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Uncertainty of the NIST
Electrooptic Sampling System

Dylan Williams
Electromagnetics Division

Paul Hale and Tracy Clement
Optoelectronics Division

Chih-Ming Wang
Statistical Engineering Division

National Institute of Standards and Technology

We analyze the uncertainty of NIST’s electrooptic sampling system. The system measures voltage
waveforms in a coplanar waveguide fabricated on an electrooptic LiTaO3 wafer. We use the system
to measure the voltage waveform injected by a photodetector through a microwave probe into this
coplanar waveguide. We then determine the voltage the photodetector would supply to a 50 S load
at its coaxial connector. We calculate this voltage using an electrical mismatch correction that
accounts for the effects of the probe and coplanar waveguide on the measured waveform.

Keywords: electrical phase; electrooptic sampling; mismatch correction; photodetector calibration;
photodiode calibration.

1. Introduction

We present an uncertainty analysis for measurements performed with the NIST electrooptic sampling
(EOS) system described in Refs. [1] and [2]. The EOS system measures the voltage waveform
injected by a photodetector into a coplanar waveguide (CPW) fabricated on an electrooptic LiTaO3

wafer. During post processing, we take a Fourier transform of the temporal waveform measured in
the CPW. Using the mismatch corrections described in Ref. [1], we then determine the magnitude
and phase of the frequency response of the voltage the photodetector would deliver to a 50 S load
at its coaxial port.

We currently perform two types of measurements on the EOS system: measurements of
photodetectors provided by customers and measurements of our own check standards. When we
measure a customer’s photodetector, we report the mean of nr = 3 measurements. When we report
a measurement of our check standard, we average  nR sets of three measurements. In some cases,
these additional measurements will reduce our measurement uncertainties significantly. Some
customers use the NIST check standard to calibrate their instruments directly. 

In the following, we separately estimate systematic type-B and statistically derived type-A
uncertainties [3]. We also separately estimate the components of our type-A uncertainty due to
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repeatability within each set of nr = 3 measurements, and the long-term reproducibility between sets
of three measurements. We also use a magnitude/phase representation for the data, rather than a
real/imaginary representation. This is reasonable because the magnitude is much larger than the
square root of its variance sm, and the variance s2 of the phase is small. Also, throughout the analysis
we treat the magnitude and phase separately.

1.1 Check-standard Uncertainty

We report the mean of nR sets of nr = 3 measurements when characterizing the check standard. To
estimate the component of our type-A uncertainty in these measurements due to short-term
repeatability, we average the nR variances from each set of measurements. We also separately
estimate the component due to long-term reproducibility using a variance-component model. Finally,
we use a Monte-Carlo simulator to estimate the uncertainty in the measurement due to systematic
errors, which in our case are all of type B.

1.2 Uncertainty in Measurements of a Customer-supplied Photodetector

To estimate the component of the type-A uncertainty in the measurements of a customer’s
photodetector due to short-term repeatability, we perform each measurement of the photodetector’s
frequency response three times (nr = 3). We perform only three measurements because each
measurement takes approximately 100 hours to perform, and time constraints limit us to three repeat
measurements per photodetector.

We report the mean of these three measurements of the magnitude and phase of the photodetector’s
frequency response when characterizing a customer’s photodetector. We rely on our check-standard
measurements to estimate the component of our type-A uncertainty in our measurements due to long-
term reproducibility. Finally, we use a Monte-Carlo simulator to estimate the uncertainty in the
measurement due to systematic errors.

1.3 Overview of the Uncertainty Analysis

For both our customer and check-standard measurements, we combine the repeatability,
reproducibility, and systematic components of uncertainty to estimate the combined uncertainty and
confidence intervals for our measurements. Throughout, we add a subscript ‘r’ to quantities
associated with components of uncertainty due to imperfect short-term repeatability of measurements
within a single set, a subscript ‘R’ to quantities associated with the component of our uncertainty due
to imperfect long-term reproducibility between sets, and a subscript ‘s’ to quantities associated with
our type-B uncertainties caused by the systematic errors we identified. Due to the small number of
measurements we perform, we do not estimate the correlation between the magnitude and phase
measurements.

We combine these uncertainties following the recommendations of Ref. [3] in four consecutive
steps. These are:



1We calculate sample variances s from , where n is the number of samples, the yi are the

individual samples, and  is the mean of the yi.

2 We estimate the standard  uncertainty of a quantity as s, the square root of its variance. We estimate uncertainty of

means as , where n is the number of samples. (Note that, since averaging more values increases confidence in

a mean, the standard uncertainty of the mean of a quantity is smaller than s, the square root of the quantity’s

variance.).
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(1) Calculate the sample variances s2 of the systematic (type-B), repeatability (type-A), and long-
term reproducibility (type-A) errors separately.1

(2) Estimate the standard uncertainties u in either the quantity of interest or its mean, as appropriate,
from these variances.2

(3) Calculate the combined uncertainty from the sum of squares of the standard uncertainties
associated with the systematic, repeatability, and reproducibility errors. The square of the
combined uncertainty is an estimate of the variance of the averaged magnitude and phase
responses we report.

(4) Estimate the coverage factor k95 and expanded uncertainty U corresponding to 95 % confidence
intervals for the means we report from the combined uncertainty and the number of degrees of
freedom < associated with each of the standard uncertainties u. The number of degrees of
freedom < reflects the confidence we have in the standard uncertainties we use to form the
combined uncertainty. The coverage factor k95 is the factor by which we must multiply the
combined uncertainty to form the expanded uncertainty U and 95 % confidence intervals. The
coverage factor k95 depends on the number of effective degrees of freedom <eff, which in turn
depends on both the relative sizes of each component of the combined uncertainty and the
number of degrees of freedom of each component.

