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Abstract—For a microwave total-power radiometer, we consider 
the error introduced by neglecting the difference in the antenna 
reflection coefficient between when it views a distant scene and 
when it views a nearby calibration target.  An approximate 
expression is presented for the error, and measurement results 
are presented that enable one to estimate the resulting 
uncertainty in the measured brightness temperature.  This 
uncertainty ranges from about 0.1 K to several kelvins for the 
representative cases considered. 
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I.  INTRODUCTION 
In microwave remote-sensing radiometry, calibration 

targets are often quite close to the sensing antenna, whereas the 
calibrated radiometer is used to measure very distant objects. 
This arrangement introduces two general types of errors for a 
total-power radiometer.  One is that antenna-target interactions 
can affect the properties of the antenna such as its pattern and 
directivity, which may therefore be different when calibrating 
the radiometer than when viewing the earth.  A second type of 
error is introduced by the change of the reflection coefficient at 
the antenna output (i.e., at the reference plane between antenna 
and receiver) due to reflections from the calibration target that 
are not present when viewing a distant target.  This difference 
in reflection coefficients results in different mismatch factors, 
and it also gives rise to changes in the system noise figure and 
available gain if the radiometer does not have an input isolator. 

For an ideal blackbody calibration target both the target-
proximity effects vanish, and for a very good target they are 
“very small.”  With modern microwave radiometers striving for 
ever smaller uncertainties, however, it becomes important to 
determine these effects.  An uncertainty of 0.1 K or better, 
which some radiometers hope to achieve, is about 0.03 % of 
290 K, and it is not immediately obvious that target proximity 
effects are negligible at that level. Here we consider the second 
type of error, that introduced by the difference in the antenna 
reflection coefficient when the antenna is pointed at a nearby 
calibration target as opposed to a very distant scene of interest. 

In the next section, we summarize the approximate 
equations for the error introduced.  In Section III we present 
measurement results, and Section IV contains estimates of the 
resulting uncertainties.  Section V is devoted to a summary.  A 
full account of this work can be found in [1]. 

II. CALCULATION 

The reference plane of interest in this paper is the plane 
between the antenna and the rest of the radiometer, which we 
shall call plane 1.  The spectral power delivered to the 
radiometer at plane 1 can be written as  

1,111 epPMp += ,                               (1) 

where p1 is the spectral power delivered to the radiometer at 
plane 1, P1 is the available spectral power at plane 1, pe,1 is the 
effective delivered spectral power at the input plane 1 due to 
the radiometer’s intrinsic noise, and M1 is the mismatch factor 
at plane 1, given by  
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where Γant and Γr are the reflection coefficients of the antenna 
and the radiometer, both at plane 1.  In a measurement of 
brightness temperature, the radiometer views hot (h) and cold 
(c) calibration targets, as well as the unknown scene 
temperature (x), yielding three equations of the form of eq. (1).  
Assuming that M1 and pe,1 are the same for all three cases (h, c, 
and x), these three equations combine to yield the common 
form of the radiometer equation, 
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giving the temperature from the scene Tx in terms of the known 
brightness temperatures of the calibration targets (Tc and Th) 
and the measured delivered spectral powers.  The subscript 0 
indicates that it is the result obtained with the assumption that 
M1 and pe,1 are the same for all three targets. 

The point of this paper is that M1 and pe,1 are not the same 
for all three targets, and to estimate the error resulting from the 
use of eq. (3) in representative cases.  The result for (Tx − Tc), 
including the effect of differences in M1 and pe,1 for the three 
cases, can be written as [1] 

( ) 3210 )1( ∆∆δ +++−=− cxcx TTTT .              (4) 
The (Tx – Tc)0 term is the answer that one would obtain using 
eq. (3).  The δ1 term is due to the different mismatch factors, 
and ∆2 and ∆3 result from the system’s different available gain 
and noise temperature when the antenna reflection coefficient 
changes.  Full expressions for δ1, ∆2,and ∆3 are given in [1].  A 
useful approximate form can be obtained as follows. We 
assume that the antenna’s reflection coefficient is the same 
when it is viewing the cold calibration target as when it is 
viewing the hot target.  We use Γc to denote the antenna 
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reflection coefficient when it is viewing either calibration 
target, Γ∞ for when the antenna is pointed at the distant scene, 
and Γr for the reflection coefficient of the radiometer at plane 1.  
We first assume that the effect is small, and so we keep only 
the lowest nonvanishing order in ∆Γ ≡ Γc − Γ∞ .  We then also 
assume that each of the reflection coefficients Γc, Γ∞, and Γr is 
small and save only terms to the lowest order in the reflection 
coefficients.  With these approximations and some tedious 
algebra, the errors can be written as 
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where X1 and X12 are noise parameters of the radiometer [2].  
They are elements of the noise matrix, but referred to the input 
port.  Thus they are related to the noise correlation matrix of 

