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A quantum bit is a closed two-dimensional Hilbert space, but often experimental systems have three or more
energy levels. In a Josephson phase qubit the energy differences between successive levels differ by only a few
percent, and hence care must be taken to isolate the two desired levels from the remaining Hilbert space. Here
we show via numerical simulations how to restrict operations to the qubit subspace of a three-level Josephson
junction system requiring shorter time duration and suffering less error compared with traditional methods.
This is achieved by employing amplitude modulated pulses as well as carefully designed sequences of square
wave pulses. We also show that tunneling out of higher lying energy levels represents a significant source of
decoherence that can be reduced by tuning the system to contain four or more energy levels.
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[. INTRODUCTION The outline of the paper is as follows. We first review the
physics of the Josephson phase qubit in Sec. Il. In Sec. I,
The remarkable promise of quantum computatioas led we provide a concrete procedure detailing our methods to
to the invention of a significant number of proposals forsimulate the effect of applying amplitude modulated pulses
building a practical and scalable quantum computer. Severd® the qubit. Our results indicate that Gaussian shaped
of these proposals® envision the use of two out of several modulatiort® provides the best selectivity. In Sec. IV, we
energy levels in a system as a quantum(gitbit) and hence ~ describe two composite pulses, which perform better than
care must be taken to isolate these levels from the remainingard pulses, but not quite as well as Gaussian shaped pulses.
Hilbert space. In particular, in a Josephson phase §ébit, In Sec. V, we show how to include tunneling effects out of
energy differences between successive levels only differ by e higher energy levels to estimate the feasibility of these
few percent. The challenge in performing accurate qubit optechniques in a real Josephson junction qubit system. Our
erations lies in successfully isolating the two energy leveldesults indicate that tunneling plays a significant role, leading
from the rest of Hilbert space. In other words, how is it to the conclusion that, to reduce tunneling effects one should
possible to operate as quickly and with as little error as postse at least four energy levels instead of the usual three.
sible on the qubit subspace while isolating the remaining Though our methods have been developed in the context
Hilbert space in a Josephson phase qubit? This is especial§f Josephson phase qubits, we believe they could also be
important when the coherence times of the system are shofffuitful in other systems where one wishes to control a par-
A Josephson phase qubit can be described by three energjgular subspace of Hilbert space. This work applies ideas
levels |0), |1), and |2), with energiesE,, E;, andE,, as from nuclear magnetic resonancéNMR) quantum
sketched in Fig. (b). The qubit space is formed 4g) and ~ computing,* specifically shaped and composite pulses, to
|1), and hence we wish to operate only within this subspaceother proposals for implementing a quantum computer; we
Clearly, the higher-order transition can be avoided when exbelieve this to be a very rewarding approach. Furthermore,
citing the w4 transition by using a long enough excitation our analysis of the effects of tunneling uses ideas from quan-
duration. However, because one wants to maximize the nunilim computing to give us an unusual and interesting way to
ber of logic operations within a fixed coherence time, there iginderstand and model the physics of a real Josephson junc-
a need to excite thg0)«|1) transition as quickly as pos- tion qubit.
sible without populating other states.
Here we numerically model two techniques which show Il. JOSEPHSON PHASE QUBITS

how single-qubit operations can be improved beyond simple The details of a Josephson phase qubit are described

square wave pulseger “hard” pulses. The first uses ampli- 5 X i .
tude modulation of the pulse and the second uses composi?éseWheré’ and we review only the basics here. The Hamil-

pulses that consist of a sequence of specially designed hard a b

pulses. Though other proposals are knbwiior implement- ues) \ E 2)
ing single-qubit rotations within a subspace of Hilbert space, ,X o ? to,= EEWn
this work takes a further step by analyzing decoherence ef- TN | E
fects; specifically, we evaluate the feasibility of our methods DA N E i“’u? (Ey-Eo)/n o
QT

for typical parameters of a Josephson phase qubit, including
the effects of tunneling out of higher lying energy levels. We
show that these tunneling effects can be a significant source FIG. 1. Sketch of a three level system with two transitions at
of decoherence if not taken into account properly. frequenciesw;g and w,; .