2. Uncertainty due to Systematic Sources of Error

We estimate our systematic errors in the three magnitude-response measurements mi and the three
phase-response measurements 2i of the customer’s photodetector with a Monte-Carlo simulator. For
each of the three measurements, we run our Monte-Carlo simulator first with no errors, then ns = 100
additional times with the systematic errors detailed in the rest of this report added into the
measurements. At each frequency point we calculate the 100 magnitude and phase responses of the
photodetector in the presence of the simulated errors. Finally, using ns = 100, we determine the
sample variances ss,mi

2 and ss,2i
2 of the 100 simulated values of the magnitude and phase for each of

the three measurements mi and 2i.
1 These variances estimate the standard uncertainty in the mi and

2i due to systematic sources that do not change from measurement to measurement, and are all of
type B.

Since the sources of the systematic errors are similar in all of our measurements, and the
measurements themselves are quite close, we have ss,m1

2 . ss,m2
2 . ss,m3

2 and ss,21
2 . ss,22

2 . ss,23
2. Thus

we estimate our standard uncertainties  and  in the means  and  of the mi and 2i due to
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these systematic sources of error from the average of the variances ss,mi
2 and ss,2i

2 using

(1)

where nr, the number of measurements, is equal to three. We assigned an infinite number of degrees
of freedom <s to  and , as recommended in [3].

3. Variance due to Short-term Measurement Repeatability

The analysis of the random part of our uncertainty begins with an analysis of the component due to
short-term measurement repeatability. To estimate our repeatability error within each set of three
measurements, we estimate the sample variances sr,m

2 and sr,2
2 of the three measurements mi and 2i

using

(2)

4. Variance due to Long-term Measurement Reproducibility

In addition to the short-term measurement repeatability within a set of three measurements discussed
in the last section, our measurements within different sets may also differ due to long-term
reproducibility. We also add the uncertainty due to long-term measurement reproducibility to our

overall uncertainty. We determine the variances  and  characterizing the component of long-

term reproducibility by repeating sets of three check-standard measurements. We do this using

(3)

which separates out the components of varience  and   due to short-term measurement

repeatability from the total variances  and  of the means of our sets of three measurements

performed over a longer time span. We estimate the average sample variances  and  in Eq.

(3) due to short-term repeatability error by averaging the  and the  over the nR sets of nr = 3

measurements. If either  or  in Eq. (3) is negative, we set it to zero.
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5. Combining Uncertainties

We estimate the combined uncertainties  and  of  and  from the long-term reproducibility

components  and  of uncertainty, the short-term repeatability components  and  of

uncertainty, and the systematic components   and  of uncertainty using

(4)

Thus the combined uncertainties  and  include both measurement repeatability, reproducibility,

and systematic sources of uncertainty: they represent our best estimate of the standard uncertainty
of our results. The values of  and  are determined by (1). The values of , , , and 

will be described below.

5.1. Customer Measurements

As we have only just recently finished our first long-term reproducibility study, for our customer
measurements we have to date neglected  and  in Eq. (4). When we are ready to include

 and  in Eq. (4), we will determine them from our check-standard measurements with

(5)

The number of degrees of freedom <R associated with  and  is nR ! 1. For customer

measurements, we determine the standard uncertainties  and  from

(6)

where nr, the number of measurements used to form the mean, is equal to three. The number of
degrees of freedom <r associated with  and  is nr ! 1.

5.2. Check-standard Measurements

Since we average nR measurements to characterize our check-standards, we do not use (5) and (6)
to determine the uncertainties in Eq. (4). For our check-standard measurements, we determine the
standard uncertainties  and  due to long-term measurement reproducibility with
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(7)

Again, the number of degrees of freedom <R associated with  and  is nR ! 1. Since for our

check standard we report a mean of a number of measurement sets, we assign our short-term
uncertainty with

(8)

rather than with (6). Here the number of degrees of freedom <r associated with  and  is

nR (nr ! 1).

6. Expanded Uncertainty and 95 % Confidence Intervals

To determine our expanded uncertainties  and  corresponding to 95 % confidence

intervals for  and , we must take into account our relative confidence in the standard

uncertainties ,  ,  and . This requires determining the “coverage factor” k95 [3] from

the combined uncertainties  and .

We determine k95 from <eff, the effective number of degrees of freedom in the measurements. We
determine <eff from estimates of the number of degrees of freedom <s of our systematic errors and
the number of degrees of freedom <r and <R of our repeatability and reproducibility with the Welch-
Satterthwaite formula

(9)

and

(10)

as recommended in Appendix B.3 of Ref. [3]. We calculate our coverage factors k95 from k95 =
t95(<eff), where t95(<eff) is the two-sided 95th percentile of Student’s t-distribution with <eff degrees of

freedom. Finally, we determine our expanded uncertainties of  and  from  and
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Figure 1. Representative measurement of a check-

standard voltage spectral density.

Figure  2. Normalized energy spectral density

corresponding to the voltage of Fig. 1.

Figure 3. Representative uncertainty in our check-standard

measurements of spectral density.

. There is a 95 % confidence

that the true values of  and  lie within the

expanded uncertainty intervals  and

.

7. Representative Measurement Result

From each measurement on the electrooptic
sampling system we form both an absolute and
a relative voltage magnitude response of the
photodetector, and a linearized phase response.
We represent the absolute voltage response of
the photodetector as the spectral density of the
voltage generated by the detector normalized to the charge drawn by the detector when it is excited
by a narrow optical pulse. This spectral density has units of V/CAHz, and corresponds to the voltage
output that the detector would generate across a 50 S load connected at its coaxial output port over
a bandwidth of one hertz after being excited by an optical impulse that drew one coulomb of charge
through the photodetector’s electrical bias port. This is useful because we can better measure the bias
current generated by the photodetector in response to an optical impulse than determine the power
in each optical impulse. Figure 1 shows a representative measurement of the spectral density of a
detector’s voltage response.

