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Abstract—The output of a femtosecond fiber laser will form a 

frequency comb that can be phase-locked through feedback to 
the cavity length and pump power. A perturbative theory is 
developed to describe this frequency comb output, in particular 
for a solitonic fiber laser. The effects of resonant dispersion, 
saturation of the self-amplitude modulation, cavity loss, third-
order dispersion, Raman scattering, self-phase modulation, and 
self-steepening on the spacing and offset of the fiber-laser 
frequency comb are given. The mechanisms by which the pump 
power, cavity length and cavity loss control the frequency comb 
spacing and offset are identified. Transfer functions are derived 
for the comb response to change in cavity length, pump power or 
cavity loss. This theory can potentially be applied to other 
frequency comb sources as well.  
 

Index Terms— Frequency measurement, Laser stability, 
Optical fiber lasers, Optical fiber measurement applications.  

I. INTRODUCTION 
mode-locked laser will emit a pulse train in time, the 

Fourier transform of which is a frequency comb. The 
spacing of the comb is set by the laser repetition frequency, fr, 
and the offset frequency of the comb is set by the rate of 
change of the carrier-envelope offset (CEO) phase, fceo. Based 
on the original demonstration by Udem et al. [1], extremely 
stable frequency combs have been realized using mode-locked 
Ti:Sapphire lasers [2-4]. Recently, this concept has been 
extended to produce self-referenced phase-locked frequency 
combs further into the near-infrared using mode-locked Er 
fiber lasers [5-9] and a Cr:forsterite laser [10]. These combs 
use the same basic technique of the original Ti:Sapphire laser-
based combs, namely spectral broadening in nonlinear fiber 
[11, 12] followed by rf detection of the fceo [13, 14].  

A phase-stabilized fiber-laser frequency comb provides a 
series of frequency markers across the near infrared from 1 to 
2 µm that are directly referenced to a known rf frequency.  
Fiber-laser frequency combs have the potential of providing 
this stabilized frequency comb in a fully fiber-optic, robust, 
power-efficient package that could enable a variety of 
applications; they should prove useful in frequency metrology, 
telecommunications, and remote sensing applications. A 
simplified schematic of a mode-locked fiber laser and the 
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resulting frequency comb is given in Fig. 1.   
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Fig. 1. (a) Simplified schematic of a fiber ring laser. The Erbium-
doped fiber (EDF) region is pumped by a cw pump at 980 nm and 
provides gain. The cavity length change (∆L) might be through a 
piezoelectric transducer (PZT) fiber stretcher or air delay line. For a 
soliton laser, the net cavity dispersion is anomalous.  For a stretched-
pulse laser the net cavity dispersion is normal. The effective self 
amplitude modulation (SAM) is provided by nonlinear polarization 
rotation. Other laser designs are possible. The laser output forms a 
pulse train in time (b) and a frequency comb in frequency space (c), 
with a spacing set by the repetition rate, fr = 1/Tr and offset frequency 
set by the CEO frequency, fceo.  
 

The stabilized frequency comb is established by phase-
locking the frequency spacing, fr, and comb offset fceo to a 
known microwave (or optical) reference. The repetition rate is 
stabilized through feedback to the cavity length [5-8, 15] and 
the offset frequency is stabilized through feedback to the 
pump power [5-9, 15, 16]. (Alternatively, the repetition 
frequency can be stabilized by the pump power [17].)  In any 
system developed to date, the feedback bandwidth for the 
phase-lock of the offset frequency has been limited by the 
laser response to ~2 to 10 kHz [5, 15, 17]. This limited 
bandwidth, combined with the rather large phase noise on the 
fceo measurement, is a limiting factor on the comb phase 
quality.  

So far the development of fiber-laser based frequency 
combs has been experimental in nature. This paper presents a 
theory to describe the frequency comb output of a fiber laser 
that includes the basic fiber propagation of the laser pulse as 
well as the effects of the resonant Er contribution to the pulse 
propagation, self-phase modulation (SPM), third-order 
dispersion (TOD), stimulated Raman scattering (SRS), self-
steepening (SS), perturbations to the cavity loss, and 
saturation of the self-amplitude modulation. The goal of the 
theory is to answer three basic questions: first, what 
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parameters of the laser determine the position of the frequency 
comb teeth? Second, how does feedback to the cavity length 
and pump power control the position of the frequency comb 
teeth? Third, what sets the bandwidth of the feedback 
response of the laser?  To answer these questions we derive 
transfer functions relating a change in the control parameters, 
i.e. pump power, cavity length, or cavity loss, to a change in 
the frequency comb output, specifically the comb spacing, fr, 
and comb offset fceo 

Given the analogy with the Ti:Sapphire laser-based 
frequency combs, it might be tempting to apply the theory for 
these combs to the fiber laser-based frequency combs. There 
have been a number of investigations of the control of 
Ti:Sapphire frequency combs beginning with the early work 
of Xu et al. [18], which pointed out the effects of SPM and 
intensity-dependent spectral shifts on the control of fceo,.  The 
contribution of various nonlinear effect, such as  SPM, self-
steepening, and nonlinear refraction have been discussed in 
detail in [19-24].  Recent empirical observations suggest that 
the intensity-dependent spectral shifts (which give rise to 
shifts in the repetition rate when coupled with cavity 
dispersion) can dominate [25, 26].  Similar shifts have been 
observed in fiber laser systems [17]. However, with the 
exception of the combined numerical and analytical model for 
the noise of mode-locked lasers developed by Paschotta [27, 
28], there has not been any comprehensive theory developed 
to describe the comb output.  In particular, the control 
bandwidth has not been discussed, partly because it has been 
limited by the transducers and not the laser system [24, 26].  
Moreover, the fiber-laser based comb will operate with 
different physical parameters than the Ti:Sapphire laser-based 
comb.  For all these reasons, the interesting work related to 
Ti:Sapphire-laser combs cannot be directly translated to fiber-
laser based frequency combs.   

A much more fruitful starting point to describe the 
frequency comb output of a fiber laser is through the Master 
equation for mode-locked fiber lasers that has, in particular, 
been developed and applied by the MIT group of Haus and 
Ippen [29-32]. In the main body of the paper, we develop an 
analytical perturbative theory for the comb output of a fiber 
laser, beginning with the Master equation.  Rather than use the 
solitonic perturbation theory employed by Haus and Mecozzi 
in their seminal paper [30], we use an alternative perturbative 
approach based on a moment method similar to [33, 34] that 
has the advantage of allowing us to treat the more general case 
of arbitrary chirp.  We find that the chirp will modify the 
coupling constants, but that the change in the chirp can be 
conveniently removed from the final equations of motion.  By 
including the gain dynamics, we derive the bandwidth of the 
system response, which is intimately connected with the laser 
stability.  By including the main relevant perturbations, we 
identify the most significant physical mechanisms involved in 
controlling the comb:  self-phase modulation, self-steepening, 
third-order dispersion, spectral shift, and resonant group 
velocity.  As discussed above, SPM and SS have received a 
lot of attention for Ti:sapphire-laser combs; here we derive the 

numerical factors appropriate to a fiber-laser comb.  We find 
the additional effects of TOD, spectral shifts and resonant gain 
contribution are all potentially much more significant, 
depending on the laser parameters.   Finally, we show that the 
pump-induced spectral shift can be explained by a 
combination of SRS and a frequency-dependent loss coupled 
with power-broadening of the Erbium gain bandwidth.     

Before launching into the derivation of the fiber-laser 
response based on the Master equation, we develop a simpler 
heuristic model for the laser response in the next Section.  
This simpler model includes all the major effects and can 
provide greater physical intuition. Section III begins the full 
perturbative treatment by reviewing the Master equation for a 
mode-locked fiber laser. Section IV connects the perturbed 
pulse train and frequency comb. Section V describes the seven 
perturbations considered here.  Section VI solves the 
perturbed Master equation to find the full transfer functions. 
After a brief discussion in Section VII, Section VIII 
concludes.  

