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Si-based single-electron tunneling (SET) devices have of late become an important alternative to the
metal-based ones, both for ultralarge scale integration (ULSI) electronics and for electrical
metrology. We have very recently been designing, fabricating, and measuring SET turnstiles, pumps,
and charge-coupled devices using tunable barriers in silicon. Having shown the potential of these
devices, we wish to understand the error mechanisms which may manifest themselves, and to
predict the level of these errors, in order to decide how feasible these devices will be. In this paper,
we devote a substantial amount of analysis to the consideration of the “dynamical” error
mechanism. This particular error considers how electrons split up as the barrier is raised, or
alternatively how the Coulomb blockade is formed. We then consider a wide variety of other errors,
including thermal, frequency, leakage, and heating errors. We show the dependence of the error rate
on each of those mechanisms, and predict maxima or minima for the corresponding parameters. In
the conclusion, we discuss the various advantages Si-based turnstiles or pumps would offer with
respect to the metal-based ones. © 2004 American Institute of Physics. [DOI: 10.1063/1.1791758]

I. INTRODUCTION AND MOTIVATION

In the past decade, single-electron tunneling (SET)
devices1 have been proposed for applications in both inte-
grated microelectronics and in electrical metrology. In both
cases, these applications often depend on the ability of SET
pumps or turnstiles to move charge in units of just one e. For
instance, for use in logic circuits,2 the common element is a
memory node which has a counted number of electrons
placed onto it. In metrology, the obvious application is as a
current source, with a value of I=ef; here, I is the current, e
is the electron’s charge, and f is the frequency with which
electrons are clocked through the device. In both of these
fields of applications, it is clear that one very important char-
acteristic of the device is the rate of errors; in particular, we
are most interested in the probability that in each cycle, the
device passes more than or less than the exact number of
electrons desired.

For example, the conventional acceptable relative bit er-
ror rate for an ultralarge scale integration (ULSI) chip is
10−10 during an operational period of 10 years.3 Given a
typical conservative estimate for clock rate of 100 MHz, and
the number of circuit elements as 100 000, this yields a limi-
tation on the bit error rate per device of less than 10−31!3 The
case where this is most limiting for SET-based logic is for
“charge bits,”2 where one bit is represented by only a single
electron; in this case, we require a probability of error per
cycle of the charge source that is less than this number.

Clearly, a theoretical investigation of the mechanisms and
values of errors will be important if SET devices are ever to
be used in ULSI microelectronics.

Applications of SET devices in electrical metrology are
less exacting; the typical desired relative error rate is less
than 10−8. Since there has already been a substantial amount
of work, both theoretical and experimental, on errors in SET
pumps used for metrology, we will devote some length in
this introduction to that field. We note in advance that most
of this detailed work has been on devices based on metal
oxide tunnel junctions, and is thus not directly applicable to
Si-based devices.

A. Metrological aplications

By far the best reported work is the result that in SET
pumps made with Al/AlOx tunnel junctions, the error when
shuttling one electron forward and then back repeatedly can
be as low as about 10−8.4 However, because one source of
errors comes from running the pump too fast, the frequency
is limited to a few tens of MHz; this corresponds to a maxi-
mum current of a few picoamperes. This value of current is
too small to be useful as a direct current standard; instead,
NIST has pursued a capacitance standard whose basis is the
measurement of the voltage across a capacitor when a
counted number of electrons is placed on to a capacitor
plate.5

For a variety of reasons, it would be interesting and use-
ful to have a current standard with a much larger value of
current but still based on the fundamental charge of the elec-
tron. One possible approach to this is similar to the metal
pumps and turnstiles, but using Si-based materials. There are
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two major potential advantages to this alternative with re-
spect to the metal devices: one is that the value of the ca-
pacitance in the Si devices is typically a factor of 10 or more
smaller; this increases the maximum speed of the device by
the same ratio, and thus the maximum current. The second is
that it may be possible to parallelize a large number of
pumps together. However, a major conceptual difficulty with
this approach is the long-term charge offset drift in SET
devices.6 Recently, we have shown that at least in one class
of Si-based SET devices, the long-term offset drift is at least
a factor of 1000 smaller, so that it would no longer pose a
problem to the parallelization of a large number of SET
pumps.7 Thus, the higher speed of one Si device, and the
potential of parallelization, are both motivations for the pur-
suit of Si-based SET charge standards [turnstiles, pumps, or
charge-coupled devices (CCDs)], in the hope of making a
large-value current standard.

B. Devices based on tunable barriers

Recently, we have been experimentally pursuing a vari-
ety of Si-based SET pumps, turnstiles, and CCD devices.8–11

For some of these devices, there are tunnel junctions defined
by fabrication, whose resistance values are fixed; this is the
typical means by which we make the pumps and turnstiles.
For the CCD-type devices, the tunnel junctions have tunable
resistance values. For both classes of devices, however, the
barrier between lead and islands is always tuned by means of
a gate which is used to deplete certain regions of the silicon
channel.8–10 This tunable barrier is a common feature of all
the devices which we have pursued.

For the purpose of this paper, we define these terms as
follows (see Fig. 1): Each of these devices has a source-drain
voltage U, an island potential Visl, and gate voltages applied
to form the tunnel barriers VG. A turnstile is a Coulomb
blockade-based device which has a nonzero U, but a time-
independent Visl; the resistances of the tunnel barriers are
always well above the resistance quantum RQ=h /e2, and are
modulated in time by varying VG. A pump is similar, but with
U=0, and with the addition of control of the island potential
via a time-dependent Visl. A CCD is also similar to the turn-
stile, except that the tunnel barriers will have resistances well
below RQ during the parts of the cycle when electrons are
being transferred.

There has been previous experimental work on tunable-
barrier devices, although not in silicon. The first work12 dem-
onstrated current plateaus which depended on a microwave
frequency. A second publication13 demonstrated a device
with improved fabrication, leading to an error of about 10−3.
In a similar device with an optically driven SET pump,14 the
error rate was about 10−4.

There has also been a fair amount of previous theoretical
work on tunable-barrier devices. The most relevant work15

was intended for mechanical single-electron shuttles. It con-
siders a master equation approach; the main results is that the
contact time (when the barrier resistance is small) should be
long compared to the RC time for optimum operation. The
analysis in this present work fits in a similar theoretical
framework. Other work includes: In one paper, the oscillat-

ing barrier gives rise to photon-assisted tunneling and
sidebands.16 However, the effect of these is suppressed in
devices with a sufficiently large Coulomb blockade energy
which is generally numerically true in our devices. Much of
the theoretical work has been concerned with blockade in
mesoscopic devices, where the phase coherence of the elec-
tron is important; this work is generally based on Ref. 17. In
our devices, the phase coherence is not important, so these
effects do not manifest themselves. Finally, in an analysis of
a device with two barriers that have sinusoidal
modulations,18 the authors showed that the phase where the
electron tunnels is not the phase where the barrier is lowest.
While interesting, this is not directly applicable to our de-
vices, where the barriers are kept at a fixed low value for a
nonzero time.