We report our measurements on a 200 MHz grid to 110 GHz. We extract these measurements from
a time record that is only about 2 ns long, which we pad to 5 ns before calculating the Fourier
transforms. Because the time record is short, measured results represent average values over a
bandwidth of roughly 500 MHz. Furthermore, small voltage offsets in the temporal measurements
manifest themselves as energy between DC and 500 MHz. We have not yet fully characterized or
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Figure 4. Comparison of five check-standard phase

measurements.
Figure. 5. Representative uncertainty in our check-standard

measurements of phase.

developed methods to eliminate these small offsets, so our measurements and error estimates may
not reliably reflect the actual distribution of power below about 500 MHz.

We also measure a normalized version of the voltage spectral density. The quantity we determine
from each measurement is the energy that the photodetector generates in a 50 S load in a 1 hertz
bandwidth normalized to the total energy we measure from the detector over our total measurement
bandwidth (usually 110 GHz). Figure 2 shows the normalized energy density corresponding to the
measurement in Fig. 1 expressed in decibels. The values plotted in the figure are on the order of 10!11

because the energy in a 1 Hz bandwidth is small compared to the total energy in the 110 GHz
spectrum we measure. The relative scale on the right facilitates determining quantities such as the
detector’s 3 dB bandwidth; Fig. 3 shows the associated uncertainty in the measurement.

We also measure the relative phase response of the detectors. We report the phase of the voltage the
detector will generate across a 50 S load after subtracting a time delay from the phase response that
minimizes the measured phase below 30 GHz in the least-squares sense. Figure 4 shows the
measured phase response of one of our check standards. It compares 5 sets of three measurements
to the mean of these five sets of measurements.

We report the standard and expanded uncertainty for each measurement as well. Figure 5 plots the
uncertainty in phase for the check-standard measurements presented in Fig. 4. For this measurement,
which is an average of the mean of five measurement sets, the systematic errors dominate. Keep in
mind that these results are only representative. Not only will results vary from photodetector to
photodetector, but the uncertainties we achieve depend on experimental conditions and may change
from measurement to measurement. Furthermore, we are not able to characterize the response of a
customer’s photodetector with the same accuracy as our check standard, because we are unable to
perform more than three measurements on each customer’s photodetector.
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Figure 6. The electrical model used to represent the errors in the electrooptic sampling system.

8. Specific Forms Used to Represent Systematic Errors

In what follows, we derive the form of each component of systematic error we consider to determine
the variances ss,mi

2 and ss,2i
2. These error mechanisms can be divided into two categories, those having

to do with the mismatch correction (SOLT calibration errors, reflection coefficient measurement
errors, and on-wafer scattering parameter measurement errors) and those having to do with the finite
impulse response of the EOS system itself. We model most of the errors having to do with the
mismatch corrections as two-port electrical circuit elements in the electrical circuits between the
photodetector and the on-wafer reference plane. We model the errors having to do with the finite
impulse response of the EOS system as multiplicative errors in the frequency domain.

Figure 6 shows the electrical model we use to represent the errors due to imperfect mismatch
corrections in the electrooptic sampling system. The voltage Vd represents the voltage across the
detector, and the voltage VCPW represents the voltage that the electrooptic sampling system measures
in the coplanar waveguide (CPW) transmission line. Parameters denoted by a ' represent reflection
coefficients, those by an S represent scattering-parameter matrices, and those by a T represent
cascade matrices. The function T(S) in the equation embedded in the figure represents the cascade
matrix corresponding to its argument, which is a scattering-parameter matrix S. 'dN represents the
reflection coefficient of the detector and its measurement errors (see section 8.4.2), SSOLT the errors
in the coaxial SOLT calibration, TTRL the errors in the on-wafer TRL calibration in the coplanar
waveguide transmission lines, and 'CPW the reflection coefficient of the CPW resistor. The quantities
T', Sl, SmN, SmNN, and )SN represent errors in the on-wafer TRL calibration, and are discussed in detail
later.

The equations in the rest of this document describe in greater detail how we add systematic errors
into the Monte-Carlo simulations we use to determine the variances ss,mi

2 and ss,2i
2. We use the

symbol : to denote random variables with a zero mean and Gaussian distribution having a variance
of 1. Using this notation, we would use m + F: to represent a random variable having a Gaussian
distribution with mean m and variance F2 (i.e., a Gaussian distribution having mean m and standard
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deviation F).

The symbol : with no argument denotes a single variable chosen once randomly during each
iteration of the Monte-Carlo simulator. The symbol :(f) denotes a variable chosen randomly during
each iteration at each frequency f. No : in any equation is correlated to any other : in any other
equation. When we use more than one random variable within the same equation, we add subscripts
to the symbol : to explicitly show which : are the same and which are uncorrelated.

We use the symbol 0 in a fashion analogous to the use of the symbol : to describe errors uniformly
distributed over the range [!1,1]. We use these uniformly distributed errors to account for worst-case
error limits. As a general rule, after we correct for a systematic error *, we then add errors in the
simulations that are uniformly distributed over the range [!*/2,*/2] to account for the uncertainty
in the correction we have applied. We use smaller ranges in the simulator only if we are able to
present arguments that the uncertainty in our estimate of the systematic errors is smaller than
[!*/2,*/2]. We believe that in most cases this a conservative estimate of the uncertainty in the
correction.

8.1 On-wafer TRL Scattering Parameter Calibration

These errors are represented as transmission matrices that we cascade onto the right-hand side of the
scattering parameters of the probe head. We also cascade them onto the left-hand side of our
measurements of the CPW resistors that we use to terminate the signal coming from the
photodetector (see Fig. 6).

