HBTI)

 $g^{2}(\tau = 0) = 0$

Single Photon Source Technologies

Laser

- Single Atoms / Molecules
- Single "artificial" atoms
 - Quantum dots
 - Nitrogen vacancies in diamond
- Correlated photon sources (two-γ sources)
 - Spontaneous Parametric Downconversion
 - Four-wave mixing in fiber

Laser

Single γ's	$g^2(0) = 1,$ Poisson
Wavelength	IR-visible
Efficiency	Electrically pumped, high
Timestamp	pulsed
Polarization	cavity
Spatial mode	cavity, optics

Atoms / Molecules

Single y's	See plot
Wavelength	Atomic transition
Efficiency	6%
Timestamp	pulsed
Polarization	cavity
Spatial	cavity,
mode	optics

F.D. Martini, et al., Phys. Rev. Lett. 76, 900 (1996). Treussart, et al., Phys. Rev. Lett. **89**, 093601 (2002)

Single Atoms

Kimble et. al, Cal Tech

- Trap Single Cs Atom
 Pump with external field
- Use a cavity to control spatial mode

See talk later today

published online February 26, 2004; 10.1126/science.1095232 (Science Express Reports)

Artificial Atoms: Quantum Dots

Single y's	See plot
Wavelength	Material dependent
Efficiency	
Timestamp	Pulsed
Polarization	
Spatial mode	

3D confined electron gas Discrete energy levels "Aritifical atom"

Self-assembled (most common): InAs/GaAs InAs/InP InGaAs/GaAs CdSe/ZnSe

InGaAs/GaAs

Mirin, APL, vol.84, no.8 : 1260-2, 23 Feb. 2004

Cavities, Electrically pumped

P. Michler, et al, Science 290, 2282 (2000)

M. Pelton et al., PRL, 89, 233602 (2002)

J. Vuckovic et al., APL, 82, 3596 (2003)

Z. Yuan, et al, Science 295, 102 (2002)

Artificial Atoms: NV in diamond

Single y's	See plot
Wavelength	Band gap of the material
Efficiency	0.001
Timestamp	Pulsed
Polarization	
Spatial mode	

A. Beveratos, et. al, Eur. Phys. J. D 18, p. 191.

Spontaneous Parametric DownConversion $\chi^{(1)}$

Single γ's	Heralded by other photon
Wavelength	IR-visible
Efficiency	
Timestamp	pulsed pump
Polarization	cavity?
Spatial	cavity?,
mode	optics?

$$\omega_{p} = \omega_{s} + \omega_{i}$$
$$\vec{\kappa_{p}} = \vec{\kappa_{s}} + \vec{\kappa_{i}}$$

Varieties:

- Type I or II (polarization)
- Non-colinear, colinear

Source of Entangled Photons!!!

Paul Kwiat, UIUC

Spontaneous Parametric DownConversion – Multiplexed

Alan Migdall, NIST

Four Wave Mixing in Fiber

Single y's	Entangled pair
Wavelength	~1550nm
Efficiency	
Timestamp	pulsed
Polarization	Pump
	dependent
Spatial	Fiber
mode	

X. Li, et al., QTuB4 in QELS'03 Technical Digest

$$2\omega_p = \omega_i + \omega_s$$

Single Photon Detectors - Properties

- High Quantum Efficiency (as close to 100%)
- Broadband (100nm to 2000nm)
- Low Dark Count rate
 - No false counts
 - No afterpulsing
- Speed
 - Fast recovery
 - Fast rise / pulse pair resolution
- Energy Resolving / Photon Number Resolving

Photon Counter vs. Photon Number Resolving

Single Photon Detector Technologies

"Photon Counter"

- Avalanche Photodiodes
- Photomultiplier Tubes
- Quantum Dots
- Upconversion
- Superconducting Single Photon Detector
- "Photon Number Resolving"
 - N-splitters and photon counters
 - Photomultiplier
 - Visible Light Photon Counter / Solid State Photomultiplier
 - Low Temperature Superconducting Detectors