C. Statement of the problem

In this paper, we attempt to analyze in detail the error
mechanisms and error rates in the various phases of opera-
tion of the turnstiles and CCDs (we leave the consideration
of pumps, which are more complicated, to subsequent work),
with a hope that will lead us towards schemes to optimize the
performance.

In Fig. 1, we show a generic device which will form part
of the conceptual framework for this paper. The devices are
typically made using silicon-on-insulator wafers, and have a
silicon wire running underneath the various gates, which will
both deplete to form tunnel junctions (shown) as well as
invert the silicon wire (not shown). Generally, only one of

FIG. 1. (a) Physical sketch of gates and wire for turnstile, or CCD-type
device. The upper gate is not shown, for clarity. (b) Simple circuit with one
tunnel junction and one blocking capacitor. (c) Energy diagram for the upper
part of the circuit in (b), showing the potential of the island, and the acti-
vation barrier Ea. For many devices, the capacitive coupling of the upper
gate to the island is much larger than from the source or drain, so that V is
defined by the voltage of the upper gate.
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the two (or multiple) junctions is conducting at any time;
thus, we show an electrical circuit with one tunnel junction
having both capacitance and resistance, and the other junc-
tion being only a pure capacitor. In the bottom section of this
figure, we show a generic energy diagram for the same de-
vice, with the activation barrier Ea, bias voltage U, and volt-
age difference V between the lead and the island. As de-

scribed in the caption, the island potential V can arise from
either the source-drain bias voltage or from a capacitively-
coupled voltage from the upper gate, depending on the rela-
tive capacitances; usually, the upper gate capacitance domi-
nates. For the latter case, we can see the relationship between
the two voltages,

V =
CUG

C�

UUG − eN/C�, �1�

where CUG is the capacitance between the upper gate and the
island, C� is the total island capacitance, UUG is the voltage
on the upper gate, and N is the number of extra electrons on
the island.

In Fig. 2, we show the typical time dependence for one
of the two gates. During phase I, the barrier and thus the
resistance of this junction is very high; this would be either
the resting phase of the device, or the phase during which the
other of the two barriers is active. During phases II, III, and
IV, this junction is active, with the amplitude of the activa-
tion barrier being decreased substantially. For the CCD-type
device, as shown in the top panel of part B, the resistance of
the junction goes to a value small compared to RQ. In con-
trast, for the pump or turnstile as shown in the bottom panel,
the resistance of the junction stays large compared to the
resistance quantum when the gate voltage or activation bar-
rier is at a minimum. Part C shows the time dependence of
the number of charges: the number is indeterminate in phase
III, and reaches the desired number, 1, in the last phase.
Errors occur when the number in the final phase is wrong,
because the wrong number became “locked in” during phase
IV, as the barrier is rising.

In the remainder of this paper, we wish to analyze and
calculate the various error mechanisms and their concomitant
rates. Much of this work concentrates on the errors in phase
IV, which we will call the “dynamical error.” We analyze the
dynamical error in some detail, and develop recommenda-
tions for optimizing the behavior (in particular, being able to
run the device as fast as possible). The analysis in the other
phases depends on simpler arguments, some of which come
from previous work by others. We compile all of these er-
rors, in order to give a list of mechanisms, error rates, and
limits on operating parameters such as frequency, voltage,
and temperature.

II. THEORY OF DYNAMICAL ERRORS

In this section, we will develop the formalism necessary
to analyze one specific part of the barrier height cycle. This
part is the raising of the barrier, denoted as phase IV in Fig.
2; we will call errors occurring during this part of the cycle
dynamical errors. Although this section is general, some of
the specific mechanisms we develop specifically for the
CCD-type device, where the resistance between the island
and the outside starts off much less than RQ.

Our general approach will be using a master equation; in
the following few sections, we will develop the rates for
various error mechanisms between the desired state and un-

FIG. 2. Illustration of the time dependence of various quantities, as the
barrier for the first gate is lowered and then raised. Note that one complete
cycle of the full device would include a similar set of steps for the second
barrier. (a) Sketch of the gate voltage applied to the barrier region vs time.
Note that, for a device that has electron transport, a more negative gate
voltage impedes such transport, and ultimately forms a tunnel barrier. (b)
Top: Time dependence of the resistance of the tunnel junction vs time for the
CCD-type device; note that the value goes well below RQ when the gate
voltage is low. Bottom: Time dependence of the resistance of the tunnel
junction vs time for the pump or turnstile; note that the value always stays
well above RQ. (c) Configuration of barriers, and charges on island, as a
function of time. In phase III, with the barrier low, the number of charges on
the island is indeterminate. In phase IV, as the barrier is rising, the number
of charges is moving towards the energetically favored number of one. In
phase I again, the number of charges is the desired number; errors occur if
a number other than this is “locked in” because the barrier is raised too
quickly.
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desired states. Following that, we will develop the master
equation approach, and examine some limiting approxima-
tions.

A. Combining thermal hopping and quantum
mechanical tunneling

1. Thermal over-the-barrier hopping and Coulomb
blockade

In phase IV, the energy barrier between the island and
the lead is changing from very small to large. Because of
this, during this phase there can be substantial motion due to
thermal excitation of carriers over the barrier.

The combination of thermal over-the-barrier hopping
and quantum mechanical tunneling, in the context of the
Coulomb blockade, has not been considered in detail to date.
There has been one theoretical prediction that a SET transis-
tor, for a particular set of conditions, will have a current
which depends on gate voltage with thermal hopping, just as
for tunneling.19 There has also been one experiment which
seemed to confirm the theory, although it did not obey all the
conditions specified in the theory.20

There has been no a priori theory developed for single
charge transfer in the context of both thermal hopping and
quantum mechanical tunneling. It is clear that, as the experi-
mental development of tunable-barrier charge sources con-
tinues, the development of such a fundamental theory is be-
coming of greater importance.

In the absence of such a theory, we wish to develop a
phenomenological approach that allows us to estimate the
rate of desired and undesired (error) charge transfers in the
context of both thermal hopping and tunneling. To do so, we
will first estimate the resistance of a tunnel junction due to
both hopping and tunneling, and then given this resistance as
the single time-dependent parameter, use the standard theory
of Coulomb blockade to calculate the rate of charge transfer.