8.1.1 TRL Reference Impedance Offset (from Ref. [4])

The errors in determining the overall magnitude of the reference impedance of the TRL calibration
are represented by the transmission matrix T', which is the cascade matrix of an ideal impedance
transformer.  T' is given by

(11)

where

(12)

The component of the systematic error in the load method we use to calculate the capacitance of the
CPW is the worst-case error

(13)
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The value in Eq. (13) was derived from Ref. [5], where we compared measurements of CPW
capacitance performed by different methods.

The component due to CPW line-length variations is

(14)

We derived this from a worst-case variation in line-length of ±1 :m we expect on the masks and
from the analysis presented in Ref. [4].

The component due to CPW line-width variations is

(15)

We derived this from field calculations using the method of Ref. [6] assuming a ±1 :m error in
linewidths on the CPW. This results in a 2 :m change in the gap, which corresponds to a change in
capacitance of 2.4 %. These calculations are shown in Appendix 1.

We also add a component not discussed in Ref. [4] to Eq. (12) to account for errors in our on-wafer
DC resistance measurements. That factor is

(16)

where RDC is the measured DC resistance of the CPW load used to determine the capacitance of the
CPW line, and FDC is our estimate of the standard deviation of the error in measuring that DC
resistance. The square root of 2 is required in Eq. (16) because the difference of two resistance
measurements determines the resistance of the load, a measurement of the DC resistance of an on-
wafer short and a measurement of the DC resistance of an on-wafer load.

We found that our accuracy in measuring DC resistance depends on the quality of the contacts that
the probe tips make with the CPW lines printed on the LiTaO3 wafer, and degrades with the number
of connections. For example, in one experiment, initial DC resistance measurements were repeatable
to within about 0.01 S, but after 100 contacts on the same device, we measured a standard deviation
of our on-wafer resistance measurements that increased to over 4 S. Thus, we estimate the standard
deviation FDC of our DC resistance measurements at the time at which we performed each
calibration. To do this, we measure the DC resistance of each standard in both our initial and repeat
measurements. Then, we estimate the standard deviation FDC from the differences )Ri we measured
under the assumption that the mean of the )Ri was 0. We use the formula



12

(17)

where nDC is the number of measurements. The factor of 2 is required in (17) because the )Ri

correspond to the difference of two resistance measurements, and we wish to estimate the error in
a single resistance measurement.

8.1.2 TRL Reference-plane Position Error Due to Asymmetric CPW Short (from Ref. [4])

We represent the errors in the reference-plane position of the TRL calibration with the transmission
matrix corresponding to the scattering matrix Sl, which is an approximation to the scattering matrix
of an ideal reference plane shift. S1 is given by

(18)

where

(19)

and where ,s, the approximate relative dielectric constant of the LiTaO3 substrate at microwave
frequencies, is 43. These expressions were derived from approximations in Ref. [4] and the
assumption of an error of ±1 :m in the metal pattern on the wafer.

8.1.3 Metal Conductivity (from Ref. [4])

Variations in metal conductivity and thickness within a TRL calibration set also introduce errors into
the calibration. We accounted for these errors with the simulator described in Ref. [4]. At each
frequency, we used the simulator to generate the scattering parameter matrix Sm, which represents
a worst-case error in the on-wafer TRL calibration due to variations in the resistance of the lines. As
inputs to the program, we used an on-wafer scattering-parameter calibration performed in the lines
and introduced a resistance perturbation in the longest line based on DC measurements of the
resistances of the line. This introduces the greatest errors in the calibration [4].

Finally, we represent the errors in terms of a transmission matrix corresponding to the scattering
parameter matrix SmN defined by

(20)

We correlate the errors in Eq. (20) because they have a single source, the resistance of the line.
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8.1.4 Metal Conductivity Across the Wafer

Variations in metal conductivity and thickness across the wafer also introduce errors into the
measurements. This occurs because the calibration is performed at a location with one value of metal
conductivity and thickness, while the appropriate calibration requires that the metal conductivity and
thickness be equal to that at the location at which the measurement was made. We account for these
errors by performing two calibrations, one at the center of the wafer, where the lines are least
resistive, and one at the edge of the wafer, where the lines are most resistive. Then we use the
calibration comparison method of Ref. [7] to quantify the differences in the two calibrations.

We represented the errors in terms of a transmission matrix corresponding to the scattering parameter
matrix SmNN defined by

(21)

Here SmN was the scattering parameter matrix representing the differences between the two
calibrations determined by the calibration comparison method. We correlate these errors because
they have a single source, the local conductivity and/or thickness of the metal film. These errors were
not considered in the analyses we performed before May 2004. 

8.2 Drift Error Measured by the Calibration Comparison Method of Ref. [7]

To determine the scattering parameters of the probe head, we first performed a coaxial short-open-
load-thru (SOLT) calibration. Then we performed two on-wafer TRL calibrations. We calculate the
scattering parameters of the probe head from the first on-wafer calibration, and the drift in the
measurement from the differences between the first and the second on-wafer calibration using the
calibration comparison method described in Ref. [7]. Since these errors are generally due to only a
few sources of drift in the analyzer, they are highly correlated. Using the same form as above, we
represent the drift errors in terms of the transmission matrix corresponding to the worst-case drift
errors from the scattering parameter matrix )SN, where

(22)

In (22), )S is the scattering parameter matrix representing the worst-case error in the on-wafer TRL
calibration due to test-set drift determined by the calibration comparison method.
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8.3 Error in the DC Scattering Parameters

We also determine the scattering parameters of the probe head and the reflection coefficient of the
CPW load from on-wafer DC resistance measurements. We add a resistance of :1FDC to our
measurement of the DC resistance of the probe head and, since the resistance of the on-wafer CPW
load is set to the difference of the measurement of the resistances of the load and a short, we add a
resistance of %2 :2Fdc to the measured resistance of the CPW load.