II. HEURISTIC, STREAMLINED DERIVATION OF THE LASER 
RESPONSE TO CHANGES IN PUMP POWER 
The purpose of this section is to provide a relatively short 
derivation of the comb response to a change in the pump 
power.  The basic response to a change in cavity length can be 
similarly derived although it is potentially complicated by any 
associated cavity loss as discussed in Section VI.  While the 
numeric factors for the nonlinear terms are specific to a 
solitonic laser, the general equations will also apply to the 
stretched-pulse laser.  The system is both highly nonlinear and 
highly sensitive to any shift in round-trip time (a 0.1 fs shift 
yields a 1 MHz shift in offset frequency). As a result, a 
number of mechanisms come into play as summarized in Fig. 
2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Basic overview of the system response. A change in the pump power 
changes both the gain and the pulse parameters with a time constant 
determined by both the laser parameters and the response of the Erbium gain.  
The changes in gain and pulse parameters affect the repetition and offset 
frequencies through a number of mechanisms; the most important ones being 
self-phase modulation, third-order dispersion, self-steepening, spectral shifts, 
and the resonant group velocity.   
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Starting at the top of Fig. 2, we begin with a derivation of 

the coupling between the gain and pulse energy; this coupling 
determines the bandwidth of the system response and the 
magnitude of the pump-induced changes in the pulse.  We can 
derive the coupled differential equations describing the pulse 
energy and gain through the following argument.  
Spontaneous relaxation and stimulated pumping from both 
pump and signal, causes the gain to relax to its steady-state 
value with a time constant Tg, which is typically much shorter  
than the spontaneous decay rate of ~ 10 ms for Erbium.    If 
the pump power, PP, changes, the steady-state value of the 
gain, g, will also change; this change is quantified by the 
derivative gP = PP dg/dPP. Because of gain saturation, any 
resulting increase in pulse energy, w, drives a decrease in the 
steady-state gain; this change is quantified by the derivative 
gsw = -w dg/dw.  Finally, an increase in pulse energy is 
reduced by the additional loss per pass, denoted η.   Putting all 
of these arguments together yields the coupled differential 
equations for the change in pulse energy, ∆w, and in gain, ∆g 
as a function of time T: 
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where Tr ~ 20 ns is the round-trip time around the cavity.  A 
similar set of coupled differential equations has been derived 
to describe lasers mode-locked with a saturable absorber [35].  
Simple self-amplitude modulation (SAM), which provides the 
necessary energy-dependent gain for mode-locked operation, 
implies an increase in pulse energy  per round-trip or η < 0, 
which, if unchecked, would lead to exponential increase in 
pulse energy.  If the gain response is sufficiently rapid, 
coupling of the pulse energy to the gain saturation can 
overcome this effect and stabilize the pulse; however for the 
fiber laser, the stabilizing effect of the gain saturation is too 
slow and an extra nonlinear loss (or saturation of the SAM) 
must be included to force η > Tr/Tg~0  (see Sections V.H, 
VI.E and Ref.s [35-38]). If (1) is underdamped (i.e. has 
complex eigenvalues), then relaxation oscillations can result 
[35]; however, for the fiber laser the system is overdamped, as 
has been shown experimentally [36], and the system exhibits 
simple exponential decay governed by two time constants.  
The slowest time constant is  

 
1

1 1 11
gTτ η

 
≈ + 

 
 (2) 

assuming Tr / (ηTg) << 1 and gsw~1/2 (see Section V.C), and it 
determines the system response. The 3-dB bandwidth for 
phase-locking the system using pump-power modulation, ν3dB  
is given by ν3dB  = 1/(2πτ1) and falls in the range of 1/(2πΤg) < 
ν3dB << ∞ assuming η < 1.  In terms of τ1, the solution to the 
Fourier transform of  (1) is  
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where the tilde represents the Fourier-transform of the 
quantity with respect to Fourier frequency Ω. For PP measured 
with respect to threshold, gP=1/2 In the limit of η→0, these 
equations have the physically sensible result that ∆g = 0 and 
∆w/w = ∆PP/PP.  In other words, if there is no additional 
cavity loss, the gain must remain fixed since the laser operates 
with gain equal to loss.  Higher values of η imply additional 
loss per pass and therefore a corresponding increase in the 
gain.  The time constant (2) and the resulting 3-dB bandwidth 
ν3dB set the response of the frequency comb to a pump-power 
change.  The relative magnitude of the gain and pulse energy 
change in (3) will impact the relative magnitude of different 
mechanisms that change the frequency comb.  

Now that we have an expression for the system response 
bandwidth and for the change in gain and pulse energy we can 
proceed to derive the effect of these changes on the frequency 
comb parameters.  First we derive an expression for both the 
repetition frequency and offset frequency in terms of the 
system parameters. We define a “generalized” propagation 
constant, βgen(ω), so that the Fourier-component of the pulse 
at ω after one round trip around the laser cavity of length L is 
E(L) = E(0) exp(iβ gen(ω) - iω t), where the generalized, 
lumped, propagation constant, 

 ( ) ( ) ( ) ( )gen res NLβ ω β ω β ω β ω= + +  (4) 
includes contributions from the lumped fiber propagation 
constant, β(ω), the nonlinear contributions, βNL(ω) and the 
resonant contribution from the gain medium, βres(ω).  The 
nonlinear SPM contribution is given very roughly by βNL(ω) 
~δ A2, where A is the peak electric field of  a pulse with total 
energy w and temporal width τ, and δ = Lω n2/(caeff), where 
aeff is the effective area and n2  is the nonlinear index. βres(ω) 
can be calculated for a Lorentzian model of the Erbium gain 
with a full width 2Ωg, centered at ω0 with a peak value g (see 
Section V.C).  To simplify the treatment of βres(ω) in what 
follows, we expand about the gain peak, ω0, in which case 
βres(ω) contributes a term g/ Ωg to the inverse group velocity 
but nothing to the phase velocity or to second-order 
dispersion.   

The repetition frequency, fr, is simply the inverse round trip 
time, Tr, which is the first derivative dβgen/dω averaged over 
the pulse spectrum of width ωrms and evaluated at the carrier 
frequency ωc = ω0 + ω∆ .  We find,   

 1 2
1 2 3

0

1 ,
2 2r r rms

g

g wf T Clω
µ δβ ω β ω β
τω

−
∆= ≈ + + + + +

Ω
 (5) 

where βn=dnβ /dωnωo and assuming ω∆ << ωrms.  The first 
three terms come from the linear fiber propagation.  The 
fourth term is the resonant contribution to the group velocity.  
The fifth term is the self-steepening effect where µ ~ 1 



 to appear in IEEE Journal of Quantum Electronics, vol. 41, issue 11, November, 2005 < 
 

4

characterizes the frequency dependence of δ,  (see Section 
V.F). This heuristic deriviation of the self-steepening 
contribution agrees with the more rigorous perturbative 
treatment given later. The final term, not derived here, is 
proportional to the chirp, C, and the spectral derivative of the 
loss, lω (see (60)).  

The offset frequency, fceo, is given by the product of the 
repetition rate and the phase change per loop, which is β(ω) - 
ωTr (see Section IV).  Expanding in a Taylor series,  
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where the phase shift ϕ0 arises from the nonlinear contribution 
βNL(ω) and β2; it is designated as the “self-phase modulation” 
contribution. For a chirp-free soliton solution, ϕ0 is the well-
known soliton phase shift, wδ/4τ, but it diverges from this 
value for a chirped pulse (see (21)) or for a stretched-pulse 
laser.  Note the offset frequency has no explicit dependence on 
the frequency shift; any dependencies arise through the 
repetition rate Tr

-1.  This same expression can be rewritten in 
terms of the group and phase velocity as in (67) given later.  

Next we derive an expression for the spectral shift from the 
gain peak, ω∆, that appears in (5).  Pump-induced spectral 
shifts have been empirically shown to potentially dominate in 
both Ti:Sapphire and fiber-laser frequency combs [17, 25, 26]. 
The carrier frequency is given by the local maximum in the 
net gain; expanding the gain, g, and loss, l, about the gain 
peak, ω0, gives a net gain of (g - ω∆

2Dg) – (l + ω∆ lω), where 
the “gain dispersion”, Dg = (1/2) d2g(ω)/dω2, and the system-
dependent loss slope is lω=dl/dω.  The laser operates at the 
peak gain which occurs at the (linear) carrier frequency shift, 
ω∆,L = − lω/(2Dg). There are additional nonlinear perturbations 
that give rise to a frequency shift. Citing (61), the nonlinear 
contribution to the frequency shift is  

 
( ) ( )1

, 02
,

5 1NL R
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δω τ µω
τ

−
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where the first term in parentheses arises from the Raman 
effect with strength τR, and the second term arises from the 
self-steepening effect. (We ignore the contribution from any 
frequency-dependence of the self-amplitude modulation).  Just 
as with the linear carrier frequency shift, the nonlinear shift 
depends inversely on the gain filtering factor, Dg.   

We now continue on to the lower portion of Fig 2 and 
calculate the response of the repetition frequency, given in (5)
and the offset frequency, given in (6), to a change in pump 
power.  To do this, we need to understand the dependence of 
each of the system parameters in (5) and (6) on pump power. 
Equation (3) gives the dependence of gain and pulse energy 
on pump power. For a solitonic laser, a change in pulse energy 
will have an accompanying change in pulse duration, τ, that is 
inversely proportional to w and an accompanying change in 
spectral width, ωrms, that is proportional to w. The scaling of 
the spectral shift, ω∆ = ω∆,L + ω∆,NL  with pump power is 
slightly more complicated since the gain filtering parameter 

Dg depends on both gain and signal power through power-
broadening of the homogenous gain bandwidth (see Section 
V.C). (Power broadening does not similarly affect the 
resonant group-velocity contribution, g/Ωg.) Making the 
simple assumption that Dg scales linearly with gain and 
inversely with signal power, the change in ω∆ with pump 
power is  

 ( ), ,3 cw
NL L

cw

Pw g
w g P

ω ω ω ω ω∆ ∆ ∆ ∆ ∆

∆∆ ∆
∆ = + − +  (8) 

using (3), where the first term arises from the pulse-energy 
dependence of the nonlinear spectral shift and gain filtering, 
Dg, the second from the gain-dependence of the gain filtering 
Dg and the last term is added heuristically to account for any 
cw laser power, Pcw, that can additionally broaden Dg.   