2. Resistance R versus gate voltage VG for both
thermal hopping and quantum mechanical tunneling

We must note that, in actuality, there is no linear resis-
tance for thermal hopping, where the rate of transfers de-
pends exponentially on the height of the barrier. This will be
important in the context of SET turnstiles or CCDs, where
there is a nonzero bias voltage across the junction. However,
in the absence of a fundamental theory, we will use one
simple way to estimate the resistance of a junction for both
hopping and tunneling, following a standard linear
approximation:19

R = G−1 =
1

Nchann

h

2e2��
−�

+�

d��− �n���
��

�T����−1

. �2�

Here, � is the energy of the incoming electron, T��� is
the transmission of the junction, n is the Fermi function, and
Nchann�wtkF

2 is the number of transverse states in the chan-
nel; w , t ,kF are the width of the silicon wire, thickness of the
inversion layer, and the Fermi wave vector, respectively. The
simplest approximation we can make to obtain the transmis-
sion is to assume a square barrier of height Ea; then, using
the WKB approximation,

T = 1, � � Ea

=e−	�Ea − ��/VG
0 
1/2, � � Ea, �3�

where VG
0 =�2 /2mL2, and m ,L are the carrier mass and thick-

ness of the barrier, respectively. Here, the first line corre-
sponds to thermal over-the-barrier hopping, and the second
line to tunneling. For an order of magnitude estimate, if we
assume the mass of free electrons, L=0.1 �m, we obtain
VG

0 =40 �eV�0.4 K	kB (VG
0 is so small because L is so

long). From Eq. (2), we get

R =
1

Nchann

h

2e2��
0

Ea

d��− dn���
d�

�e−	�Ea − ��/VG
0 
1/2

+ �
Ea

+�

d��− dn���
d�

��−1

=
1

Nchann

h

2e2��
0

Ea

d��− dn���
d�

�e−	�Ea − ��/VG
0 
1/2

− n���

+ n�Ea��−1

=
1

Nchann

h

2e2��
0

Ea

d��− dn���
d�

�e−	�Ea − ��/VG
0 
1/2

+
1

1 + eEa/kT�−1

. �4�

This simplifies in several limits for T and Ea:

R = � 1

Nchann

h

2e2�2, Ea 
 kT

=� 1

Nchann

h

2e2�eEa/kT, kT 
 Ea 
 kT
kT

eVG
0

=� 1

Nchann

h

2e2�2e�Ea/VG
0 �, Ea � kT

kT

eVG
0 . �5�

The middle line shows the temperature-dependent resistance
corresponding to thermal activation, and the bottom line
shows the temperature-independent tunneling resistance.

3. Resistance R versus gate voltage VG, Including
leakage

There is clearly an upper limit to the resistance as a
function of the gate voltage. This does not affect any of the
numerical results in calculating the effects of the dynamical
error; we include it to avoid the unphysical limit of an infi-
nite resistance. For instance, the theory predicts that if Ea is
0.1 V, R�1022 �. This limit is clearly the leak resistance
Rleak, which is the maximum resistance of an
electrostatically-produced tunnel junction; in Ref. 21, the
leakage resistance was estimated to be 1020 �, from measur-
ing a leakage time of greater than 10 000 s. Thus, we obtain
the gate voltage-dependent resistance of
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R�VG� =
RRleak

R + Rleak
, �6�

where R is the value from Eq. (4).
Now, having calculated R�VG�, we can use this single

time-dependent parameter to calculate the rates of motion.

B. Calculation of rates of motion

We wish to consider the error mechanism in phase IV
that comes from number fluctuations on the island. In phase
III and the beginning of phase IV, as seen in Fig. 2(b), it is
clear that because R is much less than RQ, the number of
carriers on the island is not a good quantum number. This
means that there will be an extra error mechanism which
comes from the increased probability that these number fluc-
tuations will cause an unwanted result: the number of elec-
trons on the island will end up (after the barrier is raised) at
a value other than the desired one.

In order to evaluate this increased probability, we need
to obtain two results: first, we need to calculate the rates to
change the number of electrons on the island by one, as a
function of the time (or equivalently, of the barrier height).
For example, 01 is the rate for a change from zero electrons
to one. We desire a calculation of the rates over a range of
resistances R from much less than RQ to much greater than
RQ. Second, we will use these time-dependent rates in a mas-
ter equation to calculate the probabilities of ending up with
zero, one,... electrons on the island; the sum of the probabili-
ties of other than one electron will be the error.

1. Rates of motion for small and large barriers

Unfortunately, there is no simple calculation that con-
tains the rates of motion over the range from much less than
RQ to much greater than RQ. There have been nonperturba-
tive calculations over the entire range, but these only com-
pute the renormalized Coulomb blockade energy,22,23 not the
rate of motion.

Thus, we wish to obtain an approximate relation for this
rate which agrees in the limits of small and large resistance
with the results of previous perturbative calculations. It is
clear that the treatment given in this section is phenomeno-
logical; a more fundamental, a priori approach would be
desired in the future. Two results which help us are as fol-
lows.

Weak tunneling �R�RQ�. The “orthodox” equation for
the tunneling rate is1

 =
1

e2R

�E

1 − e−��E . �7�

Here, we explicitly include the Coulomb blockade by using
the expression for the energy change which includes this
contribution:24

�E± =
e

C�

�− e/2 � Ne ± C2U� , �8�

where C�=C1+C2, and where we have neglected stray back-
ground charge; also, the ± refers to the addition or subtrac-
tion of one electron from the island. Because of the form of

the equation, the rate is exponentially suppressed for motion
in the “wrong” direction (i.e., towards a higher energy state).
Also, in the context of pumping electrons, it is clear that U
will be set at a particular value. We will define the desired
state as having one excess electron �N=1�, so that often we
will want U=e /C2; this makes �E± most negative, and thus
makes motion out of the desired state unlikely. More gener-
ally, we will restrict �U−e /C2��e /2C2.