8.4 Coaxial SOLT Scattering Parameter Calibration

In our early work, we tested photodetectors with 2.4 mm coaxial connectors. More recently, we have
focused on testing high-bandwidth photodetectors with 1 mm coaxial connecters.

We estimate errors of the 40 GHz 2.4 mm coaxial SOLT calibrations used to characterize our
photodetectors with 2.4 mm coaxial connectors with the “HP8510 Specifications and Performance
Verification Analysis Software” [8], [9] provided by the manufacturer of the vector network analyzer
and coaxial calibration kit used. We estimate errors in the 110 GHz 1 mm coaxial SOLT calibrations
used to characterize high-bandwidth photodetectors with the “HP8510 Specifications and
Performance Verification Analysis Software” [10].

The computer programs [8] and [10] do not supply information on how the errors of the SOLT
calibrations are correlated with frequency, so we did not correlate the errors of the SOLT calibration
with frequency. Thus, our Monte-Carlo simulations are most accurate when estimating the
uncertainties of quantities determined one frequency at a time, such as the power spectral density
generated by the detector or the absolute phase of its response. Because we do not calculate these
correlations, the error analysis is not suitable for determining the temporal properties of the
calibrated pulses.

In this program, we chose the parameters most applicable to our equipment and procedures. For our
2.4 mm calibrations, we specified the HP8516A test set, the HP834X016 source, the HP85056A
calibration kit, and the sliding load calibration technique. Although we used cables from another
manufacturer not supported in the error analysis software, we specified the HP 85133F pair of short
cables because we felt that they corresponded most closely to the cables we used in our experiments.

The program generates tables of what we treat as 3F errors for the frequency ranges 0.045 to 2 GHz,
2 to 20 GHz, 20 to 36 GHz, and 36 to 40 GHz. We generate our distributions of errors in our Monte-
Carlo simulator based on the uncertainties in these tables. The decision to treat these errors in this
way is based on conversations with Doug Rytting and Ken Wong of Hewlett-Packard. Doug and Ken
were involved in the development of the software described in Refs. [8] and [10] and with
unpublished work used to investigate the proper treatment of the quantities generated by Refs. [8]
and [10]. The values drawn from Ref. [8] are summarized in Table 1. The quantities denoted with
a prime in the table correspond to uncertainties in the characterization of the reflection coefficient
of the detector, rather than the error boxes.



a From table “S11 lower worst-case uncertainty specifications”.

b From table “S22 lower worst-case uncertainty specifications”.

c From table “S21 lower RSS uncertainty specifications”. We take the table value m  in dB in the row corresponding

to the level of |S21| equal to 0 dB and calculate e21 from 1!10!m/20.

d From table “S21 lower RSS uncertainty specifications”. We take the table value 2 in degrees in the row

corresponding to the level of |S21| equal to 0  dB and set eN21 equal to sin(2).

e From table “S11 lower RSS uncertainty specifications”. We picked values in the rows corresponding to reflection

coefficient |S11| = 0.5 below 20 GHz, |S11| = 0.4 from 20!36 GHz, and |S11| = 0.3 from 36!40 GHz. Since the values

of e11N and eN11N depend on the reflection coefficient of the detector, values used  for other detectors may be different.

f Values correspond to preceding row, but we take the table value 2 in degrees and set eN11 equal to sin(2).
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Table 1.
2.4 mm connector 3-F errors reported by [8]

<2 GHz 2-20 GHz 20-36 GHz > 36 GHz Measurement Condition

e11
a 8.998×10!3 9.113×10!3 1.6001×10!2 1.6118×10!2 |S11|.|S22|.0, |S21|.|S12|.0

e22
b 1.717×10!2 1.7594×10!2 2.8513×10!2 2.8631×10!2 |S11|.|S22|.0, |S21|.|S12|.1

e21
c 5.8×10!3 7.2×10!3 1.66×10!2 1.76×10!2 |S11|.|S22|.0, |S21|.|S12|.1

eN21
d 7.9×10!3 6.96×10!2 0.127 0.14 |S11|.|S22|.0, |S21|.|S12|.1

e11N
e 8.492×10!3 8.952×10!3 1.4017×10!2 1.4058×10!2 HP83440D

eN11N
f 1.92×10!2 8.05×10!2 0.1456 0.1678 (|S22|.0, |S21|.|S12|.0)
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We also chose parameters applicable to our equipment for our 110 GHz 1 mm coaxial SOLT
calibrations. In the program [10] for the frequency range of 45 MHz to 50 GHz, we specified the
HPE7342 test set, the HP8365xXF source, the HP85059A calibration kit, and the broadband load
calibration technique. For the frequency range of 50 GHz to 110 GHz, we specified the
HPE7352A110 test set, the HP836xxXF source, the HP85059A110 calibration kit, and the offset
short calibration technique. We also specified the DIRECTXF test port cables (no cables) because
no specification for 1 mm test cables was available in the analysis.

The program generated tables of what we treated as 3F errors for the frequency ranges 2 to 18 GHz,
18 to 40 GHz, 40 to 50 GHz, 50 to 75 GHz, 75 to 85 GHz, 85 to 100 GHz, and 100 to 110 GHz. We
generated our distributions of errors in the simulator based on the uncertainties in these tables. The
values drawn from [10] are summarized in Tables 2 and 3.  Here again, the quantities denoted with
a prime in the tables correspond to uncertainties in the characterization of the reflection coefficient
of the detector, rather than the error boxes. Since the program did not report errors below 2 GHz, we
used the values reported by the program from 2 to 18 GHz below 2 GHz.