Finally, using these scaling laws and (5) yields the pump-
induced change in the repetition frequency as 
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From (6), the normalized change in the CEO frequency is  
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where β0/2π ~ 3x106 is the number of wavelengths that fit 
around the fiber cavity. The dependence of the gain and pulse 
energy on pump power are given in (3) and the dependence of 
the spectral shift on pump power is given in (8).  These 
results, (9) and (10), are our final result and summarize the 
response of the frequency comb to a pump-power change.  
They are identical to those derived later in the paper using the 
Master equation.  We can identify each of the terms in (9) and 
(10) with a specific physical mechanism.  The first term in 
(10) is the SPM term.  The second term in (10) is the pump-
induced change in repetition frequency that is caused by the 
mechanisms given in (9). Specifically, the first term in (9) 
results from the resonant group velocity contribution, the 
second results from TOD, the third from SS and the fourth 
from the spectral shift, which has a main nonlinear 
contribution from stimulated Raman scattering and a linear 
contribution from the frequency-dependent loss.  
 
 
 
 
 
 
 
 

 

 
 
 
 
 
Fig. 3. Summary of contributions to control of fceo laser from a 1% change in 
pump power above threshold using Eqs. (9) and (10), the values in Table I and 
a stability factor of η=1/3.  The linear loss, lω, is assumed to vary over a range 
corresponding to ±1%/nm change in loss.   
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Aside from the linear frequency shift, all the contributions to 
∆fr  are negative, corresponding to a slowing of the pulse. 
Since the SPM contribution is typically very small, the change 
in offset frequency is directly proportional to the change in 
repetition frequency, with a scaling factor of β0/2π . The 
relative contributions are plotted in Fig. 3 using the values 
from Table 1.  For other laser parameters, these relative 
contributions can vary significantly.  Also, the equations 
should be adjusted for the experimentally-measured scaling 
(e.g. we have observed ωrms~w1/2 rather than ~w). 

To provide a more rigorous derivation of the above 
response as well as the response to cavity length changes and 
loss changes, the remainder of the paper develops a 
perturbative approach based on the Master equation for mode-
locking.  

 

TABLE I 
VALUES USED IN CALCULATIONS 

Symbol Quantity Value 

D  Dispersion (=β2/2) -0.025 ps2 

δ  SPM strength 4 kW-1 
β0 Propagation constant 2π(3.5 × 106) 
vgr/vph Group/phase velocitya 0.982 
L Loop length 4 m 
g Lumped gainb 0.75 
Ωg Gain bandwidthc 2π (0.4 THz) 

T1 Er lifetime 10 ms 
l Lumped loss ~g 
τR Raman slope 5 fs 
µ Self-steepening factor  1.3 
ω0 Carrier frequency 2π (200 THz) 
w0 Pulse energy 0.1 nJ 
τ0 Pulse widthd 115 fs 
Dg Gain filteringe  0.005 ps2 
Tr Round-trip time (=1/fr ) 1 / (50 MHz) 

The values are typical for an “all-fiber” soliton laser, for example of [7].  
aEstimated for an all-fiber laser consisting of 3 m of standard single-mode 
fiber and 1 m of Erbium doped fiber [39]. bAssuming a total power gain of 4. 
cCorresponds to an approximate FWHM homogeneous linewidth of  7 nm at 
1560 nm which is an approximation based on the measured values of 3 to 11 
nm for different fiber types and wavelengths [40]. dCorresponds to 200 fs 
FWHM. eCorresponds to an effective saturation power of 2Ps’’=50. 

III. THE MASTER EQUATION REVIEWED  
The electric field pulse traversing the laser, a, is written in 

terms of the electric field, E, in the slowly varying envelope 
approximation as  

 ( ) ( )0 0, ' ( , ') exp ' . .E z t a z t i z i t c cβ ω= − + , (11) 

where β is the average propagation constant of the fiber laser 
and β0= β (ω0)  is the propagation constant evaluated at ω0. It 
is convenient to select ω0 equal to the peak of the erbium gain 
profile, which is assumed to be Lorentzian with a width Ωg.  

The Master equation is derived as a difference equation for 
the pulse, a, after one round trip around the laser cavity [30, 
32]. Defining the reduced time as  

 1'
g

gt t zβ
 

= − +  Ω 
, (12) 

where β1 = dβ/dω  evaluated at ω = ω0, the Master equation 

for the mode-locked laser is [30, 32] 

[ ] ( ) ( ) ( )
2

2
2 ,r g

a aT g l a D iD i a a V a
T t

γ δ∂ ∂
= − + − + + +

∂ ∂
(13) 

where the envelope a(t,T) is a function of the reduced time t 
on the timescale of a pulse and the much slower time T on the 
timescale of a round-trip time (see Fig. 1). The total length of 
the laser cavity is L. The propagation constant is redefined to 
include the fiber laser length, Lβ(ω)→ β(ω), so that it is the 
“lumped” propagation constant. The quantities g and l are the 
lumped gain and loss, respectively. Τhe round-trip time is 
Tr=(β1+ gΩg

-1). The gain-dispersion is typically given as 
Dg=gΩg

-2, although Section V.C discussed modifications to 
this term. The lumped fiber dispersion is characterized by 
D=β2/2, where β2=d2β/dω 2.  The lumped SPM term is 
described by δ  and the SAM term, responsible for mode-
locked operation, is described by γ. The final term V(a) 
represents any perturbations, considered later. Here we 
employ the sign convention of [40] so that the Master 
equation is the complex conjugate of that appearing in [30].  

The solution to the Master equation is of the form [41] 

 ( ) ( ) ( )
0 , ,Aip t t i

c Aa t T a t t e e θ−= −  (14) 

where the arrival time, tA, and phase, θ, can depend on T but 
otherwise the circulating laser pulse should reproduce itself 
every round trip. The carrier frequency offset from gain 
resonance is –p (which equals ω∆ given in Section II). For a 
solitonic laser, the chirped envelope is given by   

 ( )
1

sech
iC

c
ta t A

τ

−
  

=   
   

, (15) 

with amplitude A, pulse width τ (where the full-width half 
maximum is 1.76τ), and pulse chirp C.  For the stretched pulse 
laser, the solution is a chirped Gaussian rather than a chirped 
sech [42].    

Since the arrival time and phase are permitted to change 
during each pass of the laser (corresponding to a modification 
to the round-trip time, Tr, and CEO phase),  it is more useful 
to make the general definition,   

 
( ) ( )

( ) ( ) ,
r T

r r T A

T T T

T T T t T

ϕ θ≡ ∂

∆ ≡ ∂
 (16) 

for the phase change per round trip, ϕ, and shift in the 
repetition time, ∆Tr. (These definitions are strictly correct 
since the Master equation was originally derived as a 
difference equation for the change per round trip.)  For the 
unperturbed Master equation, ∆Tr = 0 since there are no first 
derivative with respect to time.  Also, since ω0 was chosen to 
be equal to the gain peak, the unperturbed solution has a 
carrier frequency shift p0=0. The remaining parameters 
describing the unperturbed pulse A0, C0, τ0, and θ0 (or 
equivalently ϕ0) can be found by substitution into the 
appropriate Master equation.  Following [30, 32] for a soliton 
laser the pulse width is given by 
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2

0 02
0

2g gD C D C D
l g

τ
− −

=
−

, (17) 

where stability requires τ0
2>0. The pulse amplitude, A0, is  

 ( ) ( ) ( )2 2 2
0 0 0 02 3 .gi A D iD iC Cγ δ τ+ = − − − −  (18) 

The chirp is 

 2
0 2C q q= ± + , (19) 

where  

 
( )

( )
3

.
2

g

g

D D
q

D D

δ γ

δ γ

− −
=

+
 (20) 

The phase shift per pulse can be written as  

 
22

0 00
0 2

0
,

2 2
gC D C DAδ

ϕ
τ

− +
= +  (21) 

which reduces to the well known soliton phase shift 
ϕ0 = δΑ0

2/2 for zero chirp. Finally, for completeness, the total 
pulse energy is  

 22w A τ= . (22) 