—_—
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tonian of the current-biased Josephson junction with biaghe matrix elementgm|d|n) are calculated as follows.
sourcel, critical ]UnCUOn Currentlo, and JUnCUOn capacl- \Whenl= Idc and f0r|dc_>|0, the System Hamiltonian has a

tanceC is potentiaIU(3) that is cubic. We calculate this Hamiltonian,
1 | | P and solve for its eigenstates via diagonalization, from which
0*0 ~ 0~

H Q%- c0S6— =— 6, (1)  the matrix elementém|8/n) can be simply computed. Cal-

" 2C 27 2 _ , CMEnte _
culating(m| 8|n) in this manner, we obtain
where ®,=h/2e is the superconducting flux quantum. The

R N i(ot+¢)
operatorsQ and 6 correspond to the charge and the super- E_O g(He O‘
conducting phase difference across the junction, respectivelyH ~| g(t)e '(“t*¢) E, v2g(t)e'(@tte)
and have a commutation relationslip,Q]=2ei. A quan- 0 V2g(t)e iettd) E,

tum mechanical behavior can be observed for large area

junctions in which |, ®@/2m=E;>Ec=e%2C and when +Hors (8)

the bias current is slightly smaller than the critical current

[<Iy. In this regime the last two terms id can be accu- : : : :

rate?y appréximgtled by a cubichotentla(é) parametrizeud « is the frequency of the apphed tlme—varymg current{ and

by a barrier height\U(l)= (2‘/§| Oo/3m)[1—1/1 ]3/2 and g(t) =1.014 /LW(t) \/ﬁ/2w01C/2 is related to the time-varying
00 0 current| ,,,(t). A shaped pulse is implemented by letting

a quadratic curvature at the bottom of the well that gives e . . X
a classical oscillation frequencywp(l)=21’4(277|0/ g(t) vary in time according to the amplitude modulation.

DC)YAL— /1], The HamiltonianH,,, contains additional diagonal and off-

The commutation relation leads to quantized energy Ievel(sjlagonal elements, but they are all sufficiently far enough

in the cubic potential. The quantized energy levels in thiﬁ?gi-l;zszr;fzztcse from 10 and w,y such that,, has only neg-
potentlal can be V|s_ua||zed as |r_1qI|cated by Figg) IMicro- To calculafe the effect of amplitude modulation it is con-
wave bias currents induce transitions between levels at a fre-_ . . . .

) venient to move into a doubly rotating frame, defined by the
quencywmn=Emnn/% =(En—En)/h, whereE, is the energy

of state|n). The two lowest transitions have frequencies unitary operator

where the basis states g6, |1), and|2), from left to right,

1 0 0
— 1_3% (2) i ot
w10~ wp B A0 )’ v=|0 e 0 |. 9)
0 0 eZiwt

(3) Let |#)=V|4) be a state in the rotating frame \dfand|) is
a state in the laboratory frame. Then the equation of motion
Jpr this state can be derived from ScHiager’s equation

10fwy
W21= Wp 1- %E .

These two frequencies must be different to access the twi
state system as a controllable qubit. The ratid/% w, pa- : =
rameterizes the anharmonicity of the cubic potential with ifé ¢)=HI4), (10

regard to the qubit states, and gives an estimate of the Nnunighere / is the rotating frame Hamiltonian given bii

ber of states in the well. =V'HV—i#V'4,V. This results in
The state of the qubit can be controlled with a dc bias
currently. and a time-varying bias current,,(t) at fre- 0 g(t)e'? 0
guencyw= w;g, given by A=|g)"® E,~fe vigtie®| (11)
(1) =lgc+Al(t) (4) 0 v2g(t)e '* E,—2hw
=lgo— | u(t)COL wt+ b). (5) where we have sdEy,=0. In this work, we focus only on

excitation that is on-resonance with tj@«|1) transition.
In general, the Hamiltonian for the lowest three energyUsing E;=% w9, w= w1, and defining the energy differ-
eigenstates of a Josephson junction system biased with @nce between the two transitionskas—2E,=#%6,,, we ob-

currentl (t) is tain
Eob, 0 O 0 g(t)e'? 0
H=| 0 E, O 6) F=|gt) 0 Vag(e'’|, (12
0 0 E 0  vag(te '’ 44,
. . . We can now use this rotating frame Hamiltonian in a
o (0[s10) (0[s]1) (0[5]2) straightforward manner to numerically calculate the effect
~o % % % of hard (square waveand shaped pulses on the three-level
* 27TA| <1|A6|0> <1|A5| D <1|A5|2> ' ™ system. We first discretize the shape to many steps. During
(218]0) (2|6]1) (2]6]2) each slicej, we let the amplitude ofy be a constantg; .
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— gauss, a=3
10 — e Fourier, untruncated |1
~ - - - Fourier, truncated

The unitary evolution in each slice is given by

= exp(—iﬁjAt/ﬁ) whereAt is the slice length. We then vary
g; from slice to slice according to the modulation, and mul-
tiply all unitary evolutions together to obtain the overall evo-
lution of the system, mathematically described as

0 g;e'? 0
Vigjei¢
1,

[JAN S I
U:H exp _7 gJ '$ 0
J 0 v2ge '

w10

13

From U we can calculate the leakage out of the qubit mani-

fold. Also note from Eq(12) that the effects of5, scale as " !
the product,/27; the relevant normalized time unitinour 0 | 1 H H }
problem isrp,=t4,/2m, and thus our results are plotted in '

this way.