To account for the effects of bending on the cables, we measured the scattering parameters of a
coaxial “thru” connection after each on-wafer experiment. Since we know that this thru connection
is reciprocal, we averaged the phase of the forward and backward transmission coefficients, and fit
the result to a line with an intercept at 0 to determine the phase slope .i for each measurement. We
then estimated the standard deviation F. of the phase slope under the assumption that the mean phase
slope was 0. We used the formula

(23)

where nc was the number of measurements. The factor of 2 in the denominator of Eq. (23) accounts
for the fact that we measure the total phase change in the two cables, whereas the error in the
measurement is caused by only the cables attached to the probe head we are characterizing.



a From table “S11 lower worst-case uncertainty specifications”.

b From table “S22 lower worst-case uncertainty specifications”.

c From table “S21 lower RSS uncertainty specifications”. We take the table value m  in dB in the row corresponding

to the level of |S21| equal to 0 dB and calculate e21 from 1!10!m/20.

d From table “S21 lower RSS uncertainty specifications”. We take the table value 2 in degrees in the row

corresponding to the level of |S21| equal to 0  dB and set eN21 equal to sin(2).

e From table “S11 lower RSS uncertainty specifications” generated by [10]. We picked values in the rows

corresponding to reflection coefficient |S11| = 0.9 below 2 GHz, |S11| = 0.7 from 2 to  40 GHz, |S11| = 0.5 from 40 to 50

GHz, |S11| = 0.4 from 50 to 85 GHz, and |S11| = 0.3 from 85  to 110 GHz. Since the values of e11N and eN11N depend on

the reflection coefficient of the detector, values used for o ther detectors may be different.

f Values correspond to preceding row, but we take the table value 2 in degrees and set eN11 equal to sin(2).

g From table “S11 lower RSS uncertainty specifications” generated by [10]. We picked values in the rows

corresponding to reflection coefficient |S11| = 0.1 below 18 GHz, |S11| = 0.2 from 18  to 50 GHz, |S11| = 0.5 from 50  to

85 GHz, and |S11| = 0.8 from 85  to 110 GHz. Since the values of e11N and eN11N depend on the reflection coefficient of

the detector, values used for other  detectors may be d ifferent.
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Table 2.
1 mm connector 3-F errors reported in [10] for frequencies less than 50 GHz

<2 GHz 2-18 GHz 18-40 GHz 40-50 GHz Measurement Condition

e11
a 0.032623 0.032623 0.051144 0.064121 |S11|.|S22|.0, |S21|.|S12|.0

e22
b 0.077705 0.077705 0.122345 0.153653 |S11|.|S22|.0, |S21|.|S12|.1

e21
c 3.235×10!2 3.235×10!2 5.118×10!2 8.085×10!2 |S11|.|S22|.0, |S21|.|S12|.1

eN21
d 3.41×10!2 3.41×10!2 5.955×10!2 9.1×10!2 |S11|.|S22|.0, |S21|.|S12|.1

e11N
e 4.946×10!2 3.9708×10!2 6.3261×10!2 6.8597×10!2 NEL detector

eN11N
f 5.685×10!2 5.863×10!2 9.887×10!2 0.1474 (|S22|.0, |S21|.|S12|.0)

e11N
g 0.031688 0.031688 5.0441×10!2 6.3491×10!2 U2T detector

T2.D25.515.B6.116

eN11N
f 0.3188 0.3188 0.2606 0.3273 (|S22|.0, |S21|.|S12|.0)



a From table “S11 lower worst-case uncertainty specifications”.

b From table “S22 lower worst-case uncertainty specifications”.

c From table “S21 lower RSS uncertainty specifications”. We take the table value m  in dB in the row corresponding

to the level of |S21| equal to 0 dB and calculate e21 from 1!10!m/20.

d From table “S21 lower RSS uncertainty specifications”. We take the table value 2 in degrees in the row

corresponding to the level of |S21| equal to 0  dB and set eN21 equal to sin(2).

e From table “S11 lower RSS uncertainty specifications” generated by [10]. We picked values in the rows

corresponding to reflection coefficient |S11| = 0.9 below 2 GHz, |S11| = 0.7 from 2 to  40 GHz, |S11| = 0.5 from 40 to 50

GHz, |S11| = 0.4 from 50 to 85 GHz, and |S11| = 0.3 from 85  to 110 GHz. Since the values of e11N and eN11N depend on

the reflection coefficient of the detector, values used for o ther detectors may be different.

f Values correspond to preceding row, but we take the table value 2 in degrees and set eN11 equal to sin(2).

g From table “S11 lower RSS uncertainty specifications” generated by [10]. We picked values in the rows

corresponding to reflection coefficient |S11| = 0.1 below 18 GHz, |S11| = 0.2 from 18  to 50 GHz, |S11| = 0.5 from 50  to

85 GHz, and |S11| = 0.8 from 85  to 110 GHz. Since the values of e11N and eN11N depend on the reflection coefficient of

the detector, values used for other  detectors may be d ifferent.
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Table 3.
1 mm connector 3-F errors reported in [10] for frequencies greater than 50 GHz