IV. CONNECTION BETWEEN THE LASER PULSE TRAIN AND THE 
FREQUENCY COMB 

The train of pulses given by Eqs. (14) and (15) is   

 ( ) ( ) ( )0 0 00 '
0 ( ') ' rim Ti t

c r
m

E t a t e t mT e ϕ β ωω δ + −−= ⊗ −∑ , (23) 

using (11) and (12),and where the index m denotes the pulse 
with arrival time mTr and ⊗ denotes convolution. From this 
equation, the CEO phase is identified as φceo,0 = 
ϕ0 + β0 − ω0Tr. The Fourier transform of this expression gives 
the unperturbed frequency comb,  

 ( ) ( ) ( )0 ,0 0 ,0 ,02 ,r c r ceoE f f a f f nf fω π δ= − − +∑  (24) 

where the unperturbed repetition frequency is fr,0=Tr
-1 and the 

unperturbed CEO frequency is fceo,0 = fr,0φCEO,0/(2π).  
Equation (24) is the standard expression for the frequency 

comb [3, 4, 43]. Our interest is in the effects of the 
perturbations, V(a), on the frequency comb. These 
perturbations will generally result in a different T-dependent 
function for the output pulses than Eq. (14) so that, in general, 
the pulse train cannot even be written in the simple form of 
Eq. (23). However, following [44] we assume that the 
perturbations are either independent of T or very slowly 
varying with the T (on the timescale of Tr) so the pulse train is 
constant over the measured interval, yielding a well defined 
comb. 

In any experiment, the frequency comb of Eq. (23) or (24) 
is never directly measured since it is at optical frequencies. 
Rather the comb is heterodyned either with itself, a similar 
separate comb, or a cw laser to generate an RF frequency 
comb that will have frequencies corresponding to those in Eq. 
(24), depending on the exact experimental setup. For a typical 
bandwidth receiver, only changes to the lowest-order 
moments of the pulse are detectable [44]. This statement is 

effectively identical to assuming that the pulse retains its basic 
shape of Eq. (14) but with possible changes in the total pulse 
energy, ∆w, the phase shift per pulse, ∆ϕ, the carrier 
frequency, -∆p, the arrival time, m∆Tr and the pulse chirp, ∆C. 
The pulse train in Eq. (23) becomes 

 
( ) ( )

( )( )

0 '
0 ( ') '

1 ' CEO

i p t
c

im
r r

m

E t a t e

w t m T T e
w

ω

φδ

− −∆≈ ⊗

∆
+ − + ∆∑

 (25) 

to lowest order, where φCEO=ϕ  + β0 − ω0(Tr+∆Τr). The 
quantity ϕ is the intensity-averaged phase shift per pulse 
rather than the quantity ϕ of (16).  It is defined, in terms of the 
pulse-averaged phase θ  (see Eq. (50)) as  

 .r TTϕ θ≡ ∂  (26) 
For the hyperbolic secant solution, Eq. (15), the pulse-
averaged phase is   

 ( )1 ln(2) Cθ θ≡ + − , (27) 

so that ( )1 ln(2) r TT Cϕ ϕ= + − ∂ .  For the unperturbed pulse, 

0ϕ = 0ϕ . The choice of ϕ  over ϕ  is made for several reasons. 
First, the equations of motion are simpler for ϕ . Second, this 
quantity is what would be measured in a typical experiment 
involving frequency combs [44]. Finally, it is arguably the 
quantity preserved in supercontinuum formation. This choice 
effectively defines the CEO phase as the average phase across 
the pulse rather than the phase at either the temporal or 
spectral peak of the pulse.  

The Fourier transform of (25) is identical to Eq. (24) except 
for a modified amplitude, modified repetition frequency,  

 2
1 r

r
r r

T
f

T T
∆

= − , (28) 

and modified CEO frequency,  

[ ] ( )0 0 0 0 0
1 12   r

ceo r
r r r

T
f T

T T T
π ϕ β ω ϕ ϕ β

 ∆
= + − + ∆ − + 

 
(29) 

where the second terms in (28) and (29) are respectively the 
perturbations to the repetition frequency and CEO frequency. 
Neither changes in the pulse energy nor in the carrier 
frequency appear directly in (28) or (29); however, changes in 
both will indirectly affect the comb spacing, fr, and offset, fceo.  

V. THE PERTURBATIONS 

A. Introduction 
The perturbations, V(a), in the Master equation (13) will 

give rise to shifts in the pulse energy, ∆w; the phase shift per 
pulse, ϕ∆ ; the carrier frequency, −∆p; the round trip time, 
∆Tr; and the pulse chirp, ∆C. These shifts can directly or 
indirectly impact the frequency comb output of the laser 
through (28) and (29). A total of seven perturbations are 
considered here: length fluctuations, gain fluctuations, 
spectrally-dependent loss and loss fluctuations, the delayed 
Raman term, the self-steepening term, third-order dispersion, 
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and saturation of the SAM: 
 .length gain loss Raman SS TOD SATV V V V V V V V= + + + + + +  (30) 

B. Length Fluctuations 
Experimentally, the cavity length might be varied, for 

example, through a piezo-electric transducer (PZT) fiber 
stretcher or a variable air delay line. The length perturbation 
term is easily derived directly from the Master equation as 
[30] 

 ( )( ) ( )2
0 1 2 2 ,L L L

Length t tV L T i i a t Tβ β β= ∆ − ∂ − ∂ , (31) 

ignoring any extra SPM or SAM from the added length 
change. This term is found to drive a change in pulse arrival 
time through the middle term, average phase through the first 
and third terms, and chirp through the third term. The L 
superscript on the β’s indicate that these quantities take on the 
values appropriate to the medium providing the added length 
– rather than the average values of the fiber laser used in the 
Master equation. (As will be seen later, this distinction is 
important in calculating the effect of a length change on the 
CEO frequency.) In other words, for a variable air delay 
ω0

−1βL
0 ≈ βL

1 ≈ c-1 and βL
2 ≈ 0, whereas for a fiber stretcher 

the values are those appropriate for the fiber being stretched. 
(For a uniform temperature-induced length change the values 
would be identical to the average values in the Master 
equation.)  Note that this term is directly proportional to one 
already in the Master equation and quite small on the time 
scale of Tr. As a result, the full perturbed solution will retain 
the shape of the basic solution to a very high order. 

C. Gain Fluctuations 
Within the approximation of the Master equation, the gain 

fluctuation term is simply  
 ( )( ) ( )1 2 21gain g t g tV g T a x− −= ∆ − Ω ∂ + Ω ∂ . (32) 

This term is found to drive a change in pulse energy (through 
the first and last terms), pulse timing through the middle term, 
and average phase and possibly chirp through the third term. 
Just as with the length perturbation, this perturbation 
represents a slow change in a term already present in the 
Master equation, and the solution will retain its shape to very 
high order. However, unlike the length term, there is no direct 
experimental control over the gain, and this equation must be 
supplemented with an equation describing the gain dynamics.  
To derive the appropriate dependence on signal and pump 
power, it is useful to start with the complex susceptibility.  We 
will continue to assume a simple three-level model for Erbium 
(ignoring excited-state absorption) with the gain provided by a 
two-level transition with equal absorption and emission cross 
sections and a width Ωg.  In the presence of strong signal and 
pump beams, the resonant contribution to the complex 
susceptibility is [45] 

 ( )

( )

' 1
0

' 2 2
'

2 2

12
11 2

1

p g

s g
p

g

P incg
PP

ω
χ ω

ω ω
ω

−
∆

−
∆

−
∆

 
 

 − Ω −  =     + Ω    + +
 + Ω 

(33) 

where g0 is a constant, ω∆ is the shift from resonance as in 
Section II, and the normalized signal and pump powers, 
Ps

’=Ps/Ps,sat and PP
’=PP/PP,sat are expressed in terms of the 

saturation powers Ps,sat and PP,sat. In reality, the fiber is of 
finite length so that the effect of this complex susceptibility 
should be described by an exponential of the integral over 
length.  However, in the Master equation approach, we treat 
the susceptibility as a single lumped quantity so that the gain 
is g(ω) = (-ω/2nc)Im(χ) and the lumped propagation constant 
is βres(ω) =(ω/2nc)Re(χ). (For high gain, the total power gain 
G=e2g, but in so much as this is exactly balanced by the loss 
this adjustment the Master equation need not be modified; 
only changes in the gain or loss are important.)  A Taylor 
expansion about resonance, 0ω , gives βres(ω) = β0

res + ω∆ β1
res 

+ ω∆
2β2

res/2 + ω∆
3β3

res/6 , where β0
res= 0, β1

res= g/Ωg (as 
already appears in the Master equation),  β2

res = 0,  and  

 
( )3 3 ' '

6
1 2

res

g s

g
P

β = −
Ω +

, (34) 

where the generalized saturation parameter Ps’’= Ps’/(1+PP’).  
his term will be incorporated in VTOD in Eq. (44). 