) il § Iy

T
pw
I1l. SHAPED PULSES FIG. 2. Numerical calculation of the erraras a function of

. ) normalized pulse widthry,=ty,6,/2m=2atyé,/2m via Fourier
Shaped pulses are W!de|y15LJSGd in NMR spectroscopy anghaysis using the untruncated and truncated Gaussian shape, com-
NMR quantum computing-® because they can signifi- pared with the exact calculation.

cantly enhance the selective excitation of a qubit compared
with hard pulses. In contrast to NMR, however, where each
qubit is represented by a spin-1/2 particle, here the two tranred energy level is involved in the operation. The ereds
sitions share an energy level, leading to system dynamicge same as the maximum probability of being in the §@te
which are much more complex. Although it is not immedi- after the application of the pulse, when starting from an ar-
ately obvious in what way amplitude modulating could bepitrary superposition oé|0) +b|1). The measure serves as
beneficial in this system, it is not unreasonable to assumg jower bound error because in addition to leakage outside
that some improvements are possible. This assumption withe qubit manifold, the desired qubit rotation may also
be supported by our findings, later in this section. slightly deviate from the ideal rotation even when 0. For

In our simulations, we chose a flip angle of 180°, whichexample, one deviation is due to transient Bloch-Siegert
transforms|0)—[1) and[1)—|0), because this is usually shifts, similar to NMRL"*8but these effects can be corrected
the hardest selective rotation to achieve. Even thOUgh Wgsing a method similar to the one described in Ref. 19.
show results for several pulse shapes, we only provide ex- \we can numerically calculate the error via E&d), but in
plicit functions of the time dependence gft) for Gaussian order to gain an intuitive understanding of which time-
and Hermite 180 shapes. The rf envelg¢) of the Gauss-  dependent amplitude modulation could be most useful, it is
ian shape is given by helpful to estimate the error first, using a more conventional
method based on simple bandwidth considerations. This sys-
tem’s response is approximately linear for small rotation
angles, and hence Fourier analysis provides useful insight. In
fact, Fourier analysis has been used extensively in NMR
even for large rotation angles in order to get a first idea of the
selectivity of a shaped pulse.

The relative power of the frequency component of the
untruncated Gaussian shaped pulse at a frequépcway
from wqq is given by

Ugausél) = (altg)exp( —t%/2t7). (14)

for [t|<aty andg(t)=0 otherwise, wherer is the cut-off of
the pulse in time(usually 3-5, a is the amplitude &
~1.25 for 180° pulses and for typical values®f andty is
the characteristic pulse width. The total pulse width jg
=2at,.
Theg Hermite 180 shap@is simply a Gaussian multiplied

by a second order polynomial. The RF envelggé) of the
Hermite 180 shape is

Onmisdt) = (1— B(t/ aty)®)(altg)exp(—t?/2t7), (15)

with the definition of parameters as before. The paramg@ter This is plotted in Fig. 2 and is compared with both the Fou-
determines how strongly the Gaussian pulse is modulatedier analysis of a truncated Gaussian shaped pulse and the

2
WT"W) . (16

(o) ~ X — (S,t5)%]= exr{ - (

Here,a~2.2 for a=3 anda~1.67 for «=4, both for B
=4 and a 180° flip angle.

exact calculation using E@13). For small pulse widths, the
exact calculation and the one based on the Fourier analysis