50-75 GHz 75-85 GHz 85-100 GHz 100-110 GHz Measurement Condition

e11
a 0.042998 0.043213 0.053521 0.053521 |S11|.|S22|.0, |S21|.|S12|.0

e22
b 0.084111 0.084266 0.104882 0.104882 |S11|.|S22|.0, |S21|.|S12|.1

e21
c 3.891×10!2 4.343×10!2 5.421×10!2 5.421×10!2 |S11|.|S22|.0, |S21|.|S12|.1

eN21
d 4.852×10!2 5.924×10!2 7.277×10!2 7.451×10!2 |S11|.|S22|.0, |S21|.|S12|.1

e11N
e 4.306×10!2 4.308×10!2 5.1644×10!2 5.1644×10!2 NEL detector

eN11N
f 0.1178 0.1239 0.1908 0.1926 (|S22|.0, |S21|.|S12|.0)

e11N
g 4.511×10!2 4.514×10!2 6.6559×10!2 6.6559×10!2 U2T detector

T2.D25.515.B6.116

eN11N
f 0.1003 0.1064 0.1019 0.1037 (|S22|.0, |S21|.|S12|.0)
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8.4.1 Probe-head Characterization

We incorporated the effect of the coaxial SOLT calibration on the scattering parameters of the probe
head by cascading the transmission matrix corresponding to SSOLT on the left side of the probe head.
We developed expressions for the matrix based on the relations (26) to (29) in Ref. [11] between the
12-term and 8-term error model. We determined  SSOLT from

(24)

In Eq. (24) the factors of 3 in the off-diagonal terms convert the 3-F limits from [8] and [10] and
summarized in Tables 1, 2, and 3 into 1-F values. The square roots in the off-diagonal terms account
for the fact that the transmission errors from the SOLT calibration are evenly distributed between
the error boxes of the probe we are trying to characterize on port 1 of the network analyzer and the
error box of the second probe on port two of the network analyzer. The two off-diagonal terms are
equal because the 2-tier algorithm we use forces the forward and reverse transmission coefficients
to be equal, which is justified based on reciprocity arguments.

We determined the first diagonal term in Eq. (24) from the values of e11 in the tables, the
uncertainties in measuring reflection coefficients under the conditions |S11| . 0 and |S21| = 0. The error
in the measurement of the reflection coefficient S11 is equal to the first diagonal term in Eq. (24).

Under the conditions |S11| . |S22| . 0 and |S21| . |S21| . 1, the total error described by e22 in the
measurement of the reflection coefficient S22 has two major components. The first is the error
described by e11 due to the finite port match on port 2, and the second is due to the second diagonal
term in Eq. (24). Thus we subtracted in a root-mean-square sense the partial error e11 we were not
interested in from the total error e22 to arrive at the second diagonal term in Eq. (24) we were trying
to determine. We used the  assumption that the two error sources were uncorrelated to arrive at this
expression.

Finally, the factor of 3.41 in the diagonal elements in Eq. (24) convert the 3-F magnitude limit R
from [8] and the table into 1-F values for the real and imaginary part of the reflection coefficients.
To arrive at the factor of 3.41, we assumed Gaussian distributions in x and y with variance F. This
results in a Gaussian distribution in magnitude r with no angular dependence. We then integrated
this magnitude distribution over a disk of radius R, and arrive at the 99.7 percentile point for R =
3.41 F. The calculations are outlined in Appendix 2.
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8.4.2 Photodetector Reflection Coefficient

Because the detector has a large reflection coefficient at its coaxial port, we treated the magnitude
errors described by e11N and the phase errors described by eN11N separately.  In the simulations we
determined the reflection coefficient 'dN at the coaxial port of the photodetector by perturbing the
nominal value of 'd with

(25)

In Eq. (25) the factors of 3 convert the 3-F limits from [8] as summarized in the tables into 1-F
values. The factor of 'd/|'d| ensures that the magnitude errors described by e11N change the magnitude
of 'd and the phase errors described by eN11N change the phase of 'd.

In order to avoid damaging the detectors with our ohmmeter, we estimated the DC reflection
coefficient of the detector from the low-frequency limit of its reflection coefficient 'dN.

8.5 Finite Impulse Response of the Electro-optic Sampling System

The impulse response of the electrooptic sampling system is broadened by several distinct physical
mechanisms [2]. Thus the measured voltage waveform on the CPW wafer is a convolution of the
actual voltage present there and the finite impulse response of the electrooptic sampling system. This
convolution in the time domain can be represented as a multiplication in the frequency domain,
which is how we choose to treat these errors. This section describes how we accounted for these
systematic errors, which we discussed in greater detail in Ref. [2], in our simulations.

8.5.1 Optical Reflection from the Back Surface of the LiTaO3 Wafer

A small portion of the optical sampling beam bounces off of the back side of the wafer, returns to
the surface where it re-samples the electrical signal, and then re-reflects to the detectors. We used
the analysis described in Ref. [2] to estimate the worst-case magnitude error Er in decibels and the
phase error 2r in degrees of the measurement system at each frequency due to the first three optical
round-trip reflections in the wafer.

To perform the calculations, we assumed that the anti-reflective coating on the back of the wafer
reflected 0.05 % of the incident optical power. This worst-case estimate was based on a reflectance
curve supplied by the manufacturer of the wafer, and a measurement we performed of the spectrum
of the optical beam, which showed that the optical power was concentrated between 1500 nm and
1600 nm. These measurements and the curve from the manufacturer are shown in Appendix 3. We
calculated the reflection coefficient of the front surface of the wafer from the index of refraction n
of the LiTaO3, for which we used a value of 2.12 [12].

We do not know if the optical reflections in the wafer add or subtract from the magnitude and phase
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of the final result, so we did not correct for for this systematic error. However, we expect these errors
to be correlated, so the simulator adds random magnitude errors 0 Er to the magnitude calculation,
which was expressed in decibels, and random phase errors 0 2r to the phase calculation, which was
expressed in degrees to account for the uncertainty of the measurements.

8.5.2 Radius of the Optical Beam Traversing the Wafer

We focus the optical sampling beam to a small spot on the wafer. The finite radius of the spot
broadens the measured pulse slightly. We used the analysis introduced in Ref. [13], which assumes
a lowest-order cylindrical Gaussian mode of radius r, to estimate the error in the magnitude response
of the electrooptic sampling system.