A similar Taylor expansion of the gain gives g(ω) = g - 
Dgω∆

2 (exactly the terms expected from the Master equation) 
where , 

 
'

0 ' '

1
1 2

p

p s

P
g g

P P
 −

=   + + 
 (35) 

and the gain filtering is modified to include a power-
broadening factor as  

 
( )2 1 2 ''g

g s

gD
P

=
Ω +

 (36) 

Note that the perturbation to the group velocity, scales with 
the fundamental resonant width while the gain filtering effect, 
(36), scales with the power-broadened width.  The last term in 
(32) is therefore incomplete as it only includes the effect of 
the gain change on the overall gain filtering, whereas the 
signal power change will also affect the gain filtering term.  
We nevertheless will carry the 1st order perturbation theory 
through using (32), finding that the last term is of negligible 
importance.  The signal-power dependence of the gain 
filtering coefficient, Dg, will be included as a 2nd-order 
perturbation in the final expression since it does potentially 
affect the spectral shifts.  Note that the above expressions 
assume a very simple model of the Erbium gain. In reality, the 
gain is not a simple Lorentzian and, moreover, because of the 
strong signal saturation the Kramers-Kronig relation cannot be 
used to infer the dispersive properties from the measured gain 
[45]. The main deviation from the Lorentzian model is 
probably β0

res≠0. 
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Finally, the dynamics of the system arise from the dynamics 
of the population difference and follow an exponential decay 
with the time constant Tg

-1= T1
-1 (1 + 2Ps

’ + PP
’).  Tg can be 

easily determined experimentally by measuring the dynamics 
of an EDFA with identical operating conditions. Perturbations 
to the gain, arising from perturbations in either the signal or 
pump powers follow 

 1 s P
T s P

g s P

P P
g g g g

T P P
 ∆ ∆

∂ ∆ = − ∆ + − 
 

, (37) 

where the coefficients gs = -Ps∂Psg  and gP = PP∂Ppg.  The total 
power gain of the fiber is expressed as Ps,out = e2gPs,in, where 
g=∫g(z)dz is the integrated value of the gain over the fiber 
length. Since the laser operates in the strongly saturated 
regime, i.e., Ps/Ps,sat>>1, the total output power will be a linear 
function of the pump power, Ps,out ∝ (PP − PP,sat).  In that limit, 
gs=1/2 and gp = 1/2 + PP,sat/2PP ~ 1/2. 

Equation (37) assumed a cw signal and needs to be 
rewritten in terms of the previously defined pulse moments.  
The gain is assumed to be a function of the ratio Ps/Ps,sat; for 
the spectrally broad signal, this quantity is replaced by its 
spectral average, <Ps(ω)/Ps,sat(ω)> = ( )1

0 ,1r s satw T Pκ− − , 

where κ is the ratio of the mean-squared pulse bandwidth to 
the gain width:  

 2 2
rms gκ ω= Ω . (38) 

For a soliton laser with a chirped sech pulse shape,  

 
2

2
2

1
3rms

Cω
τ

+
=  (39) 

After the substitution Ps →w0Tr
-1(1−κ) and the appropriate 

partial derivatives, Equation (37) becomes 
1 ,r P

T sw sC sT P
g r P

T Pw Cg g g g g g
T w C T P

 ∆ ∆∆ ∆
∂ ∆ = − ∆ + − − − 

 
(40) 

where ( )1 3 /(1 ) ~ (1 2 )sw s sg g gκ κ κ= − − − , sT sg g=  and 

( ) 12 2 22 3 (1 )sC s gg g C τ κ
−

= Ω − , with gs evaluated at an 

equivalent cw power of w0Tr
-1(1−κ). This is the differential 

equation that will be used to describe the gain dynamics. 

D. Spectrally-dependent loss and loss fluctuations 
We consider two different types of loss perturbations.  First, 

there can be a change in loss, ∆l, associated with, for example, 
a length change. Second, there can be a static frequency 
dependent loss, lω = dl/dω  .  The perturbation is,  

 loss tV la il aω= −∆ − ∂  (41) 
The first term will clearly lead to a change in pulse energy and 
the second will lead to a frequency shift.   

E. Delayed Raman Effect 
The delayed, Raman portion of the nonlinearity gives [40], 

 2
Raman R tV i a aδτ= − ∂ , (42) 

where τR∼5 fs. This term leads to a carrier frequency shift, i.e., 
the Raman self-frequency shift of a pulse. For the laser, this 
shift is strongly damped by gain filtering (otherwise the pulse 

would eventually shift outside the Er gain bandwidth entirely). 

F. Self-Steepening Term 
The self-steepening (SS) term is [40, 46, 47] 

 ( )2

0
SS tV a aδµ

ω
= − ∂ , (43) 

where µ  = 1+ω0dN/dω and N is the modal shape scale factor 
[47] and ignoring dispersion of n2.  The frequency dependence 
of the modal shape is related to the frequency-dependence of 
the effective area [48] and can be similarly estimated using 
Bessel-functions to describe the transverse mode profile[40].  
For single-mode step-index fiber with a cutoff wavelength of 
1.2 µm, ω0dN/dω ~0.3 giving µ ~ 1.3. From (55), this term 
drives a timing shift, since it effectively changes the group 
velocity [19], and a frequency shift for a chirped pulse. The 
strength of this term is comparable to the Raman term since 
ω0

−1 ∼ 1 fs.  

G. Third-Order Dispersion 
For a short pulse, third-order dispersion,  

 3
3

1
6

eff
TOD tV aβ= ∂ , (44) 

can be important, where the effective third-order dispersion 
β3

eff has a contribution from the fiber, β3, and from the Er 
gain.  In the Lorentzian gain model, the resonant contribution 
from the Er is given by (34) , while the contribution from the 
single-mode fiber is ~ 0.13 ps3/km and typically dominates. 

H. Saturation of the Self-Amplitude Modulation 
The condition for passive mode-locking requires the rapid 
buildup of a pulse. This implies a negative time constant for 
the exponential growth of the pulse energy; and indeed one 
finds a times constant of ~ -4(l−g) as shown below for the 
unperturbed Master equation. However, once mode-locking is 
achieved, there must exist some mechanism to stabilize the 
pulses [29, 38]. For gain media with short decay times, this 
mechanism is provided by the gain saturation. However, for a 
fiber laser, the gain saturation occurs on a very slow time 
scale (Tg>>TR), and the stabilization is provided by either 
rollover of the interferometric SAM or by increasing energy 
loss to Kelly sidebands[29]. The effective saturation is 
heuristically given as [29, 37] ,  

 ( ) 4
5SATV a a aγ= − . (45) 

Substitution into the equations of motion (55) gives a shift in 
the pulse energy and, for a chirped pulse, the average phase, 
and chirp. These first-order terms, however, are of little 
interest since they do not affect the time-dependent behavior 
of the pulse energy; calculation of that effect requires a 
second-order treatment which rapidly becomes a cumbersome. 
Instead we find the expression for the pulse energy evolution 
through (50) and the Master equation (13),  

 ( ) 2 2 4
5

2 82
3 15r T rms gT w w g l D A Aω γ γ ∂ = − − + −  

. (46) 
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Steady-state operation occurs when the expression in square 
brackets vanishes.  This term can be rewritten explicitly in 
terms of the balance between the effective gain and loss as   

 2 2 4
5

2 8
3 15rms gg A l D Aγ ω γ+ = + + . (47) 

From (46), (47), and the scaling A~τ−1∼ωrms~w, the time 
dependence for a perturbation to the pulse energy is,  

 2

4

3
g

r T
wCD

T w w Cη
τ

∂ ∆ = − ∆ − ∆ , (48) 

where  

 ( ) 4
5

324
15

g l Aη γ= − +  (49) 

which is stable to perturbations provided η>0.  
Mode-locked operation requires l > g (otherwise the laser 

would operate cw). Stability then requires the second term in 
(49) to exceed the first. An upper limit of η < 5  can be 
obtained from Eq. (47) assuming g=l, ωrms

2 = 0 and a 
maximum value for nonlinear polarization rotation of 
γA2~0.6π [29]. Including the spectral broadening and 
differential between gain and loss will reduce η significantly. 
A more realistic estimate for a solitonic laser must include the 
fact that Kelly sidebands will dominate the saturation [29] 
reducing the possible peak powers.  If we assume a chirp-free 
solution, so that γ=δDg/|D|, the parameters in Table I and use 
(47) and (49), we find η < 0.4 for g = l.  Again the differential 
between gain and loss will further reduce η. These arguments, 
combined with the relatively quiet pulse train observed out of 
mode-locked fiber lasers [36], suggest that η is less than unity 
but not much less than unity.  As we find later, η is 
experimentally accessible from a comparison of the laser 
response bandwidth and the Er gain response bandwidth. 