Using these parameters and shapes we have calculated theuntruncated shapes are similar, but the exact calculation

performance of the pulses. We define the erroreasl
—|U(3,3)|?, whereU(3,3) denotes thé3,3) element of the
resulting unitary transform. Ideallg=0 if we are only op-

flattens out forr,,>4. Though approximate, it is evident
that Fourier analysis still provides a rough estimate of the
error, especially if truncation effects are included. From Fou-

erating on the desired qubit subspace. Otherwise, the undeder analysis we expect hard pulses to perform poorly com-
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FIG. 3. Plot of the erroe as a function of the normalized pulse FIG. 5. Plot of the erroe (maximum occupation probabilityas
width 7, for three different pulse shapes and several different lev-a function of time normalized with respect to the total pulse length
els of truncation. tow during a hard and Gaussian shaped pulse and the second com-
posite pulse(Sec. IV B. A Gaussian-shaped pulse with a pulse

width of 7,,=4 has a very small errgabout 10 8), butduring the
pared with Gaussian or Hermite shapes. In order to quantifpulse the error can be as high as 502 The error during the

the performance accurately however, we must calculate theulse can be reduced by applying the pulse for a longer duration
error exactly using Eq(13). since_ the maximum error scales as approximatety,l/based on a
Figure 3 plotse as a function of the normalized pulse Fourier analysis of the truncated pulses.
width for hard, Gaussian and Hermite shaped pulses. Clearly,
for low error rates, a long pulse must be used. Since our goal . ) . o
is to apply the desired rotation as quickly as possible, jwith hard, Qaussmr_\ and Hermite shapes. Rather surpngmgly,
appears that the Gaussian shape is best suited for this probhese specially designed shapes perform rather poorly in our
lem. Also, the Gaussian shape could probably be further ophree-level system. This is probably because these pulses
timized using our calculational methods outlined here. were designed for use in two-level systems whose dynamics
There exist other pulse shapes which have been designéi€ quite different compared to a Josephson junction where
for NMR experiments to invert or select spins over a verySUCCessive transitions share one energy level. ,
sharp and specified bandwidth. These belong to the class of It i @lso interesting to note that the errefor the maxi-
BURP (band-selective, uniform-response, pure-phasemMum occupation probability of stgté)) during the applica-
pulses?’ and their performance is shown in Fig. 4 comparedtion of the pulse may be much higher than at the end of the
pulse, as indicated in Fig. 5. Depending on the experiment,
this may still be undesirable, for example when the lifetime

— hard l

- -- gauss
------ hrm180
== iburp

., g X
\ 3

reburp

@i{0 |

*******

107+

0 2 A 6 8 10 12 14
Tpw

16

of the third energy level is short. We discuss the impact of
such short lifetimes later, in Sec. V.

While pulse shaping clearly offers advantages in this
three-level system, it may not necessarily be straightforward
to do so experimentally, and hence it is useful to look at
alternatives to pulse shaping. In the next section we discuss
how composite pulses could provide an alternative approach

towards improving single-qubit operations in a Josephson
phase qubit.

IV. COMPOSITE PULSES

A composite pulse is a pulse that consists of a sequence of
individual pulses, and is designed to reduce certain types of
errors, but often at the cost of longer total duration. The
individual pulses are typically square wave pulses, but can in
principle be shaped pulses as well. Similar to shaped pulses,

FIG. 4. Plot of the errore as a function of normalized pulse composite pulses have also found a wide variety of applica-
width 7, for several traditional NMR pulse shapes. The Gaussiarflons In NMR32122The overall unitary evolutioJ of a

shape here correspondsde-3 from Fig. 3.

composite pulse is calculated via=1I,U,, where theU,
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are the unitary evolutions of the individual pulses contained ' ' ' ' ' ' ‘
in the sequence. We next describe the design of two differen 44°
composite pulses, both of which perform better than hard
pulses.

A. Composite pulses—method 1

We begin by noting thag =0 is a valid choice for a pulse. 10t v
This corresponds to applying no electromagnetic radiation i Y
for some time. Working with the rotating frame Hamiltonian L.
of Eq. (12), and letting the quantum system freely evolve for i T T

a timet=/6,, we obtain the transformation

!,! — hard
' -~ gauss
10 0 wt e composite (ZsUZoU)? |
Z,=/0 1 0 (17) . , . . |- composite (lIJZzU)ZJ
2 ’ 0o 2 4 6 8 10 12 14 16
0O 0 -1 Tow
where the subscript denotes that stite acquires a 180° FIG. 6. Plot of the errok as a function of normalized total time

phase shift with respect to all other states. Now, if we sand7pw for the two composite pulses 2) described in Sec. IV, com-
wich a driven evolutionU(t) between two free evolution pared with a hard and Gaussian shaped pulse. The first composite
periodsZ,, we obtain method outperforms hard pulses whenever the pulses are multiples
of 27/ 8,, even though the limit o> 6 does not apply here. For
the second composite pulse, when the applied pulses are integer

it 0 9 0 multiples of 2#/6,, the error is minimized as expected.
V()=ZU()Zo=exp =29 0 —vV2g| ],
0 —v2g *h94,

