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Accurate control of Josephson phase qubits
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A quantum bit is a closed two-dimensional Hilbert space, but often experimental systems have three or more
energy levels. In a Josephson phase qubit the energy differences between successive levels differ by only a few
percent, and hence care must be taken to isolate the two desired levels from the remaining Hilbert space. Here
we show via numerical simulations how to restrict operations to the qubit subspace of a three-level Josephson
junction system requiring shorter time duration and suffering less error compared with traditional methods.
This is achieved by employing amplitude modulated pulses as well as carefully designed sequences of square
wave pulses. We also show that tunneling out of higher lying energy levels represents a significant source of
decoherence that can be reduced by tuning the system to contain four or more energy levels.
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I. INTRODUCTION

The remarkable promise of quantum computation1 has led
to the invention of a significant number of proposals
building a practical and scalable quantum computer. Sev
of these proposals2–6 envision the use of two out of sever
energy levels in a system as a quantum bit~qubit! and hence
care must be taken to isolate these levels from the remai
Hilbert space. In particular, in a Josephson phase qub5,6

energy differences between successive levels only differ b
few percent. The challenge in performing accurate qubit
erations lies in successfully isolating the two energy lev
from the rest of Hilbert space. In other words, how is
possible to operate as quickly and with as little error as p
sible on the qubit subspace while isolating the remain
Hilbert space in a Josephson phase qubit? This is espec
important when the coherence times of the system are s

A Josephson phase qubit can be described by three en
levels u0&, u1&, and u2&, with energiesE0 , E1 , and E2 , as
sketched in Fig. 1~b!. The qubit space is formed byu0& and
u1&, and hence we wish to operate only within this subspa
Clearly, the higher-order transition can be avoided when
citing the v10 transition by using a long enough excitatio
duration. However, because one wants to maximize the n
ber of logic operations within a fixed coherence time, ther
a need to excite theu0&↔u1& transition as quickly as pos
sible without populating other states.

Here we numerically model two techniques which sh
how single-qubit operations can be improved beyond sim
square wave pulses~or ‘‘hard’’ pulses!. The first uses ampli-
tude modulation of the pulse and the second uses comp
pulses that consist of a sequence of specially designed
pulses. Though other proposals are known7–9 for implement-
ing single-qubit rotations within a subspace of Hilbert spa
this work takes a further step by analyzing decoherence
fects; specifically, we evaluate the feasibility of our metho
for typical parameters of a Josephson phase qubit, includ
the effects of tunneling out of higher lying energy levels. W
show that these tunneling effects can be a significant so
of decoherence if not taken into account properly.
0163-1829/2003/68~22!/224518~9!/$20.00 68 2245
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The outline of the paper is as follows. We first review t
physics of the Josephson phase qubit in Sec. II. In Sec.
we provide a concrete procedure detailing our methods
simulate the effect of applying amplitude modulated puls
to the qubit. Our results indicate that Gaussian sha
modulation10 provides the best selectivity. In Sec. IV, w
describe two composite pulses, which perform better th
hard pulses, but not quite as well as Gaussian shaped pu
In Sec. V, we show how to include tunneling effects out
the higher energy levels to estimate the feasibility of the
techniques in a real Josephson junction qubit system.
results indicate that tunneling plays a significant role, lead
to the conclusion that, to reduce tunneling effects one sho
use at least four energy levels instead of the usual three6

Though our methods have been developed in the con
of Josephson phase qubits, we believe they could also
fruitful in other systems where one wishes to control a p
ticular subspace of Hilbert space. This work applies ide
from nuclear magnetic resonance~NMR! quantum
computing,11 specifically shaped and composite pulses,
other proposals for implementing a quantum computer;
believe this to be a very rewarding approach. Furthermo
our analysis of the effects of tunneling uses ideas from qu
tum computing to give us an unusual and interesting way
understand and model the physics of a real Josephson j
tion qubit.