VI. THE PERTURBED MASTER EQUATION AND SOLUTION 
The next step is to solve the perturbed Master equation (13)

. In [30], Haus and Mecozzi used soliton perturbation theory 
to solve the perturbed Master equation assuming zero chirp, so 
that soliton perturbation theory was valid, and ignored gain 
dynamics, by effectively setting the gain relaxation rate to 
infinity. (In [49], the gain dynamics were included for the case 
of a solid-state semiconductor laser.)  Here, in order to derive 
the response bandwidth of the laser to a pump-power change, 
we do include gain dynamics of the Er fiber gain. Also, in 
order to treat the general case of nonzero chirp (which will 
almost inevitably be realized experimentally), we use a 
perturbative method based on moments of the electric field as 
used by Agrawal and coworkers in [33, 34] rather than 
invoking soliton perturbation theory. Finally, in order to 
identify the mechanisms responsible for control of the comb, 
we include a wide range of perturbations.  We solve for the 
equations of motion for a soliton laser although the same 
approach could be applied to the stretched-pulse laser. 

A. Solution for the Moments of the Perturbed Laser Pulse 
The pulse energy, pulse arrival time, carrier frequency shift, 

chirp, and averaged phase can be defined for a general pulse 
as 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

2

2

* *

* *

2*

, ,

1 , ,

, , , , ,
2

, , , , ,

 ln ln .
2

A

t t

A t t

w T a t T dt

t T t a t T dt
w T

ip T a t T a t T a t T a t T dt
w T

iC T t t a t T a t T a t T a t T dt
w T

iT a a a dt
w T

θ

=

=

 = ∂ − ∂ 

−  = − ∂ − ∂ 

−
= −

∫

∫

∫

∫

∫
  (50) 

Let us denote the unperturbed pulse solution as a0(t,T). 
Substituting the full solution a = a0 +∆a, the changes in the 
moments to first order in ∆a(t,T) are  

 

( )

( ) ( )

( )

( ) ( )

( )

*
0

*
,0 0

0

*
0

0

* *
0 0 0

0

*0
0 0*

0 0

Re 2 ,

2Re ,

2Re ,

2Re 1 2 ,  

1Re 2 1 ln .

A A

t

t

w T a adt

t T t t a adt
w

ip T a adt
w

iC T iC a t a a dt
w

a
T i a a dt

w a
θ θ

 ∆ = ∆ 
 

∆ = − ∆ 
 

 
 ∆ = ∂ ∆  

 
 

 ∆ = + + ∂ ∆  
 
     ∆ = − − + ∆           

∫

∫

∫

∫

∫

 (51) 

In the calculation of both the average frequency and chirp, the 
intensity was assumed to fall off to zero at long times, thereby 
ignoring the contribution from continuum radiation. These 
equations all in the form 

 ( ) ( ) ( )*
_Re MM T f t a t dt ∆ = ∆ ∫ , (52) 

where M can be w, tA, p, C, or θ , and the projection functions 
f*

_M are purposefully written using the notation of [30]. Here 
they are defined for a general pulse through Eq. (51) without 
recourse to soliton perturbation theory. Assuming the 
perturbation is independent of the phase, it is simplest to pull 
out the constant phase from the perturbation (corresponding to 
θ0) so that a = (aC+∆a)exp(iθ0). Substitution into (13) and 
dropping higher-order terms yields the perturbed Master 
equation,  

 ( ) ( )ˆ
r T CT a N a V a∂ ∆ = ∆ + , (53) 

where the nonlinear operator is  

 
( ) ( )( )

( ) ( )

2
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2 2 *
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2 .

g t
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N a g l D iD i a

i a a i a a

ϕ

γ δ γ δ

∆ = − + − ∂ − ∆ +

+ ∆ + + ∆
 (54) 

Multiplication by the projection function, f_M
* , gives the basic 

equation of motion for the change in the general moment ∆M,  
 ( ) ( ) ( )* *

_ _
ˆRe .r T M M cT M T f N a dt f V a dt ∂ ∆ = ∆ + ∫ ∫  (55) 

These equations are completely general. Introducing the 
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specific solution, (14) and (15), the projection functions, 
defined by Eq. (51) and (52) become  
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 (56) 

where x=t/τ0 and using the fact that tA,0 = p0 = 0. In the limit of 
zero chirp, the first three equations are identical to the 
projection operators derived from soliton perturbation theory. 
The final two projection operators do not appear in the 
previous work [30]. (Instead the projection operator for the 
phase is given as f*

_θ = *
_f θ − f*

_C /2; however, for nonzero 

chirp the projection operator for the phase is correctly given 
as f*

_θ = *
_f θ − (1−ln(2)) f*

_C.)    

The second integral of Eq. (55) is easily carried out using 
the definitions (56) for a given perturbation. The first integral 
is not so straightforward, since it generally requires knowing 
something about the form of the perturbation ∆a, which is 
heretofore unspecified. In both the moment approach [33, 34] 
or the soliton perturbation theory approach, the assumption is 
made that the pulse will retain the basic soliton shape (14) and 
the perturbation can be written in terms of derivatives of Eq. 
(14) as  

 ( )
0 0 0

0 0, 0, 0, ,A
M p t w w C C

a M a t
θ = = = = =

∆ = ∆ ∂∑ , (57) 

where the sum is over the five moments M ={θ, p, w, tA, C}. 
In writing (57), the further assumption is made that the pulse 
amplitude and width will not vary independently but will 
satisfy Eq. (18), leaving only a perturbation in pulse energy. 
This assumption is justified for the unchirped solution on the 
basis of the soliton area theorem. The chirp of the autosoliton 
is not expected to significantly alter this assumption. It can 
also be justified from a variational approach on the basis that 
none of the perturbations considered here, and in particular 
the perturbations to the length or gain, will affect the validity 
of Eq. (18). 

B. Full Equations of Motion 
Finally, solving the perturbation equation (55) with the 

seven perturbations (30), the assumed solution (57), and the 
definitions (16) and (26), the equations of motion are  
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(58) 

where the dependence on T is given explicitly. After 
considerable algebra, the coupling constants kxx are  
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   (59) 
The identities (17), (18), and (21) were used to simplify 

some of the coupling constants, the subscript 0 was dropped 
on the unperturbed pulse parameters, and Eq. (48) was used 
for kww. The shifts in the round-trip time arise from TOD, self-
steepening and frequency-dependent loss:   

 2 1 23
0 0, , .

2

eff

TOD rms SS lT T A T Clω
β

ω µω δ−∆ = ∆ = ∆ =  (60) 

The shift in the carrier frequency arise from the Raman self-
frequency shift, the self-steepening effect and the frequency-
dependent loss: 

( ) ( )
1

0
2 2

, , .
25 1 5 1

R
R SS l

gg g

Cw lw
p p p

DD C D C
ωµω δτ δ

τ τ

−

∆ = ∆ = ∆ =
+ +

 (61) 

The damping of the Raman self-frequency shift from the gain 
filtering is clearly evident if this term is compared to the 
frequency shift per round-trip of (4wδτR)/(15τ3), as calculated 
from the overlap integral of f_p

* and VRaman in (55). 
Before analyzing Eq. (58), it is useful to simplify these 

equations further. First, the expression for ∆Tr(T) can be 
substituted into equation for ∆g(T) and the term kTgkgT∆g 
dropped since kTgkgT  ~ (ΩgTg)-1 ~ 10-10. Also the steady-state 
value of ∆p can be substituted since it decouples from the 
other moments. The gain then depends only on the pulse 
energy, cavity length, pump power, and chirp.  

The main simplification of these equations is through the 
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removal of the dependence of the gain, pulse energy, and 
phase on the change in chirp, ∆C. (Note that the unperturbed 
value of the chirp, C, is still important as it enters into a 
number of the coupling constants.) First, let us drop the 
coupling of chirp to length since kcL~ 0. Then the chirp 
depends only on the gain. The two inequalities,  

 
1

1wC Cg
wg

CC

k k
k

k
−

× <<  (62) 

and  

 
1

1gC Cg gw wg

CC ww

k k k k
k k

−

× << , (63) 

can be shown to hold for any stable pulse (defined as τ0
2 > 0 

from (17)) in which case the terms proportional to ∆C can be 
dropped from both the pulse energy and gain equations of 
motion. These inequalities are shown in Fig. 4 as a function of 
the ratio D/Dg for several different ratios of γ/δ, assuming 
η~1. The dependence of the phase on ∆C can also be dropped 
since kcL~ 0 and  

 
1

1C Cg
g
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k k
k

k
ϕ

ϕ

−
× << . (64). 