Strong tunneling �R
RQ�. We are interested in the fluc-
tuations in the charge due to the fact that N is no longer a
good quantum number. We argue on physical grounds that, in
this limit, the leading term for the rate of motion in and out
should simply be 1/RC; here, we are explicitly assuming that
at any instant in time, the number of electrons on the island
can change randomly, and that the time required to do this is
simply the relaxation time RC. Thus, we conclude that in this
limit the rate can be written as

 =
1

RC
. �9�

We wish to obtain a function which smoothly approximates
the rates in both limits of R. Using a simple exponential
smoothing function with a crossover at RQ,25 we obtain a rate
for the number of fluctuations which is

 =
1

e2R

�E

1 − e−��E

1 − e−R/RQ

1 + e−R/RQ
+

1

RC

2e−R/RQ

1 + e−R/RQ
. �10�

2. Energy barrier Ea versus gate voltage VG

We wish to obtain the energy barriers Ea and Ea� as por-
trayed in Fig. 1(c). The parameter which is controlled in the
experiment is VG, and this is the quantity we wish to use to
parametrize the equations. In order to do so, we need to
obtain the energy barrier Ea in terms of VG.

We use standard results from the silicon microelectronics
field for this purpose. In particular, it is well known that in
Si/SiO2 metal-oxide-semiconductor capacitors, the surface
potential �S closely follows the gate voltage VG;26 in fact, for
a wide range of gate voltages in the direction of accumula-
tion (larger tunneling barrier), the surface potential is ap-
proximately equal to the gate voltage for voltages small com-
pared to the band gap �1.1 eV�. Thus, we will make the
simplifying approximation that Ea= �eVG� and Ea�= �eVG�
+eV, where we have assumed that the gate voltage is mea-
sured with respect to the flatband voltage in the left lead.

3. Total rate of motion �

Finally, having developed all of the above formalism and
approximations, we can now derive the rate of motion, as a
function of the gate voltage or barrier resistance. We com-
bine Eqs. (4), (10), and (6) to obtain (for motion onto the
island)
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�VG� =
1

e2R�VG�
�E+

1 − e−��E+

1 − e−R�VG�/RQ

1 + e−R�VG�/RQ

+
1

R�VG�C�

2e−R�VG�/RQ

1 + e−R�VG�/RQ
, �11�

where R�VG� is given by Eqs. (4) and (6), and �E by Eq. (8).
For purposes of discussion, we label the two terms in this
equation as 3 and 4. For motion off the island, we would
replace �E+ by �E−.

The formalism developed above is clearly not an a priori
theory, and development of such a fundamental theory would
clearly be desirable. However, we believe that this relation-
ship for the dynamical error rate captures the essential phys-
ics necessary to analyze this error mechanism.

4. Barriers for specific situations

We need to examine the activation barrier and energy
change for motion onto and off of the island. In Fig. 3, we
show the potential energy diagrams for UUG=e /CUG; here,
we have now specifically considered the gate (denoted
“UG,” or upper gate) voltage and capacitance, because this
capacitance is usually much bigger than the capacitance to
the drain. This choice of the upper gate voltage makes the
N=1 state optimally preferred, which one can see by substi-
tuting in Eq. (8). Here, we have used the result that

V =
CUG

C�

UUG − eN/C� = e/C� − eN/C� = �1 − N�e/C�.

�12�

We note that in this figure and in Table I, we have assumed
that (1) the barrier does not change as the electron moves; (2)
for N=1, the appropriate energy barrier to use is with V as in
Eq. (12). This latter assumption means that we are suppress-
ing consideration of dynamic effects such as the image
charge27,28 on the barrier.

We note one interesting thing from this figure: when the
barrier is smaller than the Coulomb blockade energy,

�eVG��e2 /C�, there is no stable state for N=2 or higher.
This is because the potential of the island rises above the top
of the activation barrier in this case. It is not clear exactly
what this means in reality; for instance, does the potential of
the island truly rise by the Coulomb blockade energy when it
is higher than the barrier? This is an interesting regime
which, to our knowledge, has not been investigated either
experimentally or theoretically. For the purposes of this pa-
per, we will simply assume that the barrier is as drawn.

Table I shows the corresponding activation barrier and
energy Ea and �E±, for motion between the three states we
will consider �N=0,1 ,or 2�.

We show in Figs. 4 and 5 some simple examples of the
rates defined in Eq. (11). These graphs show the resistance
and the rates as a function of gate voltage when the potential
U is set such that CUGUUG/e=1; as mentioned above, this is
the condition in which it is optimally favorable for one elec-
tron to tunnel onto the island due to the Coulomb blockade.

In these graphs, we have chosen the temperature so that
the exponential factor in Eq. (7) is small enough such that
the error rate 3

10 is small compared to the desired rate 3
01.

This is one example of a general feature: what we desire is
that the forward rate tot

01 is large compared to the backward
or error rate tot

10.
We are interested in the probability that the number of

electrons on the island at the end of phase IV is not the
correct number; what we ultimately desire is that this prob-
ability is less than some relative error rate �0. One way of
quantifying this is to note that a minimal condition for
achieving a relative error rate no larger than �0 is that the
rates for the undesired motion be at most �0 times the rates
for the desired motion. If we set �0=10−8, we can see that we
need −�E−�20kT, or e2 /C��40kT. Note that this condition
may change somewhat if we operate at a voltage other than
the optimum, U=e /C2.

We note that the important region of change of the gate
voltage is at low voltages, where the resistance is not much
greater than RQ. In particular, our estimate for the rate of
number fluctuations for a low barrier 4 falls to an accept-

TABLE I. List of activation barriers Ea and energy changes �E for various conditions. (a) shows the energies to move toward the desired state, (b) shows the
energies to move away from the desired state. In each part, the upper set of quantities are for small gate voltages, and the lower set for large gate voltages.
As shown in the figures and discussed in the text, it is sufficient to consider only the smaller range.

U
Activation
barrier Ea

0− �1
Change

�E
Activation
barrier Ea

2− �1
Change

�E

(a)

eVG�e2 /C��C2U /e−2� general
U=e /C2

�eVG� �E+

+e2 /2C�

CCD (no barrier)

eVG�e2 /C��C2U /e−2� general
U=e /C2

�eVG� �E+

+e2 /2C�

�eVG�+eVN=2

�eVG�−e2 /C�

�E−

+e2 /2C�

U
Activation
barrier Ea

1− �0
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�E
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�E−

−e2 /2C�
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ably low value in this particular simulation at about
0.0025 V. Although the exact details of how the error rate 4

depends on VG are not known, it is clear that it will fall with
some dependence as R increases.

C. Master equation

It is very clear from the foregoing that the rates, both
desired and undesired, depend quite sensitively on the details
of the device parameters. In addition, in general it may be
difficult to discriminate via device geometry between tunnel-
ing and thermal over-the-barrier hopping. Thus, it is not pos-
sible in this work to directly calculate the dynamical error
exactly from the device geometry. Instead, what we hope to

do is to give insight into the general trends as well as de-
velop the formalism, allowing calculation of optimum strat-
egies for particular devices in the future.