II. JOSEPHSON PHASE QUBITS

The details of a Josephson phase qubit are descr
elsewhere,12 and we review only the basics here. The Ham

FIG. 1. Sketch of a three level system with two transitions
frequenciesv10 andv21.
©2003 The American Physical Society18-1



ia

e
er
e

re

n

e

e
hi

fr

tw

ith
u

ia

rg
ith

.
a
,

ich
-

nd

g
n.
f-
gh

n-
he

ion

-

a
ect
el
ring

STEFFEN, MARTINIS, AND CHUANG PHYSICAL REVIEW B68, 224518 ~2003!
tonian of the current-biased Josephson junction with b
sourceI, critical junction currentI 0 , and junction capaci-
tanceC is

H5
1

2C
Q̂22

I 0F0

2p
cosd̂2

IF0

2p
d̂, ~1!

whereF05h/2e is the superconducting flux quantum. Th
operatorsQ̂ and d̂ correspond to the charge and the sup
conducting phase difference across the junction, respectiv
and have a commutation relationship@ d̂,Q̂#52ei. A quan-
tum mechanical behavior can be observed for large a
junctions in which I 0F0/2p5EJ@EC5e2/2C and when
the bias current is slightly smaller than the critical curre
I &I 0 . In this regime the last two terms inH can be accu-
rately approximated by a cubic potentialU(d) parametrized
by a barrier heightDU(I )5(2&I 0F0/3p)@12I /I 0#3/2 and
a quadratic curvature at the bottom of the well that giv
a classical oscillation frequencyvp(I )521/4(2pI 0 /
F0C)1/2@12I /I 0#1/4.

The commutation relation leads to quantized energy lev
in the cubic potential. The quantized energy levels in t
potential can be visualized as indicated by Fig. 1~a!. Micro-
wave bias currents induce transitions between levels at a
quencyvmn5Emn /\5(Em2En)/\, whereEn is the energy
of stateun&. The two lowest transitions have frequencies

v10.vpS 12
5

36

\vp

DU D , ~2!

v21.vpS 12
10

36

\vp

DU D . ~3!

These two frequencies must be different to access the
state system as a controllable qubit. The ratioDU/\vp pa-
rameterizes the anharmonicity of the cubic potential w
regard to the qubit states, and gives an estimate of the n
ber of states in the well.

The state of the qubit can be controlled with a dc b
current I dc and a time-varying bias currentI mw(t) at fre-
quencyv5v10, given by

I ~ t !5I dc1DI ~ t ! ~4!

5I dc2I mw~ t !cos~vt1f!. ~5!

In general, the Hamiltonian for the lowest three ene
eigenstates of a Josephson junction system biased w
currentI (t) is

H5F E0 0 0

0 E1 0

0 0 E2

G ~6!

1
F0

2p
DIF ^0ud̂u0& ^0ud̂u1& ^0ud̂u2&

^1ud̂u0& ^1ud̂u1& ^1ud̂u2&

^2ud̂u0& ^2ud̂u1& ^2ud̂u2&
G . ~7!
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The matrix elementŝ mud̂un& are calculated as follows
When I 5I dc and for I dc→I 0 , the system Hamiltonian has
potentialU( d̂) that is cubic. We calculate this Hamiltonian
and solve for its eigenstates via diagonalization, from wh
the matrix elementŝmud̂un& can be simply computed. Cal
culating ^mud̂un& in this manner, we obtain

H'F E0 g~ t !ei ~vt1f! 0

g~ t !e2 i ~vt1f! E1 &g~ t !ei ~vt1f!

0 &g~ t !e2 i ~vt1f! E2

G
1Hnr , ~8!

where the basis states areu0&, u1&, and u2&, from left to right,
v is the frequency of the applied time-varying current, a
g(t)51.014I mw(t)A\/2v01C/2 is related to the time-varying
current I mw(t). A shaped pulse is implemented by lettin
g(t) vary in time according to the amplitude modulatio
The HamiltonianHnr contains additional diagonal and of
diagonal elements, but they are all sufficiently far enou
off-resonance fromv10 andv21 such thatHnr has only neg-
ligible effects.

To calculate the effect of amplitude modulation it is co
venient to move into a doubly rotating frame, defined by t
unitary operator

V5F 1 0 0

0 eivt 0

0 0 e2ivt
G . ~9!