This inequality is also plotted in Fig. 4.   
Figure 4 shows that the coupling of the parameters to the 

change in the chirp value is always negligible compared to the 
other couplings in (58) for any stable pulse (not just a chirp-
free pulse).  As a result, it is valid to drop terms proportional 
to ∆C from the equations of motion.  
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Fig. 4. The relative magnitude of the coupling to ∆C versus D/Dg for 
different ratios of SPM to SAM (γ/δ) with l-g=0.1. The ratio (62) is a 
solid line, the ratio (63) is dotted, and the ratio (64) is dashed.  The 
largest values occur for γ/δ=0.5. Below that value (not shown), 
unstable pulses are obtained for low values of D/Dg.   
 

C. Simplified Equations of Motion 
With the above simplifications, the equation of motion for 

the chirp can be dropped and the remaining equations of 
motion can be rewritten in the significantly simpler form of   
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 (65) 

where the dependence on T is implicit. In these simplified 
equations, the gain and pulse energy are coupled directly only 
to each other and are driven by source terms related to the 
cavity loss or pump power change. Ignoring the last source 
term for ∆g and setting κ =0, these two coupled differential 
equations reduce to (1) derived in Section II. 
  The physical interpretation of each term is clear, given the 
definition of the coupling constants in Eq. (59). For example, 
the round trip time can change either directly from a change in 
the gain contribution to the group velocity, indirectly from a 
frequency shift combined with the net fiber dispersion or, 
trivially, from a length change. The additional shifts from self-
steepening, loss and third-order dispersion are second order. 
Similarly, the gain relaxes at a rate given by the gain 
relaxation time Tg to a steady state value that depends the 
pump power and on gain saturation through either a change in 
pulse energy or repetition rate.   

D. Steady- State Solution  
The steady-state solution to the simplified equations of motion 
(65) in the absence of length or pump-power changes for fr is,   

 
( )

1 1
, 1

,
r DC g TOD SS l

Tp Raman SS l

f g T T T

k p p p

β− −= + Ω + ∆ + ∆ + ∆

+ ∆ + ∆ + ∆
 (66) 

after dropping second-order terms and for CDg<<D.  This 
equation is exactly (5) derived early.   The magnitude of each 
of the contributions can be estimated using the typical values 
listed in Table 1.  The first term is simply the standard transit 
time around the loop (in the absence of gain) and is ~20 ns. 
The second term accounts for the reduction in group velocity 
from the active gain medium and is ~300 fs. The remaining 
three terms give, respectively, the shift from third-order 
dispersion with a value of ~7 fs, the self-steepening term with 
a value of ~3 fs, and frequency-shift induced changes in the 
group velocity with a value of ~30 fs. (The Raman-induced 
frequency shift is ~ -2π×100 GHz.)  Although the resonant 
contribution from the gain is by far the largest perturbation, its 
contribution to the pump-induced shift in the repetition 
frequency is somewhat reduced by the fact that the pump-
induced change in gain is suppressed depending on the value 
of η as shown later.  

The steady-state CEO frequency from (65), (29), and noting 
that ∆ϕ << ϕ0 << β0  is 

 ( )2 1
, 0 0 0 , 1

v
2 1

v
gr

ceo DC r r r DC
ph

f f f fπ ω ϕ β β−
 

= − − + − −  
 

 (67) 

where the phase and group velocities are defined in the usual 
way as vph=L(β0/ω0)-1 and vgr=Lβ1

−1.  This is equivalent to (6) 
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given in Section II. The first term is the standard expression 
for the CEO frequency and is on the order of 1% to 2 % of the 
carrier frequency or 2π × 2 THz for a fiber laser. The second 
term is the SPM contribution and will be on the order of fr.  
The value of the remaining terms is simply fr

2β0 times the 
values given above for the timing shifts.   The self-steepening 
term, although small, is of some interest since it actually arises 
from the same underlying perturbation as the nonlinear phase 
term, namely the intensity dependence of the index of 
refraction. The sum of the two has a value of fr(ϕ0 − ω0∆TSS) = 
fr(ϕ0 − µΑ0

2δω0) = −frµϕ0/2 for a chirp free pulse. In other 
words, the self-steepening term is larger than the nonlinear 
phase shift term and effectively reverses the sign dependence 
of the CEO frequency. This fact was previously pointed out 
for Ti:Sapphire laser-based combs [19].  

E. Characteristic Time Constants 
Before solving the equations, it is useful to write down the 

characteristic time constants describing the time-evolution of 
the five parameters: pulse energy, gain, phase, round-trip time 
and carrier frequency.  The characteristic time constants for 
the coupled differential equations that describe the evolution 
of the gain and pulse energy determine the basic response of 
the system to pump-power changes.  Defining Tr/Tg = ε and, 
for the moment approximating kwgkgw = ε  (by setting κ = 0 
and 2gsw~1 as noted earlier), the eigenvalues describing the 
evolution of the gain and pulse energy from (65) are,  

 
( ) ( ) ( )2

1,2

4
2

rT ε η ε η ηε ε
τ

+ ± + − +
=   (68),    

where Re(τ1,2)  > 0 is required for stability.  If the radicand is 
negative, the eigenvalues are complex and relaxation 
oscillations occur in response to perturbations [35], otherwise 
the system is overdamped and only simple exponential decay 
occurs in response to perturbations. For the fiber laser, Tr/Tg = 
ε ∼ 10−4<<1 (see Table 1); this strong difference in timescales 
has important consequences for the laser behavior.  To lowest 
order in ε, one finds the pulse is unstable for  η < -ε.  Stable 
relaxation oscillations occur over the narrow window 
−ε < η < 2ε1/2 or -10−4 < η < +2×10−2. Stable exponential 
decay occurs for η > 2ε1/2 or η > +2×10−2. From (49), η ≈ 0 
falls within the required range for stable relaxation oscillations 
for g ≈ l and negligible nonlinear effects, as expected for cw 
operation.  However, for mode-locked operation l > g and 
saturation of the SAM is required to drive η to sufficiently 
high values for stability (η > -10−4). Over any reasonable 
operating range, the SAM saturation term in (49) will vary 
significantly with pulse energy so that η > 2ε1/2~2×10−2 and 
the system is overdamped. Indeed previous experiments have 
explored the absence of relaxation oscillations in mode-locked 
fiber laser. [36].  In that limit, and removing the 
approximation κ ≈ 0  and 2gsw~1, 

 

( )

( )
1

2

2 11 1 1

2 11 1 ,

sw

g

swr

r g r

g
T

gT
T T T

κ
τ η

κ ηη
τ η

− 
≈ + 

 
 −

≈ − ≈  
 

 (69) 

to lowest order in Tg/(ηTr).  
The phase and round trip time have no characteristic time 

constant describing their relaxation to a steady state (a result 
of the fact that the laser pulse is permitted to vary in round-
trip time and phase shift per pass). The carrier frequency 
relaxes with a characteristic time constant 

 2

3

1 4 rms g rD fω
τ

=  (70) 

which was also derived in [30] for zero chirp. 

F. Response of pulse energy and gain to pump power, 
cavity length and cavity loss 

In the spirit of Fig. 2, we first solve the equations of motion 
for the change in the gain and pulse energy that results from a 
change in the pump power, cavity length or cavity loss. While 
there are no systems that current modulate the cavity loss to 
control the laser, this possibility remains attractive. In 
addition, any change in the cavity length almost assuredly 
results in a change in the cavity loss.   

To solve for the fractional change in pulse energy and gain, 
we Fourier Transform the equations of motion (65).  In terms 
of the frequency coordinate, Ω, the conjugate variable to T the 
solution can be expressed as 
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 (71) 

where we have suppressed the dependence of the Fourier 
transforms (denoted with a tilde) and the transfer functions, 
Hxx, on Ω. Using the definition of the coupling constants in 
(59), the transfer functions to first order are found to be 
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(72) 

All the transfer functions, with the interesting exception of 
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Hwl are dominated by the first pole at τ1.  In other words, this 
time constant sets the bandwidth of the response.  The last two 
transfer functions describe the change in gain or pulse energy 
that results from a change in cavity length.  Typical cavity 
length changes are quite small and the corresponding shifts in 
gain and energy are quite small.  More importantly, 
experimentally there is a change in cavity loss associated with 
the length change that is expected to be much more 
significant.  In other words, for a given cavity length change, 
one expects ∆l >> ∆L/L because of unavoidable change in 
coupling or fiber loss. Therefore in the remainder of the 
analysis, we will assume HgL = HwL = 0 to avoid further 
increasing the number of transfer functions.  

G. Response of repetition frequency and offset frequency to 
a change in gain and pulse energy 

Again, in the spirit of Fig. 2, we continue to find the effects of 
the change in gain and pulse energy on the other pulse 
parameters.  The equations of motion (65) are valid to first 
order; they do not include the potentially significant changes 
in the timing or frequency shifts given in (60) and (61) 
resulting from change in the gain or pulse energy.  These 
effects must be included to model the system accurately.  
Fortunately, modifications to the loss, cavity length or pump 
power all modify existing terms in the Master equation; as a 
result the pulse retains it shape and changes adiabatically.  
With this assumption, it is simple to modify the equations of 
motion.   