1. General considerations

The situation we encounter is as follows: at the begin-
ning of phase IV, the probability of finding an undesired
number of electrons on the island is relatively large, either
because (for the CCD-type device) the rates of forward and
backward motion are the same when R�RQ, or (for the turn-
stile) because we are starting with a state that has N=0. As
time progresses through phase IV, because the bias voltage is
set to favor the state with N=1, the probability of finding one
electron on the island increases towards 1, and the probabili-

FIG. 3. (Color) Potential energy diagrams for the left lead, island, and right
lead, for three cases. Top, e2 /C�� �eVG�; middle, e2 /C�= �eVG�; bottom,
e2 /C�� �eVG�. We have assumed C��C2�CUG. In each case, three poten-
tials are shown, corresponding to 0, 1, or 2 extra electrons on the island. See
Table I for the corresponding activation barriers and energy changes. This
figure shows the results for U=e /C2 or UUG=e /CUG, which makes the en-
ergy changes �E± optimum for Coulomb blockade to favor the N=1 state.

FIG. 4. (Color) Upper: The tunneling resistance vs the gate voltage, for the
parameters shown. The length of the forbidden region underneath the gate is
L=0.03 �m, which determines the dependence of the resistance on gate
voltage. For comparison to the approximations in Eq. (5), we note that
kBT=4	10−4 eV and kBT�kBT/eVG

0 �=4	10−3 eV; thus, the resistance is
dominated by thermally activated motion for smaller VG. Lower: Rates of
motion vs gate voltage for the same range as in the upper curve. 4 [second
term in Eq. (11)] is large at low gate voltages, when R�RQ; at large volt-
ages, 3 [first term in Eq. (11)] is larger. The energy change for the motion
onto the island (rates 01) �E+ is positive, corresponding to a desired tun-
neling event towards the desired state, conversely, the energy change for
rates 10 is negative, inhibiting motion away from the desired state. Since
�E+ is positive and �E− negative, 3

01 is much larger than both 3
10 and the

thermal rate otb; the same is true of tot
01 vs tot

10. Note that e2 /C��2
−C2U /e�=0.016 eV, and thus all of the important rate changes (all of the
action in this graph) occur for �eVG��e2 /C��2−C2U /e�, or �eVG��e2 /C�

(i.e., the energy barriers are as indicated in the top panel of Fig. 3 over this
whole range). Parameters: T=4 K, U=0.032 V, C�=10 aF, Nchann=10, VG

0

=0.000 046 eV, �E01=−0.008 eV, �E10=−0.008 eV, V=0.016 eV,
e2 /C��2−C2U /e�=0.016 eV.
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ties of finding a number other than one decrease towards
zero, in an approximately exponential fashion. In the rest of
this section, we will specialize to the case of the CCD; the
other case is similar.

The first question we must ask is: how many different
states should we consider? Again this is a detailed question
which in general must be answered for each specific device.
However, it seems reasonable for our general discussion to
only consider three states, those with N=0,1 ,2. We will call
the probabilities of finding that number of electrons on the
island at any time as P0�t� , P1�t� , P2�t�. The next question we
must consider is: what are the values of these probabilities at
the beginning of phases IV, time t=0? This is also a detailed
question which must be answered for each specific device;
thus, we make the simplest possible approximation, which is
that P0�0�= P1�0�= P2�0�=1/3. Finally, in the standard way
for a master equation, we obtain the rate of change of these
probabilities as

dP0�t�
dt

= − tot
01P0�t� + tot

10P1�t� ,

dP1�t�
dt

= − �tot
10 + tot

12�P1�t� + tot
01P0�t� + tot

21P2�t� , �13�

dP2�t�
dt

= − tot
21P2�t� + tot

12P1�t� .

2. Frequency limit—linear voltage ramp

In Fig. 6, we show the results of the master equation for
the same parameters as in Fig. 4. Here, we assume that the
gate voltage on the barrier is raised linearly in time, from 0
to 0.2 V, over two possible ramp times tramp as indicated.
These ramp times are chosen because they are in the relevant
range for our devices, and also because they show the basics
of the dynamical error for the parameters we have used.

In order to get this, we need to obtain the rate 21; since
there is no barrier for motion in this direction, we can use a
standard result from the transit time in CCDs,26 which yields
21=1/�=�V /L2�10−12 s−1.

We note that the probability for an error which leaves
zero electrons on the island after the gate is raised saturates

FIG. 5. (Color) Similar to the previous graph, but over a large gate voltage
range. Note that the rates 3

01 and tot
01 are substantially larger than those of

the reverse direction. Above about 0.06 V, the resistance saturates at Rleak,
and the rates saturate also. Parameters: same as the previous figure.

FIG. 6. (Color) Probabilities as a function of time, or gate voltage, for a
linear gate voltage ramp. The same parameters are used as in Fig. 4. The
ramp is from 0 to −0.2 V, over a time of either 10 or 100 ns. Upper: Prob-
abilities P0 , P1 , P2 for the number of electrons on the island are 0, 1, or 2,
respectively. The desired probability P1 goes to approximately 1 for all
conditions. The probabilities for an undesired error, P0 and P2, rapidly de-
crease in value over the same voltage range (�0.001 to 0.003 V) for which
the undesired rate 10 falls rapidly in Fig. 4. For a relatively slow ramp time
of 100 ns, both undesired probabilities fall below our criterion. However, for
a faster ramp time of 10 ns, the probabilities of having an error with zero
electrons on the island after the barrier is raised saturates at a substantially
larger value than our desired error rate. This is an example of the dynamical
error, because the barrier has been raised so quickly that the wrong number
of electrons is locked into the island. Lower: Here we plot the two prob-
abilities for undesired outcomes, multiplied by the rates as indicated. For the
three cases where the undesired probabilities fall to an acceptably low level,
the ratios saturate at 1.0. However, for the ramp time of 10 ns, the ratio does
not reach 1.0; this indicates the basic cause for this locking in: P0 cannot
follow the decrease in 10 quickly enough. Parameters: same as the previous
figure, with �VG ramp�=0.2 V.
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at an undesired large value for the shorter ramp time. This is
an example of the locking in of the wrong number of elec-
trons on the island. The lower panel of Fig. 6 gives us insight
into why this occurs. We consider the first line of Eq. (13),
over the relevant voltage range from 0.001 to 0.003 V. In
this range, the value of the probability for the desired out-
come, P1, is close to 1, so that we can write

dP0�t�
dt

= − 01P0�t� + 10; �14�

here, we have suppressed the subscript “tot.” In the region of
interest, what is occurring is that 10 is rapidly decreasing, as
the resistance rises above RQ, and thus the Coulomb block-
ade turns on. In turn, P0 is attempting to follow the rapid
decrease of 10. We can see from Eq. (14) how this occurs:
as 10 decreases, the first term on the right-hand side drives
P0 down by providing a negative sum to the time derivative
of P0. However, if 01 decreases too quickly, because the
gate voltage has been ramped too quickly, the first term can-
not drive down the probability quickly enough, and so it gets
locked in to a relatively large value. Thus, this equation tries
to provide negative feedback, and in particular tries to main-
tain the sum on the right-hand side at a small value. We note
this is equivalent to satisfying detailed balance:

P0/P1 = 10/01. �15�

We can see the feedback in the lower panel of Fig. 6: for the
one case (P0 for 10 ns), where the probability of an error
saturates at a relatively large value, the ratio plotted shows
that this feedback fails to occur.