(18 B. Composite pulses—method 2

-~ Another composite pulse design is based on the previous
where we assumed to be real andU(t)=e '"". Note  gsolution, supplemented by Bloch-sphere intuition and a
that we can interpret the exponent 6(t) as applying an  knowledge of the excitation profile of a hard pulse. Suppose
% rotation on the|0)«|1) transiton and anegative we excite a two-level system, /2 hertz away from reso-
-rotation on the[1)«|2) transition, in the limit of pance via a hard pulse of duratienWhenevers, /2 is an
fast pulses §,/g—0). If we now apply a second pulse integer multiple of 1#, the system is not excited. However,
U(t) which can be regarded as &rrotation on both transi- in our system the two transitions share an energy level.
tions, the excitation of the undesired transition is undoneHence, even if we excite the undesired transition off-
The overall transformation is then given bW(t)  resonance, there is still a substantial error, as evident from
=U(t/2)V(t/2)=U(t/2)Z,U(t/2)Z,, and is an interesting Fig. 3. Nonetheless, such a carefully timed pulse is still use-
pulse sequence because it becomes a nontrivial unitary trangi for the design of our composite pulse.
form on just the desired qubit manifold in the limit of fast  For the first step of the composite pulse, let the hard pulse
pulses withg>4,, . be applied on resonance with th@)«— |1) transition for a
This procedure, however, only works for small rotation time of 277/6,,. Let this pulse be denoted hy(2#/5,) and
angles. Even though the interpretation of #nonentsof  |et the power be such that we would obtain only a small
V(t) andU(t) above is correct, the matric®4t), U(t), and  rotation angle(less than 45° The resulting matrix element
W(t) themselves have elements connecting [B}eand[2)  of U(2#/5,) connecting thdl) and|2) states is very small
states whose magnitudes are second order in titdée can  pecause this transition i§,/27 Hz off-resonance, in accor-
only ignore these for small rotation angles. For larger rotadance with our Fourier intuition from the previous para-

tion angles, one may have to apply a sequencé/@fn), graph. HoweverlJ(2/45,) still has a matrix element con-
necting thg0) and|2) states because the two transitions share
R(t)=[W(t/n)]", (29 an energy level, leading to erro¢similar to U(t) and V(t)

from above. The last step of the composite pulse simply
to suppress thg0)«|2) excitation. Furthermore, if we consists of undoing thi)«—|2) excitation.
chosen sufficiently large, then stat@) also only has a very The|0)«|2) excitation can be reversed by using the fact
small transient populatioduring the pulse sequence. The that a 180°Z rotation sandwiched between tworotations
total operation time is equal to(2#/45,) + 7 (whereris the leads to no net excitation. Suppose we apply the sequence
total duration of the electromagnetic radiatipwhich be- C=U(2#/4,)Z,U(27/5,). Let us investigate the effects
comes quite long for large. Surprisingly, this composite of C on the three possible excitationd) The first and last
method still performs rather well even when the system is fapulses,U(2/35,,), excite the|0)«|1) transition, whereas
away from the short pulse limg> &, as shown in Fig. 6. Z, has no effect on the statd§) and |1). (2) Neither
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U(2w/é,) norZ, excite thel 1)« |2) transition as described  1¢° ,

j— halrd

in the previous paragraptt3) The two pulsesU(2x/6,,) e gauss
lead to excitations between the staf@sand|2), which can . ~_. composite (UZoU)?

be regarded as-rotations, wherea¥, acts like a 180°
Z-rotation on the same states. Hence, the sequ€reads to
no net excitation between th@) and|2) states. 10

As a result, the sequené€zacts non-trivially only on the
desired qubit manifold. By carefully adjusting the power of .
the pulses we can create any arbitraryotation on the de-
sired transition. The sequence thus consists of the applicatiol
of two pulses of length 2/6,, interlaced with a free evolu- 107}
tion of length#/§,, .

Similar to the previous composite pulse, this method re-
sults in low errorse only whenU(27/6,) implements small
rotations. Hence in general, we may also have to apply 3
instances ot) (27/6,)Z,U(2/48,) if our goal is to achieve 024 & 8 10 12 14 16
large rotation angles. The resulting duration of this compos- Tpw
ite pulse is 2.6(27/45,).