Wedge and Rutledge [3] by *
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where k is Boltzmann’s constant, the c’s are wave amplitudes 
of the radiometer’s intrinsic noise, and *

21S  is the complex 
conjugate of the 21 element of the scattering matrix.   

Equation (5) gives the errors introduced by using the 
simplified radiometer equation, eq. (3).  To estimate those 
errors, we need to know or estimate Γr, Γ∞, ∆Γ, X1, and X12. Γr 
can be measured by a vector network analyzer.  In the next 
section we describe measurements of Γ∞, ∆Γ, and the noise 
parameters X1 and X12. We shall then return to obtaining actual 
numerical estimates of the errors in eq. (5). 

III. MEASUREMENTS 

A. Setup 
Measurements of Γc and Γ∞ (and thus ∆Γ) for several 

combinations of antenna and calibration target were performed 
in the NIST anechoic chamber.  A vector network analyzer 
(VNA) was connected to the waveguide input of the antenna, 
and the antenna was mounted so that it pointed at the center of 
the target, which was mounted on a movable cart in the 
anechoic chamber.  The absorber-covered platform runs on 
rails, and its position is computer controlled with a precision of 
0.1 mm.  The cart was stepped backward from the antenna, and 
the VNA measured the reflection coefficient of the antenna as a 
function of the distance from antenna to target.  For each 
antenna, a measurement was also made with the target at the 
maximum distance allowed by the size of the anechoic 
chamber (about 4.5 m), to simulate viewing a distant scene.  
Measurements were made for several frequencies near 37 GHz 
and for several around 54 GHz, using several different 
combinations of antenna and target.  For the sake of brevity, we 
present results for only two sets of measurements here.  Other 
results can be found in [1]. 

The 37 GHz results that we present used an antenna and 
calibration target from the Airborne Imaging Microwave 
Radiometer (AIMR) [4].  This target is a commercially 

produced rectangular array of quadrahedral pyramids formed 
from a ferrous-loaded epoxy material molded on a bed of nails 
in an aluminum base.  The array is covered with a styrofoam 
insulating layer and a mylar window roughly 0.25 mm thick.  
The overall transverse dimensions of the target are 
approximately 25 × 30 cm.  The target was measured both with 
and without its cover; we will present the results with the cover 
in place since this corresponds to the configuration in which it 
is used.  The antenna was a spare feed horn from AIMR.  It 
consists of a Gaussian-optics lens antenna (GOLA), horn, 
dichroic plate, and grid polarizers.  The half-power beam width 
at 37 GHz is 2.8o.  The GOLA is mounted at the mouth of the 
feed horn and is constructed to reflect all energy below 30 
GHz.  The dichroic plate separates the beam into two 
frequencies, nominally 37 and 90 GHz, and the grid polarizers 
divide the beam into orthogonal polarizations, to yield four 
independent channels.  In the actual AIMR instrument, the 
antenna system consists of the feed horn and an elliptical scan 
mirror, but in the present measurements only the conical horn 
was used.  Measurements were made at 0.5 mm intervals from 
34 cm to 35 cm, corresponding approximately to the horn-to-
target distance in the actual AIMR instrument. 

The second set of measurements we present was taken at 54 
GHz.  The target used will be referred to as the NASA target.  
It is a commercially produced circular disc approximately 33 
cm in diameter, faced with an array of quadrahedral pyramids 
with an aspect ratio of 4:1.  The base material of the target is 
aluminum, with pyramids formed by electrical discharge 
machining and coated with ferrous-loaded epoxy with a 
thickness of about 1 mm. It is intended for use at frequencies 
above about 35 GHz.  The antenna used with this target was a 
commercially produced WR-19 cylindrical horn antenna with a 
dielectric lens and approximately 12.7 cm aperture, intended 
for use from 51 GHz to 56 GHz.  At 53 GHz its 3-dB 
beamwidth is 3o in the H plane and 2.8o in the E plane.  It will 
be called the NOAA antenna. The target was scanned over 10 
mm, with measurements taken every 0.5 mm, starting from a 
minimum distance of about 2 cm between the antenna lens and 
the tips of the target. 

