Single photon sources based on single quantum dots

Richard P. Mirin
Optoelectronics Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305

Phone: (303) 497-7955; FAX: (303) 497-3387; e-mail: mirin@boulder.nist.gov

Abstract

We describe temperature-dependent photon antibunching measurements from single InGaAs/GaAs quantum dots. The second order intensity correlation demonstrates single emitter emission up to 120 K and nonclassical light emission to 135 K .

We demonstrate that an optically injected single QD can emit single photons on-demand over a wide temperature range ($5-120 \mathrm{~K}$). Analysis of the emission spectrum at each temperature indicates that the primary cause of the high-temperature degradation of the second order intensity correlation, $\mathrm{g}^{(2)}(\mathrm{t})$, is due to the emission from charged excitons and biexcitons that spectrally overlaps the exciton emission line ${ }^{1}$. This degradation is exacerbated by the need to excite with high optical power in order to generate a sufficient single photon flux to obtain a good signal-tonoise ratio.

Figure 1 shows the temperature-dependent optical spectra emitted from a single InGaAs/GaAs QD excited at 850 nm by a mode-locked Ti:sapphire laser. Figure 2 shows a histogram of correlation counts as measured by a Hanbury Brown-Twiss interferometer (in the limit of low collection efficiency, which in this case is about 10^{-5}, the histogram is an accurate representation of $\mathrm{g}^{(2)}(\mathrm{t})$). The value of $\mathrm{g}^{(2)}(0)$ ranges from 0.089 at 5 K to 0.471 at 120 K . At 135 K , the value of $\mathrm{g}^{(2)}(0)$ increases to 0.667 , which still indicates nonclassical light emission that is equivalent to emission from three individual emitters.
This manuscript is a contribution of the National Institute of Standards and Technology and is not subject to US copyright.

${ }^{1}$ R. P. Mirin, Applied Physics Letters 84 (8), 1260 (2004).