Given the guidance from this analysis, we can also esti-
mate in a straightforward way what the limit on the ramp
time or frequency of operation will be in general. In the gate
voltage region of interest, this failure occurs when 01P0

�10. Thus, we can approximate

dP0�t�
dt

= − 01�t�P0�t� , �16�

or

ln P0�t� = − �
0

tramp

dt 01�t� . �17�

From the first term of Eq. (11), we can see that the time
dependence of 01�t� comes from the gate voltage depen-
dence of the resistance R, predominately as 1/R�VG�; also, in
the gate voltage region of interest, an approximation for R
comes from the middle line of Eq. (5). Thus, we can write

01�t� � 1/R = 0e−�eVG�/kT, �18�

and

ln P0�t� = − �
0

tramp

dt 01�t�

= − tramp/�VG ramp��
0

�VG ramp�

dVG01�VG�

= − tramp/�VG ramp�0 �
0

�VG ramp�

e−�eVG�/kT

= − kT/e tramp/�VG ramp�01�R = RQ� , �19�

where we have defined the start of the integral at the point
where the resistance goes above RQ, and VG ramp is the value
of VG�tramp�, when the ramp is finished.

Over this region, we want the probability of having zero
electrons to be less than the acceptable error rate �0:
ln P0� ln �0 or

tramp �
VG rampe�ln �0�

kT01�RQ�
. �20�

As a numerical example, if we consider the rates in Fig.
4, with �0=10−8, we can see that at R�RQ, the desired rate
01 is about 1	1012 s−1. With T=4 K, we thus obtain the
result that the minimum ramp time or time for this phase TIV

is 6 ns, for a linear ramp from 0 to 0.2 V. This is equivalent
to a maximum frequency of 160 MHz (just for this phase).

3. Frequency limit—optimized ramp

Clearly, a simple linear ramp over the whole of phase IV
is not an optimum shape for the ramp of the gate voltage. It
is clear that, as discussed above, a detailed optimization of
the rate needs detailed knowledge of the device parameters.
However, we again wish to give some general guidance on
how to optimize the ramp.

For instance, one obvious strategy is to ramp quickly for
R�R*, then stop for a certain time, then ramp as fast as
possible above this. Here, R* is the value of R�t� where the
Coulomb blockade is fully active (the corresponding VG

* is
�0.0025 V in Figs. 4 and 6). In this case, when VG is
stopped at VG

* , from Eq. (16) with 01�t� a constant, P0

�e−01t will fall to an acceptable value in a time of t*

� ln �0 01�R*�.
To get an approximate answer, we can assume that the

Coulomb blockade is fully developed by the time R=10RQ.
In this case, from Eq. (10), we can estimate that this waiting
time is t*��ln �0�R*C��10�ln �0�RQC�. As an example, we
show three possible optimized ramps in Fig. 7. The red curve
shows the optimum waiting voltage VG

* =0.0025 V, and dem-
onstrates that only a very short waiting time is required to
equilibrate. The black and blue curves show the deleterious
effect of stopping too soon or too late, even with a much
longer t*.

Thus, to optimize the gate voltage ramp, we can do the
following.

(1) Estimate junction and gate capacitances from the SETT
behavior.

(2) With one barrier low, measure the conductance of the
other barrier as a function of gate voltage.
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(3) Estimate the optimum bias voltage U, and VG
* ; during

the ramp, stop at VG=VG
* for a time of t*

�10�ln �0�RQC�.

D. Summary of dynamical error considerations

Generality of results. The tunneling and activation rates
depend very sensitively on the device parameters. Thus, we
suspect that it will not be possible in practice to simulate the
rates and thus optimize device operation from considerations
of the device geometry alone. Rather, we believe that empiri-
cal measurements of the electrical characteristics of one bar-
rier must be made before any such attempts to optimize.

In contrast, the general results that we have obtained, for
frequency limits, and for the optimization procedure, depend
on only two quite reasonable assumptions.

(1) The Coulomb blockade turns on rapidly, as a function of
t ,R ,or VG, after R�RQ.

(2) The Coulomb blockade depends only on the barrier re-
sistance, independent of whether the motion is tunneling
through or activation over the barrier.

Temperature limit. Just as in any other SET device, the
thermal energy must be low enough to allow operation of
this device. In particular, a crude rule of thumb is that we
require kT� �1/40�e2 /C� to achieve a relative error less than
�0�10−8.

Frequency limit. Because of the possibility of locking in
the undesired state, the gate voltage cannot be ramped at an
arbitrarily fast rate. Rather, we are limited to minimum ramp
times as follows:

TIV �
VG rampe�ln �0�

kT01�RQ�
	nonoptimized �easy�
 ,

�21�
TIV � 10�ln �0�RQC� 	optimized �not easy�
 .

III. THEORY OF OTHER MECHANISMS

A. Leakage through other barrier

1. Rates

In the preceding section, we considered the situation
where the gate voltage and the resistance of one barrier was
varied, while the resistance of the other barrier was consid-
ered to be infinite. We now consider the “leakage” error due
to the finite resistance of the second barrier, Rleak. The
mechanism and the magnitude of the error will depend on
whether Rleak is larger or smaller than RQ, and on the phase
of the cycle.