Avalanche Photodiodes (APD)

- Reverse Biased Diode
- Geiger Mode
- Impact Ionization continually amplifies uncontrollably
- Active/Passive Quench to reset
- Afterpulsing

Research: UT-Austin, UCSD, NovaCrystals

Material	Si	InGaAs
Wavlength	300-1100 nm	1000-1700nm
Q.E.	70%	20%
Dark Count	100 Hz	10's kHz
Count Rate	5 MHz	100 kHz
Timing	1 ns	1 ns

Commercial Devices: Perkin Elmer, Sensors Unlimited, Amplification Technologies, JDS Uniphase, Fujitsu

Photomultiplier Tube (PMT)

Wavelength	200-1700
Q.E.	10%
Dark Count	100 Hz –
	100kHz
Count Rate	100 MHz
Timing	<1 ns

- Photocathode determines sensitivity
- Afterpulsing

Commercial Devices: Hamamatsu, Burle ~\$20,000

Quantum Wells/Dots in FETs

- 1. Electron-hole pair is generated by absorption of a photon
- 2. Electron / hole is trapped by a quantum dot / well
- 3. Modulate the resistance of a FET channel.

A.J. Shields, APL, vol 76, no. 25, p. 3673-5.

Yablonovitch UCLA, Mirin -NIST

Upconversion

- Transform the detection problem from the IR to the visible.
 Downconversion in reverse!!!
- 100 Efficiency (%) Nd:YAG pump laser 90 Pump Power 10 400 mW 80 Monitor PZT 70 Upconversion Fiber 60 Prism Collimator 50 Pinhole 4-cm PPLN crystal 40 Single-Photon 30 1-nm IF Probe Sich 100 dB variable 1.55 µm 20 attenuator tunable laser 10 Alboata, Wong, QELS 0.88x10^b photons/sec 0 15 5 0 10 20 25 30 35 40 Computer-controlled Circulating Pump Power (W) digital counter card

Superconducting Single Photon Detector (SSPD)

Wavelength	200-1700
Q.E.	5%
Dark Count	10kHz
Count Rate	1 GHz
Timing	<100 ps

Sobolewski, Univ. of Rochester

Spatial or Time multiplexing

- Spatial Multiplexing
 - Multiple beam splitters + multiple detectors
 Careful analysis of the output to estimate photon number
- Time multiplex
 - •Divide the photons into time bins
 - •Slower effective count rate

D. Achilles, et al., quant-ph/0310183

PMT for Photon Number Resolving

9205-32481

Fig. G-8 - Typical photoelectron pulse-height spectrum for a photomultiplier having a GaP first dynode.

855 nm photons on a RCA-8852 from <u>Photomultiplier Handbook</u>, RCA, Lancaster, PA 1980, p168. Low Noise Amplification
Single shot estimate of photon number is difficult

Examples of use to look at photon statistics of lights sources:

R. Charvin, *Opt. Acta,* vol. 28, 397(1981)
R. S. Bondurant, *Optics Letters*, vol. 7, 529(1982)

Visible Light Photon Counter

543 nm Data point

Counts

Wavelength	400-1000 nm
Q.E.	90%
Dark Count	30kHz
Count Rate	~1 MHz
Timing	<100 ps

Commercially available with a special fabrication run (Rockwell / DRS)

E. Waks, et al., quant-ph/0308054

Transition-edge Sensor

Wavelength	200-1700 nm
Q.E.	20%
Dark Count	0
Count Rate	10-50 kHz
Timing	~1 µsec

QE > 90% with a resonant cavity

Metrology problem

A.J. Miller, et al, APL, v. 83, 791-793 (2003)

Sae Woo Nam NIST (303) 497-3148 Nams@boulder.nist.gov

BU: Quantum Optical Setup

Summary

- Toolbox for generation and detection of photons is not complete
- Good tools are available, lots of improvements are being developed
 - Very exciting work that is fast moving
- As our tools improve, better metrology is needed
- Expect impact in tests of quantum physics, quantum key distribution, LOQC