Flgure 6 ShOWS the results of the Compos|te pulse methods FIG. 7. Plot OfPt as a function of normalized pulse width for a

compared to a hard pulse and the Gaussian shaped pulse. Tgd, Gaussian and composite pulse taking,~35,/2m
time axis denotes theotal duration of the pulses. For the ~(w4¢/27)/100. Clearly,_ the es_tlmate of _the_tun_nellng probabl_llty is
composite pulses, this includes the duration of the electroseveral ordt_ars of magnitude higher tharindicating that tunneling
magnetic radiation plus the delay period implementiyg ~ STeCts are important.

As can be seen, the two composite pulse methods outperform

hard pulses but not a Gaussian pulse with 3. It is clear

that the two simple composite pulses may provide useful A. A simple tunneling model

alternatives for implementing accurate single qubit rotations A first model that gives insight into the importance of

in a Josephson phase qubit. Furthermore, it should be pogr,hgjent populations during the pulses can be set up as fol-

fws. Let the probability of being in stat@), and the tun-

1

sible to combine shaped and composite pulses to even furth

improve qubit operations. neling rate out of2) be defined ap, and T, respectively.

Nonetheless, as is the case with shaped pulses, the occy: - :
pation probability of staté2) during the application of the Q|Jh|e ﬁ)robdatt))lhty_of tulP ndehnI? OUtb.Of s:}ath) can thenh bhe
composite pulse can be rather large. For the second compo(ée-1 cu ated byP = [p,I'>dt. We bias the system such that
ite pulse, this number is:810~2 (see Fig. 5, which is much I', is on the order o¥5,,/27r, which is about 10 times larger

larger than the occupation probability at the end of the pulseNan the inverse of typical pulse widthsye expect any tran-
In the next section we show how transient populations in thé&i€nt populations in stat?) to tunnel out of the potential

third energy level can be highly undesirable in the presenc#ell during the pulse. Since the tunneling rates oufof
of high tunneling rates. (T'y) and|0) (I'y) are about 1dand 16 times less thai',,

we ignore their effects in this simple calculatidn.
In Fig. 7 we plotP; as a function of normalized pulse
V. EFFECTS OF TUNNELING width for a hard, Gaussian, and the second composite pulse

Thus far we have only considered the ideal case where th¥ith @ tunneling ratel’y~(w,¢/2m)/100~ /2. Clearly,

two transitions of the three-level system are close in fre{ne error is several orders of magnitude higher teaand

quency but otherwise there exist no sources of decoherenciNneling thus appears to be an important source of decoher-
However, in a real Josephson phase qubit, the quantum sta@C€ for this system, as expected. Note tRais only an
can tunnel through the barrier of the cubic well, and this@Pproximate overall error because it reflects only the prob-

process acts as a source of decoherence. What consequen@ldity of tunneling and does not include the occupation
do we expect from this? probability of being in stat¢?) at the end of the pulse, which

From first principles we know that the tunneling rate de-€a" be non-zero regardless of the tunneling rate. We next

pends exponentially on the barrier height and width. Henc&l€Scribe a more rigorous approach that analyzes the effects
in our cubic potential, we expect the upper level to be most tunneling and includes the leftover occupation probability

susceptible to tunneling. When the tunneling rate out of thi&f state[2).

energy level is high, then there exists a significant source of

decoherence if the state becomes even transiently populated. _ _ '

Itis thus desirable to keep transient populations in $Ritas B. A tunneling model using the operator-sum representation
small as possiblduring our single qubit rotations. This may We shall model the tunneling behavior similar to ampli-
not necessarily be the case however, as indicated in Fig. fude damping by using the operator-sum representation.
We next estimate the impact of this tunneling effect, first byThis type of model has been successfully used to predict the
using a simple model, followed by a more rigorous approachimpact of decoherence in several NMR quantum computing
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experiment$®24 In the operator sum representation, an ini- 1¢° :

tial density matrixp; is mapped to a final density matrjpx S - nggs
; N o
via Co _ _ - composite (UZ:UY?