We will consider both the tunneling through the single
junction formed by the second barrier, as well as the cotun-
neling through both the barriers. As in the preceding section,
for single-junction tunneling, we have

 =
1

e2R

�E

1 − e−��E , R � RQ

=
V

eR
, R � RQ. �22�

We will consider in this discussion of leakage only
events that are energetically favorable in the Coulomb block-
ade regime, because the energy change obeys ��E��EC

�kT. Thus, we have for two successive single-junction
events causing a net error,

leak =
��E�
e2R�

, R � RQ

=
VSD

eR�

, R � RQ. �23�

FIG. 7. (Color) Probabilities as a function of time, for a gate voltage ramp
with a waiting time. This shows the effect of an optimized ramp. Parameters
are the same as the previous two figures, with the gate voltage ramps as
indicated. In all cases, the ramp rate dVG /dt is the same as in the 10 ns
curves of the previous figure. Note that in previous figure, this ramp time
without a waiting time resulted in a locking in of the wrong the number of
electrons. Upper: Three representative possible gate voltage ramps. The dif-
ference between them is the waiting time t* and waiting gate voltage VG

* .
The optimum case (red) has a very short waiting time �0.1 ns�, the other two
have a long time �1 ns�. Lower: Probability P0 of an error. The optimum
case, which stops at VG

* =0.0025 V, reaches an acceptable dynamical error
probability in a very short time; as noted in the text, this is the value where
the Coulomb blockade becomes fully active. The other two cases show
nonoptimum possibilities. The black curve shows the effect of stopping too
soon: the error rate tot

10 is still too large, and so P0 does not fall. The blue
curve, on the other hand, has a value of VG

* which is too large: at this point,
the value of tot

01 is too small to drive P0 down to the desired level in 1 ns.
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Here, R�=R�t�+Rleak is the total resistance of both junc-
tions.

By definition, cotunneling can only occur when both bar-
riers are large compared to RQ. In this case, the rate is29

cot =
1

6�2h

RQ
2

RRleak

1

EC
2 	�eVSD�2 + �2�kT�2


	�eVSD�
1

1 − e−�eVSD
, �24�

with R the resistance of the active barrier, and other symbols
as defined previously. We note that this result is numerically
only valid for small bias; its usage here is only to obtain an
approximate error rate. Since for the turnstile or CCD, the
voltage bias across the device is about VSD�EC�kT, the
last fraction is approximately 1, so

cot =
1

6�2h

RQ
2

RRleak

�eVSD�3

EC
2 . �25�

Phase I. In this phase, both barriers have resistances equal to
Rleak, so R�=2Rleak. In this case, there are two possible
modes for errors, given the voltage bias across the device.

(1) The electron tunnels from the left onto the island, and
then tunnels to the right (favorable).

(2) The electron tunnels from the island to the right lead,
and then an electron tunnels from the left lead to the
island (unfavorable).

Suppressing the unfavorable case for leak, the probability
that the electron (after making the first tunneling event) does
not return through the same junction, and therefore produces
a net error, is approximately equal to 1. To simplify consid-
eration, we will assume that the voltage drop across both
junctions for N=0 is the same (as we did in the preceding
section). The more general case has a straightforward al-
though more complicated analysis. With a total voltage drop
of VSD split equally among the two barriers,

leak
I =

�EC/m�
2e2Rleak

,

�26�

cot
I =

1

6�2h

RQ
2

Rleak
2

�eVSD�3

EC
2 ,

where 1/2�m�1, depending on bias.
Phases II and IV. In these phases, the active (left) barrier

has a resistance much less than Rleak, and which may be less
than RQ (for the CCD), so R�=Rleak. For R
RQ, there is no
Coulomb blockade, and so there is no cotunneling; instead,
there is a large single-junction rate for tunneling through the
inactive barrier. In this case, error rates are

leak
II =

�EC/m�
e2Rleak

, R�t� � RQ

=
VSD

eRleak
, R�t� � RQ, �27�

cot
II =

1

6�2h

RQ
2

R�t�Rleak

�eVSD�3

EC
2 R�t� � RQ.

Phase III. This phase is similar to phases II and IV for the
single-junction tunneling rate leak, except that the active
barrier resistance R�t� is a constant, Rlow; again, R�=Rleak.
There is no cotunneling for the CCD, since there is only one
tunnel junction. With Rlow the value of the active barrier for
the turnstile in this phase,

leak
III =

�EC/m�
e2Rleak

	turnstile
 ,

leak
III =

VSD

eRleak
	CCD
 , �28�

cot
III =

1

6�2h

RQ
2

RlowRleak

�eVSD�3

EC
2 	turnstile
 .

2. Estimates of errors

Since these errors are all independent of past history (in
contrast to the dynamical errors), we do not need to consider
a master equation, and thus the total error is simply

�� = �i

dti, �29�

where i represents the time spent in each of the four phases.
Thus, we have the total relative error in one cycle of the

turnstile or CCD as

�leak =
�EC/m�
e2Rleak

�TI/2 + TII + TIII + TIV� 	turnstile
 ,

�leak =
�EC/m�
e2Rleak

�TI/2 + TII;R�RQ + TIV;R�RQ�

+
VSD

eRleak
	TII;R�RQ + TIII + TIV;R�RQ
 	CCD
 ,

�cot =
1

6�2h

RQ
2

Rleak

�eVSD�3

EC
2 � TI

Rleak
+

TIII

Rlow
+ �

II
dt

1

R�t�

+ �
IV

dt
1

R�t�� 	turnstile
 ,

�cot =
1

6�2h

RQ
2

Rleak

�eVSD�3

EC
2 � TI

Rleak
+ �

II;R�RQ

dt
1

R�t�

+ �
IV;R�RQ

dt
1

R�t�� 	CCD
 . �30�

Here, we have defined TI, TII, TIII, TIVas the time spent in
phases I, II, III, and IV; we also define Ttot=TI /2+TII+TIII

+TIV. We can make some immediate simplifications: Be-
cause Rleak is so large, the term for phase I in the cotunneling
error is so small that we can neglect it (here, we assume that
the time spent in phase I, TI, is not much much longer than
the time in the other phases). Also, there is less than a factor
of 2 difference between �EC /m� /e and VSD, so we set them
equal. In that case, by noting that RQ=h /e2, we obtain
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�leak =
�VSD�
eRleak

Ttot 	turnstile
 ,

�leak =
VSD

eRleak
Ttot 	CCD
 ,

�31�

�cot =
1

6�2

VSD

eRleak
�TIII RQ

Rlow
+ �

II
dt

RQ

R�t�

+ �
IV

dt
RQ

R�t�� 	turnstile
 ,

�cot =
1

6�2

VSD

eRleak
��

II;R�RQ

dt
RQ

R�t�

+ �
IV;R�RQ

dt
RQ

R�t�� 	CCD
 .

We note that, for the turnstile, R�t��RQ, and for the CCD,
R�t��RQ/20; because of this, in both cases, the extra pre-
factor of 1 /6�2 means that the cotunneling error is smaller,
so that the leakage error dominates. Thus, we obtain, noting
that it is also approximately true that �EC /m� /e�VSD

�e /CUG�e /C�, that both devices have the same final esti-
mate:

�leakage =
1

C�Rleak
Ttot 	turnstile


=
1

C�Rleak
Ttot 	CCD
 . �32�

We note that these final results are appealing in their simplic-
ity: the error is essentially a fraction of the cycle time di-
vided by the RC time for the device.