B. Measurement Results 
Fig. 1 plots the magnitude of the reflection coefficient Γc of 

the NOAA antenna when it views the NASA target, as a 
function of the cart position, at 54 GHz.  It also shows the 
result for very large distance (4.5 m), Γ∞.  Fig. 1 clearly shows 
the effect of the target on the reflection coefficient of the 
antenna.  Since the quantity of interest is actually ∆Γ = Γc – Γ∞, 
we plot its magnitude in Fig. 2.  We see that the magnitude of 
∆Γ ranges from about 0.0005 to about 0.0035.  

Results for ∆Γ for the AIMR antenna viewing the AIMR 
target are shown in Fig. 3 for a scan from 34 to 35 cm, the 
approximate distance between the AIMR antenna aperture and 
the target in the actual radiometer.  The reflection coefficient of 
the AIMR antenna itself (distant target) is about 0.075, 
considerably larger than that for the NOAA antenna at 54 GHz 
(0.031).  Also, ∆Γ is considerably larger (∼0.12 maximum) 
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Fig.1  Measured reflection coefficient of antenna as function of cart position. 

Fig. 2 Magnitude of ∆Γ for NASA target as function of cart position. 

Fig. 3  ∆Γ for AIMR antenna and AIMR target. 

for the AIMR antenna-target combination, which will in turn 
lead to larger errors from its neglect. 

C. Values of Noise Parameters 
In order to estimate the error incurred by using eq. (3), we 

also need to measure or estimate the noise parameters X1 and 
X12 of the radiometer. To obtain realistic values for our 
estimates, we measured the noise parameters of the AIMR 

radiometer at 37 GHz, using a method similar to that of Meys 
[5] with the results that X1 ≈ 223 K and │X12│ ≈ 37.6 K. 

 Another convenient case to consider is a total-power 
radiometer with an isolator on the input.  In that case, X1 and 
X12 can be calculated; they are given by  

,, 11121
I
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where I refers to the isolator, and we have assumed │S11
I│, 

│S22
I│, and │S21

I│ are all small.  Note that in this case 
I

r S11≈Γ , and eq. (6) leads to 032 =+ ∆∆ , so that the only 
remaining error is δ1, which is due to the different mismatch 
factors.  Representative numerical values are given below. 

IV. NUMERICAL ESTIMATES 
We can now estimate the magnitude of the error introduced 

by using the simple form of the radiometer equation, eq. (3).  
From eqs. (4) and (5), we see that the total error depends on the 
value of Γr. The value of Γr will obviously vary from one 
radiometer to another, but it will typically be small.  If we set 
Γr = 0, it will have little effect on the numerical results and no 
effect on the qualitative conclusions.  We therefore do so and 
refer to the resulting error and uncertainty as ∆(0) and u(0). With 
Γr = 0 , the total error takes the form 
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where Tx,0 = (Tx – Ta)0 + Ta.  In evaluating the error and 
uncertainty for an actual radiometer, one would proceed as 
below but use the actual value of (Γr – Γ∞) rather than Γ∞ in the 
first term of eq. (7).   

We work in terms of the standard uncertainties u [6].  These 
are estimates of the root-mean-square (RMS) values of the 
errors, where the mean is taken over reasonably probable 
measurement possibilities, which in this case means over 
reasonable values of the unknown parameters.  Thus  
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where we have averaged over the (unknown) phase between 
X12 and ∆Γ, which introduces the factor of ½ in the second 
term.  The remaining averages are over the distance between 
antenna and calibration target.  They can be evaluated from our 
measured results. 

We will treat two specific cases as a demonstration and to 
obtain representative results.  General features will be 
discussed in Section V.  The first case is that of the AIMR 
antenna with the AIMR target at the approximate operating 
distance in the radiometer, 34 – 35 cm.  From our 
measurements, X1 = 223 K, |X12| = 37.6 K,  

52 1025.3))(Re( −
∞ ×=∆ΓΓ , 22 00957.0 RMS∆Γ∆Γ == .  