Pf:; EwpiEL, (20 "

where3 E[E,=| andE, are the Kraus operatof3For am-
plitude damping acting on a single qubit, we have only two ¢
Kraus operators, taking the form

2

L 0 102}

Eq= , 21

“lo Ji-Py &0

e, |0 VPr 22 |
Yo o 22 02 4 6 8 10 12 14 16

Tpw
wherePr=1—e" " with I" denoting the inverse lifetime of
the |1) state. From this, it becomes clear that any quantum FIG. 8. P.Iot of the error as afunction of normalized pulse width
state eventually collapses to the ground stﬁ)te when_mcl_udlng tunnehng_eﬁects with,~ 6,~ (w1¢/27)/100. T_he
The tunneling mechanism out of st4® is now modeled ~ ©for is given b_y_the maximum d2)(2|+|T)(T| over all possible
by using a fourth, fictional auxiliary energy lev@l which input superp05|t|0n$1|0>-.kb|1.). Now, the hard pulse shows the
acts as a reservoir for the tunnel states. We now define %St performance, but still with a large error.

fictitious qubit with basis state?) and|T). The tunneling

mechanism froni2) to the auxiliary level is then captured by step to model the single-qubit rotations in the presence of
modeling amplitude damping on the fictitious qubit. In this tunneling is to include the excitation of the transitions due to

case the two Kraus operators take the forms the applied radiation. The excitations of the two transitions in
our three-level system do not commute with the tunneling
10 0 0 mechanism. Thus, strictly speaking, one may have to derive
0 1 0 0 a more complex formalism that captures both the tunneling
Eq= , (23 effect and the qubit excitation simultaneously. However, we
0 0 vi-Pr O approximate the simultaneous behavior by slicing the micro-
00 0 1 wave pulses into many discrete stds has been done in
Secs. Il and 1V, and then simulate the tunneling and exci-
00 0 O tation one after the other in each step. In the limit as the
00 0 0 number of steps goes to infinity this apprpxima_tion becomes
E,= (24) exact; we have used 256 steps for our simulation.
0 0 0 of From Eq.(20), it becomes clear that the operator formal-
0 0 \/P_r 0 ism takes density matrices as the input, which we have not

yet specified. Our goal is to find the maximum possible error
with the basis statelf), |1), |2), and|T) going from left to  over all possible input states, which are arbitrary superposi-
right. These operators also ensure that if the state tunneletipns of the qubit, defined ag0)+b|1). We vary the values
then all coherences to that state vanish. For example, if tha andb to maximize the error, which is defined as the sum of
initial state was an equal superposition|0f and|2), then  the|2)(2| and|T)(T| elements of the resulting density matrix.
after tunneling we have a mixed state without coherencesThis corresponds to the maximum probability of being in the
and find that the system is in staf@ or |T), each with states|2) and|T). It is a useful error measure, and in the

probability 0.5. absence of tunneling it yields treameerror e that we have
The tunneling rate¥ ; andT"y are~10° and~1C° times  defined before.
lower thanI',, as described earlier. Whdh,~ 6,/27, we In Fig. 8 we plot the error as a function of normalized

estimate their contributions to be only on the order of 10 pulse width for a tunneling ratB,~ w100~ 8 /2. From

for typical pulse widths, using the simple tunneling modelthis figure, we notice that the error is on the order of 1 or

from above. Hence we do not include their effects in ourtypical pulse widths. Note that especially for the Gaussian

operator-sum approach. Later, we show how to generalizehaped pulse, the exact calculation matches the result of the

our method to include tunneling from an arbitrary number ofsimple tunneling model from Fig. 7 reasonably well. It is

levels, and use this generalized method to verify fhagnd  evident from both plots that for typical pulse widths the error

', are indeed negligible, though we do not explicitly showis much larger than the 16 threshold required for fault-

our results here. tolerant computation®. How can we reduce the error result-
The Kraus operators above describe the tunneling mechdag from tunneling without significantly increasing the pulse

nism, but they do not include excitation effects. The nextwidths?
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From the simple theoretical model described earlier, the ¢ , , ; .

most straight forward method is to decrease the tunneling — hard

rates, which can be done by adjusting the bias current ol oo gauss 2 |
. . I L N o NN - - - composite (UZ,U)
include more than three energy levels in the well. In this !