We note that the errors in Eq. (32) can be considered as
limits on frequency, but also as limits on temperature, be-
cause Rleak may be thermally activated. However, this limit is
easily neglected, because it is likely that we can always in-
crease the terminal value of VG and thus increase the activa-
tion barrier, and so increase the value of Rleak at any given
temperature.

B. Frequency errors

This error results from not waiting long enough for elec-
trons to tunnel, very similar to the metal pumps.30 Since we
separately considered the master equation in phase IV, it is
not necessary to separately consider frequency errors in this

phase. Also, such errors are unimportant in phases I and II. In
phase III, the frequency error in the CCD device is negligibly
small, because the resistance is so low. Finally, we can esti-
mate the error in the turnstile in phase III as

�freq = e−TIII/RlowC�. �33�

C. Heating errors

This error is more complicated to calculate, because it
requires knowledge of the cooling mechanism of the elec-
trons in the device; these mechanisms are not well known at
low temperatures.

In general, the low-temperature electron-phonon cooling
power has been better studied in metals than in semiconduc-
tors. To get an estimate of the effect we follow the general
procedure in Niu et al.,31 which we outline in the following:
for a cycle frequency f =1/Tcycle, the power input to the cen-
tral island is approximately Pin= fEC= fe2 /2C�. In general,
the cooling power due to the electron-phonon coupling is
B�Te

5−TL
5�, where Te and TL are the electron and lattice tem-

peratures, respectively; B is a constant. For the two-
dimensional electron gas in a GaAs/AlGaAs heterostructure,
the cooling power is estimated as �A�Te

5−TL
5�, where A is the

area, and �=30 fW/K5/�m2. Since the temperature rise de-
pends only weakly on the empirical parameter � as Te

��1/5, we believe it is reasonable to use this result for a Si
quantum dot.

Setting the incoming power equal to the cooling power,
we can obtain the rise in the electron temperature over the
lattice temperature. Using an area of �0.08 �m�2, and with a
total capacitance of 10 aF, we obtain Te=0.09f1/5, with Te in
units of K, and f in Hz. Using the criterion developed earlier
for the maximum temperature to avoid thermal errors,
kT�1/20EC, we obtain an estimate of the maximum fre-
quency as fmax=200 MHz.

We may also ask the question: What is the effect on the
error rate for frequencies higher than this? As we saw above,
the relative error grows with temperature as �therm�e−EC/kT.
Thus, if we use a frequency higher than the maximum, we
get a relative error which is approximately

�heat = e−20�fmax/f�1/5
. �34�

IV. CONCLUSIONS

We refer to Table II, which summarizes most of the re-
sults in this paper. In this table, we list the various param-
eters which are important to reach a desired low relative

TABLE II. List of error mechanism, concomitant limits on parameters, and leading corrections to relative error rates for parameters outside of desired ranges.

Mechanism Equation Parameter Error � Limit Limit ��0=10−8� Limit ��0=10−7�

Dynamical 20 Time Tmin
IV (nonoptimized) �0exp	−TIV/Tmin

IV 
 eVG ramp�ln �0�� kT01�RQ� �6 ns �5 ns
(optimized) 100 RQC� �25 ps �22 ps

Thermal Temperature Tmax �0exp	T /Tmax
 e2 � 2�ln �0�C� �4.4 K �5.0 K
Leakage 32 Maximum times �C�Rleak�−1	TI /2+TII+TIII+TIV
 �0C�Rleak �10 �s �100 �s
Frequency 33 Tmin

III exp	−TIII /C�Rlow
 �ln �0�C�Rlow �0.1 ps �0.1 ps
Heating 34 Frequency fmax �0exp	�fmax/ f�1/5
 �0

−1A�� kB
�e2 �C�kB

�4 �200 MHz �400 MHz
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error �0. For each parameter, we show the effect on the error
�, as well as the formula for the limit of the parameter, plus
numerical values for two possible desired relative error lev-
els.

We note that in general the limits on the parameters are
all reasonable; we must of course acknowledge, as described
in the foregoing, that the rates for the dynamical error de-
pend very sensitively on the device parameters, and so the
values shown for that error mechanism are only approximate
estimates. The limit which appears to be most problematic is
the minimum time spent in phase IV, for the nonoptimized
case. This does not concern us overmuch, for two reasons:
one is that this limit can probably be moderately reduced by
reducing the temperature, and the second is that it may be
possible to substantially reduce it by the optimization proce-
dure outlined above.

Much of this paper has been devoted to trying to under-
stand and calculate the dynamical error mechanism. This
mechanism is intimately bound up with the interesting ques-
tion of how the Coulomb blockade is formed, and in particu-
lar how electrons split themselves up as a barrier is formed.
We have opted to take the simplest phenomenological ap-
proach to trying to understand this question; we believe there
may be substantial interesting experiments to be done in this
realm, and we invite more fundamental theoretical consider-
ations for this dynamical error.

Another interesting question which is raised herein is
that of the interplay between thermal over-the-barrier hop-
ping and Coulomb blockade. As mentioned above, there is
one theoretical treatment of this, for the SET transistor.19

However, we know of no such treatment for the control of
single-electron motion, and we believe there is room for
fruitful analysis in this regime of low, thick tunnel barriers.

Finally, having listed the formulas for and values of the
various error mechanisms, we can generally comment on the
feasibility of Si-based electron current standards. It is evident
from Table II that the putative error mechanisms can in gen-
eral be controlled at an acceptable level for electrical metrol-
ogy. Given that, there are substantial advantages to the
Si-based devices compared to the metal-based ones that
make it desirable to pursue this alternative route towards a
high-value current standard. These advantages include the
tunable junction resistance, which allows us to avoid the co-
tunneling error which forces the choice of using many
(seven, e.g.) tunnel junctions in the metal pumps.4,30,32,33

Also, the Si-based devices inherently have a capacitance
which is smaller by about an order of magnitude, allowing
them to run significantly faster compared to the frequency
error. In addition, this smaller capacitance affords the capa-
bility of running the devices at a much higher temperature
[in the metal devices, the maximum temperature is about
0.1 K (Ref. 4)]. Finally, the lack of the charge offset drift in
at least one class of Si-based SET devices7 affords the po-
tential of parallelizing a large number of turnstiles or CCDs
to achieve a very large current.
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