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Abstract— A general approach is introduced for estimat-
ing uncertainties in far-field parameters obtained from spheri-
cal near-field measurements. Although analysis is incomplete at
present, we expect that as the measurement radius increases, our
result will transform smoothly into the far-field case, where un-
certainties depend on the on-axis gain and polarization of the
probe and on the measurements in the far-field direction of in-
terest.
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1. INTRODUCTION

UNCERTAINTY analysis for spherical near-field
measurements is an on-going topic of research [1],

[2], [3]. Previous work has relied heavily on simulation
studies; however, we seek a more analytic approach pat-
terned after [4] and [5].

Table 1 groups the uncertainty sources into twenty
categories—four from the characterization of the probe
and the remainder from the direct antenna under test
(AUT) measurement. (This is a somewhat coarser divi-
sion than proposed by Hess [6]). In this paper we restrict
consideration to the underlying theory and some initial
developments. We plan to report continuing progress in
future presentations.

2. TRANSMISSION EQUATION

First, we note the far-field pattern of the AUT t(r̂) in
terms of the vector probe responsew is [8]

t(r̂) =
X¡

t1nmXnm (r̂) + t2nmYnm (r̂)
¢

, (1)

where µ
t1nm
t2nm

¶
=M−1n (r)

µ
T 1nm(r)
T 2nm(r)

¶
(2)
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Inherited from Probe Measurement
1. Probe on-axis gain
2. Probe on-axis polarization
3. Relative probe pattern
4. Probe non-µ = ±1 modes

Direct from AUT Measurement
5. Probe alignment
6. AUT alignment
7. Insertion loss
8. Impedance mismatch
9. Aliasing

10. Solid angle truncation
11. θ, φ position errors
12. r position errors
13. Probe-AUT multiple reflections
14. Non-linearity
15. I-Q imbalance
16. Flexing cables/ rotary joint errors
17. Drift
18. Leakage and crosstalk
19. Room scattering
20. Noise

Table 1. Sources of Uncertainty
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and

T 1nm(r) =

Z
w(r)

a0
·X∗nm (r̂) dr̂

(3)

T 2nm(r) =

Z
w(r)

a0
·Y∗nm (r̂) dr̂.

Here, a0 is proportional to the excitation amplitude and
Xnm and Ynm = ir̂ × Xnm are vector spherical har-
monics [7, chpt. 16]. Further,

M−1n =
i
p
(2n+ 1) / (4π)

2
¡
R1n,−1R

2
n1 −R2n,−1R

1
n1

¢
(4)

×
µ
−R2n,−1 −R2n1 R2n,−1 +R2n1
R1n,−1 +R1n1 R1n,−1 −R1n1

¶
.

The R1,2n,±1 are the translated probe coefficients and are
known functions of the probe receiving pattern and the
measurement radius r. It usually suffices to choose the
mode limit so that

N ∼ krmin, (5)

where rmin is the “minimum radius”; that is, the radius
of the smallest sphere, centered on the coordinate origin,
that encloses the test antenna.

As r is increased

M−1n ∼
r0→∞

1

2πs · s

µ
sy isx
isx sy

¶
ikr

exp (ikr)
, (6)

where

s = s0π (ẑ)

sx = s0π (ẑ) · x̂ (7)
sy = s0π (ẑ) · ŷ

and s0π (ẑ) is the receiving pattern on boresight when the
probe is located at the origin of the laboratory coordinate
system and is directed in the −ẑ direction.

3. UNCERTAINTY EQUATIONS

From (1) the uncertainty in the AUT far-field pattern be-
comes

∆t(r̂) =
X¡

∆t1nmXnm (r̂) +∆t
2
nmYnm (r̂)

¢
, (8)

where µ
∆t1nm
∆t2nm

¶
= M−1n

µ
∆T 1nm(r)
∆T 2nm(r)

¶
(9)

+∆M−1n

µ
T 1nm(r)
T 2nm(r)

¶
and

∆T 1nm(r) =

Z
∆w(r)

a0
·X∗nm (r̂) dr̂

(10)

∆T 2nm(r) =

Z
∆w(r)

a0
·Y∗nm (r̂) dr̂.

The uncertainty due to the probe is (from 4)

∆M−1n =
i
p
(2n+ 1) / (4π)

2
¡
R1n,−1R

2
n1 −R2n,−1R

1
n1

¢
×∆

µ
−R2n,−1 −R2n1 R2n,−1 +R2n1
R1n,−1 +R1n1 R1n,−1 −∆R1n1

¶

+M−1n ∆

Ã
1

R1n,−1R
2
n1 −R2n,−1R

1
n1

!
,

(11)

where

∆R1nm(r) =

Z
∆s0π

³
k̂
´
·Xnm

³
k̂
´
eiγr

dK

γk

(12)

∆R2nm(r) =

Z
∆s0π

³
k̂
´
·Ynm

³
k̂
´
eiγr

dK

γk
.

Here, we are restricted to a symmetric m = ±1 probe, as
usually employed in spherical near-field scanning.

The first term in (9) is due to the uncertainty in the mea-
sured near field and the second term is due to the uncer-
tainty in the properties of the probe. (This corresponds to
the division of Table 1.) A similar separation arises in the
planar near-field case [4, eq. (26)].

4. UNCERTAINTY ANALYSIS

Our intent is to estimate uncertainties in the measured
AUT data and the probe pattern, and to propagate them
through the above equations to the far field (8). We will
use a worst-case analysis (particularly when errors are
small) or a statistical (RMS) approach where applicable.
Many details are unclear at this time.

When the measurement radius is large, the far-field pat-
tern is given by

t(r̂) ∼
r→∞

1

2πs · s
ikr

exp (ikr)

∙
sy
w (r)

a0
+ sx

w (r)× r̂
a0

¸
,

(13)
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where we have used (6). It is easy to show that if sx/sy
is essentially real (corresponding to a linearly polarized
probe), the uncertainty approaches the simple form

k∆t(r̂)k2

kt(r̂)k2
∼

r→∞

k∆sk2

ksk2
+
k∆w(r)k2

kw(r)k2
. (14)

In this case, the overall uncertainty depends only on un-
certainties in the on-axis properties of the probe and un-
certainties in the measured field in the direction of inter-
est.

As the measurement radius decreases into the near-field
region, more of the measured near field influences the far-
field result in a given direction. Following Yaghjian [9],
we expect most of the uncertainty contributions to come
from the probe pattern and measured near field over the
mutually subtended solid angle illustrated in Figure 1.

5. CONCLUSION

We have laid a foundation for future development of
an uncertainty analysis for spherical near-field scanning
measurements. This analysis divides neatly into terms due
to uncertainties in the probe properties and to uncertain-
ties in the near-field measurements. We expect the spher-
ical near-field uncertainty analysis to approach the well-
known far-field uncertainty analysis as the measurement
radius increases.
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Figure 1 – Schematic showing the subtended angle be-
tween the probe and AUT.
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