Consequently, for values of Tx,0 in the range of 200 K – 300 K, 
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This is somewhat larger than would be expected from the 
checks comparing different calibration methods for this 
instrument [7], which indicated agreement to within about 2 K.    
There are several possible explanations for this apparent 
discrepancy.  The measurement of the AIMR noise parameters 
took much longer than the time over which the instrument is 
designed to be stable, and therefore the measured value of |X12| 
may be an overestimate.  Also, only the feed horn (without the 
reflector) of the AIMR radiometer was used in these tests, and 
it was a spare, which may not be identical to the one in the 
actual radiometer.   Finally, it should be borne in mind that the 
result for the standard uncertainty in eq. (9) is an RMS value, 
with the average taken over a range of antenna-to-target 
distances, whereas the actual AIMR instrument corresponds to 
just one of those distances, which could well be a relatively 
fortunate one.  In particular, eq. (8) entailed an average of 

( )[ ]212Re ∆ΓX  over the relative phase between X12 and ∆Γ.  If 
X12 and ∆Γ happen to be out of phase for AIMR, this dominant 
contribution to the error vanishes, and the remaining error is 
less than 1 K.  (The distinction between “error” and 
“uncertainty” is important here—and elsewhere.  The error is 
the difference between the value obtained and the true value.  
The uncertainty represents an RMS average expected value of 
the error.) 

If the radiometer had an isolator on the front end, then one 
would have ,, 11121

I
aa STXTX −≈≈  and the uncertainty can 

be substantially reduced provided |S11| of the isolator is small.  
If |S11| = 0.025, then for Tx,0 – Ta  less than about 50 K, utot

(0) ≈ 1 
K. 

The second case we consider is the NOAA antenna with the 
NASA target at 54 GHz and a separation distance of about 2 – 
3 cm.  For this combination of antenna and target, 

92 102.2))(Re( −
∞ ×=∆ΓΓ  and 62 104.5 −×=RMS∆Γ .  The 

first term in eq. (8) is therefore almost always negligible, and 

12
)0( 0033.0 Xutot ≈ .  The value of |X12| depends on the specific 

radiometer.  Since |X12| could be of the order of 100 K or more, 
particularly at high frequencies, )0(

totu  may well be several 
tenths of a kelvin.  This is likely to be significant for many 
radiometers that are to be deployed in the next decade.  If the 
radiometer has a front-end isolator, I

tot SKu 11
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the uncertainty can be brought under 0.1 K for this combination 
of antenna and target. 

V. SUMMARY 
We have considered the error arising from the difference in 

antenna reflection coefficient when viewing a distant scene and 
a nearby calibration target, and using the common, simple form 
for the radiometer equation of a total power radiometer, eq. (3).  
An expression was derived for the approximate error, and 
measurements were performed that enabled us to estimate the 
resulting standard uncertainty for some representative cases.  
For radiometers without front-end isolators, the uncertainty can 

be as large as several kelvins, depending on the particular 
antenna, target, and receiver.  Even in relatively good cases the 
uncertainty can be a few tenths of a kelvin.  Use of a well-
matched isolator reduces the error significantly.  The 
magnitudes of the antenna and receiver reflection coefficients 
and the target reflectivity are critical factors in determining the 
size of the error.  For an unisolated radiometer, the receiver 
noise parameters are also important.  Because of the variation 
of the effect with the distance between antenna and target, the 
situation in an actual case could be significantly better or worse 
than our estimates, which were RMS results for a range of 
distances and relative phases. 

Our results suggest that for radiometers employing a 
calibration target close to the antenna, the effects of ∆Γ ≠ 0 
need to be considered if uncertainties are to be of the order of a 
few kelvins or less.   In that case, ∆Γ and Γ∞ should be 
measured; Γr, X1, and X12 should be measured or estimated; and 
the uncertainties should be estimated.  In fact, if everything is 
measured, one can use the full radiometer equation to explicitly 
correct for ∆Γ and not worry about introducing errors by 
neglecting δ1, ∆2, and ∆3.  Our treatment assumed two nearby 
calibration targets and a distant scene.  We expect an analogous 
effect when one of the calibration targets is nearby and the 
other is distant, such as cold space. 
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