case, the frequency differenég/27 between the transitions »
becomes slightly smaller. However, the tunneling rate is ex- i
ponentially dependent on the barrier thickness, and thus we
can reduce the tunneling rate by many orders of magnitude 10 ¢
while only slightly decreasing the frequency difference be- «
tween the transitions. With four levels in the well, we can 10}
reduce I', by three orders of magnitude to about
(6,,/27r)/1000 while decreasing, /2 by only 30%. Though 1071
I'5 is still high (abouts,/2m), level|3) is sparsely populated
because thd2)«|3) transition is about 3,/27 Hz off-
resonance and hence should not be significantly excited.
The tunneling effects fron2) and|3) during single-qubit R .
rotations can be calculated via the operator-sum represent: 10 ) 5 4 6 8 10 12 14 16
tion as follows. The effect of the radiation and tunneling Tpw
acting simultaneously is approximated as before by slicing ) . .
the pulse |nto many Steps and Slmulatlng tunnellng and ex- FIG. 9. Plot of the error as a function of normalized pulse width
citation one after the other in each step. The tunneling igvhen including tunneling effects in a four level system. The tunnel-
and|3). In other words, we first apply the two Kraus opera- is given by|2)(2|+[3)(3|+|T)(T| after maximizing over all pos-
tors that describe the tunneling frof) to [T). Then, we sible input superpositiona|0)+b|1). In this case, the composite
apply the two Kraus operators that the describe the tunnelingulse can perform about as well as a Gaussian pulse.
from |3) to |T). Strictly speaking this is not correct because
the Kraus operators that describe tunneling fri@ndo not
commute with those describing the tunneling fr8n How-

107 ¢

a Josephson phase qubit. We estimate the feasibility of our
methods by including tunneling effects to show that tunnel-
ing can be a significant source of decoherence, and we con-

ever, since the pu!se is already d_iscretized into many .Step(ﬁude that operating a Josephson phase qubit with three lev-
(we used 25F during each of which we model tunneling els is not recommended. Instead, to reduce decoherence

separately, our approach becomes a good approximation. T%‘?fects from unwanted tunneling one may wish to operate the

rEesuI(tlzrgg)] fzgr(zﬁ)r allisrt(?lp?:gt?rs Vc\:/an bnerﬁaj"?/tﬁert'vgg :cir:msystem with four energy levels. Note that we have ignored all
as. a - Furthermore, we can model In€ Wnneling yp o - < rces of decoherence in our calculations such as de-

from an arbitrary number of states in this manner, and have oo oo gue to current noise and dissipatidhwhich
verified that the error for a three-level system is indeed domi-

. ) would actin additionto leakage and tunneling.
nated by the tunneling from stai®) and that tunneling from Our proposed method Ofg using shapedgand composite
|1) and |0} is negligible.

Figure 9 shows the error for a four level system with pulses should be realizable using commercial electronics.
tunneling rated™,~ (&,/27)/1000, andl's~ 8,,/27. As can Typical junction parameters are,¢/27~10 GHz, AU/f w,,

. : .~4, and 5,~0.04wy,, leading to typical pulse widthg,,
ge Iiefanc’t tr:}%\rﬁﬁletscg:g ?;f: 'leremg:] (Lc;mgsarego\évlgls Ft'#hat are on the order of a few nanoseconds or tens of nano-
G.aussian, shaped ulsep P 9 Seconds. Using analog filters, commercial electronics can ac-
: 1aped pulse. - . commodate shaped and composite pulses at even shorter
It is possible to continue increasing the number of level

in the well to suopress tunneling even further. However thistime scales than nanoseconds. Considering that reported co-
PP 9 : ' NS erence times are 100 ns or longé? the performance of

may not be practical much beyond four or five levels becausghaped and composite pulses can be immediately experimen-
the state measurement needs a transition between |$}ate tally investigated

and a higher energy state with a very large tunneling %ate. In this work we have only considered single-qubit gates

This becomes increasingly difficult for more energy levels inWhiCh are not sufficient to build a quantum computer. Hence
the well. In the foqr.le\é(gl case, it is possible to directly excite,[0 estimate the feasibility of building a quantum cc;mputer,
the|'1><—>|3) trangltlon. .using coupled Josephson junctions, it will be necessary to
Finally, we point out that other proposals for performing characterize the performance of two-qubit gates as well
single qubit rotations in a three or multilevel sysfefare Work towards that direction has already begBibyt without '
also problematic whenever energy levels with high tunne”n%onsidering pulse shaping. As we have demonstrated, shaped

irr?tetshgrsj r?r?gﬁrllat?:?égxgn?se:f\é&maggqurgfiﬁhtgdefsc;irnS,;TeuIt%g“'ses are capable of reducing leakage to other energy levels
9 9 nd hence we envision that our techniques can also offer

feasibility of these and other methods. practical solutions for two-qubit gates.

VI. CONCLUSIONS Our work demonstrat.es that NMR quantum computing
and spectroscopy techniques are a valuable resource when
In summary, we have shown how shaped and compositepplied to related quantum systems, for example the super-
pulses can improve the accuracy of single-qubit operations inonductor based qubit system. We believe that continued
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