We first estimated that the radius of the spot was about 3 :m at the surface of the wafer by passing
the beam through small holes in the metallization on the wafer.

By Gaussian optics, we estimated the radius r of the beam in the substrate as r(z) = r(0) (1 + (z/zr)
2)½,

where z is the depth in the substrate, zr = B (r(0))2 n/8, n = 2.12 is the index of refraction of the
LiTaO3, and 8, the optical wavelength, is about 1550 nm. Under the assumption that r(0) is equal
to 3 :m, the calculation predicts a beam radius rN / r(35 :m) = 4 :m at a point 35 :m into the
substrate, which corresponds roughly to the 50 % point of the electric field in the substrate.

Based on these estimates, we adopted a correction for our magnitude response due to an error Ew

calculated using formula (10) in Ref. [13] with  rN = 4 :m, our best estimate of the average beam
radius in the substrate. (Note that the authors of Ref. [13] use w to express the radius of the beam
rather than  rN.) We expressed the correction in decibels. We also added random errors ½0 Ew to the
magnitude calculation, which was also expressed in decibels.

8.5.3 Finite Temporal Width of the Optical Pulses Measured by the Autocorrelator

The shape and temporal width of the optical pulses emanating from the laser do not affect the phase
response of the measurement system, but do lower its magnitude response. We used optical
autocorrelator measurements to correct for this systematic measurement error.

To estimate these errors, we took a direct Fourier transform of the autocorrelator measurements.
After determining the error  Ea in our autocorrelator measurements, we corrected our magnitude
response by Ea decibels to account for this systematic error. Finally, the simulator added random
magnitude errors of ½0 Ea to the magnitude calculation, which was also expressed in decibels, to
account for the uncertainty in our correction.
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8.5.4 Finite Time the Optical Pulses Spend Traversing the Electric Field of the CPW Mode

The optical pulses spend a finite time traversing the electric field of the coplanar waveguide, which
penetrates below the surface of the LiTaO3 wafer. As discussed in Ref. [13], this not only broadens
the impulse response of the measurement system, but shifts its phase response.

To correct for this systematic measurement error, we performed calculations of the electric-field
profile in the substrate with the full-wave simulator described in Ref. [14]. We used 315 modes in
the electromagnetic calculation, but found that reducing the number of modes to half that many
resulted in no discernable difference in the calculations. From this experiment, we concluded that
the calculation method, at least, did not introduce significant errors into the estimation of the errors.

The ±2 :m worst-case width error we expect in the 40 :m  gap of the CPW will introduce a ± 2
:m/40 :m, or ±5 %, error in our estimate of the extent to which the fields penetrate into the
substrate. Calculations of the correction as a function of substrate thickness showed that a ± 25 :m
error in the substrate thickness leads to a negligible ±0.02 % deviation in magnitude and an even
smaller ±0.002 % deviation in phase.

However, the anisotropic permitivity is a significant source of error that we did not attempt to
account for. The relative dielectric constant in the propagation direction (x) and into the substrate
(y) is about 43, while the relative dielectric constant in the z direction transverse to the propagation
direction and parallel to the substrate surface is about 53 [12]. The method of Ref. [14] cannot
account for anisotropic dielectric constant, but we expect that the unequal dielectric constants in the
y and z directions will distort the fields by an amount roughly equal to the change in the dielectric
constant in the two directions, or about 26 %. So we estimated that our worst case error in the overall
estimate was ±0.26, and note that our uncertainty in this correction could be reduced significantly
if we were to use an electromagnetic field simulator that could account correctly for the anisotropic
substrate dielectric constant.

After calculating the magnitude error ECPW in decibels and phase error 2CPW in degrees from the field
calculations based on the method of Ref. [14] and the formulas in Ref. [13], we corrected both our
magnitude and phase responses to account for this systematic error. Finally, we added random
magnitude errors of 0.26 0 ECPW to the magnitude calculation, which was expressed in decibels, and
random phase errors of 0.26 0 2CPW to the phase calculation, which was expressed in degrees. Here
we left these two errors completely correlated, as we would expect them to be in practice.

__________________
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Appendix 1.

A summary of calculations found in page 136 of Dylan Williams’ laboratory notebook #4. A change
of ±1 :m in a metal edge changes the gap width from 40 :m to 38 :m, yielding the 24 % relative
change in capacitance.



25

Appendix 2.

We develop the factor of 3.41 in the diagonal elements in Eq. (24) that convert the 3-F magnitude
limit R from [8] and the table into 1-F values for the real and imaginary part of the reflection
coefficients. To arrive at the factor of 3.41, we assumed Gaussian distributions in x and y with
variance F=1 with functional form

(26)

where f is the distribution of errors, x and y correspond to the real and imaginary coordinates, r
corresponds to the distance from the origin. If F(R) if the probability that f is inside a disk of radius
R,

(27)

where . We thus arrive at the following table relating 1-, 2-, and 3-F limits and R.

Table 2.1 Relations between 1-F, 2-F, and 3-F limits and R.

Limit Z (%) R

1-F 68 1.51

2-F 95 2.45

3-F 99.7 3.41

From the table we arrive at the 99.7 percentile point for R = 3.41F. This is close to the value of three
we might have anticipated, showing that the x-y distribution differs only slightly from the circular
distribution, and the difference in distributions is not very important.
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Appendix 3.

Measurements of the optical spectrum (see page 102 of Dylan Williams’ laboratory notebook #4)
and a reflectance curve for the optical antireflective coating on the back of the LiTaO3 wafer supplied
by the manufacturer.
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Data recieved from the manufacturer characterizing the antireflective optical coating they deposited
on the back of the LiTaO3 wafers.
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