First, we consider the carrier frequency offset.  Dropping 
the fixed offset to the carrier offset,  
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To derive (73) we assumed the temporal width scales as 1/w,  
spectral width as w and the power-broadened gain filtering Dg 
scales with g/w. (In fact, Dg will scale more weakly with w 
than inversely because of the form of Ps’’.) Defining the 
transfer functions for the frequency offset as 

 ( ) ( ) ( ) ( ) ( )pP P plp H P H l∆ Ω = Ω ∆ Ω + Ω ∆ Ω  (74) 
we find,  
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where the dependence of the Hxx on Ω is suppressed. Hpl is 
defined  as in (75) with the subscript substitution of P→l. 

Finally, we consider the repetition frequency and the offset 
frequency.  From (28) and (29),   
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using the fact that β0>> 0ϕ . The CEO frequency is normalized 
with respect to the repetition rate since this is consistent with 

typical frequency comb metrology experiments, where the 
CEO frequency is defined modulo the repetition frequency.  
Defining the transfer functions as  

 

( )

( )

,

.

r
repP P repL repl

r

ceo
ceoP P ceoL ceol

r

f
H P H L H l

f

f
H P H L H l

f

∆ Ω
= ∆ + ∆ + ∆

∆ Ω
= ∆ + ∆ + ∆

 (77) 

As with (73), we can modify the equations of motion for the 
round-trip time and the phase (65) to read,  
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where we assume gkϕg<<wkϕw.  The transfer functions are then 
easily written down from (76), (72), (75) and (78) as    
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where the dependence of the Hxx on Ω is suppressed. Hrepl and 
Hceol are defined as in (79) with the subscript change P→l. 
In deriving the transfer function, HceoL, the phase and group 
velocities associated with the added propagation length ∆L are 
defined vL

ph= (βL
0/ω0)-1 and vL

gr = βL
1
−1.  Also as discussed 

earlier, we drop any direct dependence of ∆w or ∆g on ∆L. 

H. Orthogonality of controls 
Typically, the pump power is used to control the CEO 

frequency, and the length change is used to control the 
repetition frequency. Ignoring any coupling between the 
cavity length change and the cavity loss, the orthogonality of 
the controls is given by the ratio  
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  (80) 

for non-zero values of HrepP. (If HrepP =0, clearly even high 
numbers are reached.)  In the anomalous, but possible 
situation that HceoP=0 this orthogonality clearly breaks down 
due to the canceling of the first and second term. This 
situation can presumably be avoided by appropriate choice of 
laser parameters. The estimated value of 300 corresponds to a 
fiber stretcher where we estimate vL

gr/vL
ph ≈ 0.985 compared 

to the estimate for the fiber laser of vgr/vph≈ 0.982 (see Table 
1). For an air gap,  vL

gr/vL
ph ≈ 1.0, yielding a value of ~50.    

VII. DISCUSSION  
Both transfer functions relating to a cavity length change, 
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HrepL and HceoL, are directly proportional to the length change; 
their bandwidth is therefore limited only by the bandwidth of 
the transducer causing the length change.  For a PZT-based 
fiber stretcher or free-space delay, this bandwidth will be low, 
but an electro-optic phase modulation device could provide 
much higher bandwidths. With the exception of Hwl, all the 
remaining transfer functions are limited in bandwidth by the 
same time constant, τ1, given in (69).  This time constant sets 
the 3-dB bandwidth of the phase-lock as Ω3dB/2π = 1/(2πτ1). 
The typical spontaneous decay rate of Er gain is ~ 10 ms, 
which has a corresponding 3-dB bandwidth of only 
1/(2π×10ms) = 20 Hz. Fortunately, 1/τ1 is considerably larger 
than 10 ms for two reasons. First, the basic relaxation time of 
the gain is actually Tg, which includes stimulated transition 
rates from both the signal and pump beams. Typically, the 
saturation levels are quite high (2Ps/Ps,sat ~ 100), giving a 
dramatic shortening to the relaxation time. Second, the 
coupling to the pulse energy further reduces τ1 as given in 
(69) depending on the system-dependent value of η. Note that 
the increased bandwidth with decreasing η that can potentially 
provide a tighter phase-lock of the comb comes at the cost of 
decreased damping for energy fluctuations and therefore at the 
cost of increased noise. 

The transfer functions of (79) are written in a form that is 
relative compact and is conducive to tracking the origin of the 
effects.  However, it is useful to write them in a more explicit 
form.  Keeping only the lowest order pole (τ1), the response of 
the carrier envelope offset frequency to a change in pump 
power, ∆P, can be written exactly as in (10) except that η → 
η/(1-κ) in the limit gP=1/2, CDg<<D and using the fact that 
∆ω∆,NL = -(∆pR+∆pSS), and ∆ω∆,L = -∆pl. See Fig. 3 and the 
related discussion in Section II for identification of all the 
relevant terms.      

 The dominant effect of a length change, ∆L, on either 
repetition frequency or CEO frequency is clear from 
inspection of (79) – the added fiber length directly affects the 
repetition frequency through an increase in the round trip time 
and directly affects the offset frequency through a 
modification to the relative phase and group velocities.  This 
simple picture is modified if there is a change in cavity loss 
associated with the length change. Assuming that there is a 
coupling between the cavity loss and length change given by,  

 lLl k L∆ = ∆  (81) 
the response of the carrier envelope offset frequency to a 
change in cavity length can be quite complicated.  However, 
let us assume that the resonant gain contribution dominates 
Hrepl and therefore Hceol, in that case   

( )
( ) ( )

0 0

1

v v 11 .
2 2 1 1v v

LL
ph grceo r

lLL
ggr phr

f f
k

iLf
β β
π π η τ

 ∆ Ω
≈ − −   + Ω − Ω∆  

(82) 

From the discussion after (80), the first term in paranthesis is 
~1/50 to 1/300 depending on whether a fiber or free-space 
delay line is used.  For the fiber delay, the second loss-
induced change in (82) dominates if klL > Ωg/(300 L fr) ~  50 
ppm/µm.  For an air delay, the crossover is at 300 ppm/µm.   

The results here make a number of predictions regarding 
the behavior of fiber-laser frequency combs that can be 
compared with the reported measurements in the literature. (A 
more detailed comparison with experiment is underway.) The 
bandwidth of the system response to a pump-power change 
was first measured in [15] to be a few kilohertz for a 
stretched-pulse laser system.  Similar values of 7 kHz and 4.5 
kHz were found in [17] and [5], respectively. These values are 
consistent with (76). A relative response of ∆fceo/∆fr~ 5 × 106 

reported in [5] is in reasonable agreement with the expected 
value from (80) of HceoP(0)/HrepP(0) ~ β0/(2π) ~ 4 × 106. The 
response of fr to a change in pump power has been reported as 
a few ppm [17], which is in reasonable agreement with 
estimates of  HrepP(0). Finally, [7, 16] report values for the 
response of fceo to a pump power change of 2 to 15 MHz/mW, 
which is in reasonable agreement with estimates of HceoP(0).  
In general practical systems suffer from additional effects not 
included in this theory.  For example, the gain is not 
Lorentzian and there will therefore be some resonant 
contribution to the phase velocity.  As another example, cw 
breakthrough can occur and modify the results.   

This analysis has not focused on the noise present on the 
frequency comb. Noise can either come directly from the 
laser, or result from the conversion and amplification of the 
intrinsic laser noise during the supercontinuum generation that 
is associated with detection of the CEO frequency [44, 50, 
51]. The stronger the stabilization of all four important pulse 
parameters (the pulse energy, carrier frequency, repetition 
rate, and CEO frequency) the lower the expected comb noise. 
By controlling the pump power and cavity length, one can 
stabilize only two of these quantities, and naturally fr and fceo 
are chosen. Additional stabilization of either the pulse energy 
or carrier frequency requires an additional control parameter. 
One intriguing additional control parameter is the modulation 
of the loss in the fiber laser.  Control of the SAM action 
through the polarizers in the cavity is another possibility. 

VIII. CONCLUSION  
We have presented a complete perturbative treatment for 

the frequency comb output of a solitonic fiber laser. We have 
identified several effects including resonant gain contribution 
and third-order-dispersion that have not been discussed in 
detail for frequency combs.  We have identified the cause of 
the spectral shifts in the laser output that can modify the comb 
spacing. We have given the correct numerical factors for the 
SPM and SS contributions in a fiber laser comb.  We have 
related the bandwidth of the laser response to the stability of 
the laser pulse train.  Finally, we have developed the response 
of the comb within one consistent framework where we can 
easily incorporate other perturbations.  It would be interesting 
to extend this theory to other frequency combs such as the 
stretched-pulse fiber laser-base comb, or the Ti:Sapphire-laser 
based comb.  It would also be interesting to compare these 
results to a full numerical treatment as discussed in [27, 28]. 
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