Let uf&5Vuc& be a state in the rotating frame ofV anduc& is
a state in the laboratory frame. Then the equation of mot
for this state can be derived from Schro¨dinger’s equation

i\] tuf&5H̃uf&, ~10!

where H̃ is the rotating frame Hamiltonian given byH̃
5V†HV2 i\V†] tV. This results in

H̃5F 0 g~ t !eif 0

g~ t !2 if E12\v &g~ t !eif

0 &g~ t !e2 if E222\v
G , ~11!

where we have setE050. In this work, we focus only on
excitation that is on-resonance with theu0&↔u1& transition.
Using E15\v10, v5v10, and defining the energy differ
ence between the two transitions asE222E15\dv , we ob-
tain

H̃5F 0 g~ t !eif 0

g~ t !2 if 0 &g~ t !eif

0 &g~ t !e2 if \dv

G , ~12!

We can now use this rotating frame Hamiltonian in
straightforward manner to numerically calculate the eff
of hard ~square wave! and shaped pulses on the three-lev
system. We first discretize the shape to many steps. Du
each slicej, we let the amplitude ofg be a constant,gj .
8-2
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ACCURATE CONTROL OF JOSEPHSON PHASE QUBITS PHYSICAL REVIEW B68, 224518 ~2003!
The unitary evolution in each slice is given byU
5exp(2iH̃ jDt/\) whereDt is the slice length. We then var
gj from slice to slice according to the modulation, and m
tiply all unitary evolutions together to obtain the overall ev
lution of the system, mathematically described as

U5)
j

expS 2
iDt

\ F 0 gje
if 0

gj
2 if 0 &gje

if

0 &gje
2 if \dv

G D .

~13!

From U we can calculate the leakage out of the qubit ma
fold. Also note from Eq.~12! that the effects ofdv scale as
the producttdv/2p; the relevant normalized time unit in ou
problem istpw5tdv/2p, and thus our results are plotted
this way.

III. SHAPED PULSES

Shaped pulses are widely used in NMR spectroscopy
NMR quantum computing13–15 because they can signifi
cantly enhance the selective excitation of a qubit compa
with hard pulses. In contrast to NMR, however, where ea
qubit is represented by a spin-1/2 particle, here the two tr
sitions share an energy level, leading to system dynam
which are much more complex. Although it is not immed
ately obvious in what way amplitude modulating could
beneficial in this system, it is not unreasonable to assu
that some improvements are possible. This assumption
be supported by our findings, later in this section.

In our simulations, we chose a flip angle of 180°, whi
transformsu0&°u1& and u1&°u0&, because this is usuall
the hardest selective rotation to achieve. Even though
show results for several pulse shapes, we only provide
plicit functions of the time dependence ofg(t) for Gaussian
and Hermite 180 shapes. The rf envelopeg(t) of the Gauss-
ian shape is given by

ggauss~ t !5~a/tg!exp~2t2/2tg
2!. ~14!

for utu,atg andg(t)50 otherwise, wherea is the cut-off of
the pulse in time~usually 3–5!, a is the amplitude (a
'1.25 for 180° pulses and for typical values ofa!, andtg is
the characteristic pulse width. The total pulse width istpw
52atg .

The Hermite 180 shape16 is simply a Gaussian multiplied
by a second order polynomial. The RF envelopeg(t) of the
Hermite 180 shape is

ghrm180~ t !5~12b~ t/atg!2!~a/tg!exp~2t2/2tg
2!, ~15!

with the definition of parameters as before. The parameteb
determines how strongly the Gaussian pulse is modula
Here, a'2.2 for a53 and a'1.67 for a54, both for b
54 and a 180° flip angle.

Using these parameters and shapes we have calculate
performance of the pulses. We define the error ase51
2uU(3,3)u2, whereU(3,3) denotes the~3,3! element of the
resulting unitary transform. Ideally,e50 if we are only op-
erating on the desired qubit subspace. Otherwise, the un
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ired energy level is involved in the operation. The errore is
the same as the maximum probability of being in the stateu2&
after the application of the pulse, when starting from an
bitrary superposition ofau0&1bu1&. The measuree serves as
a lower bound error because in addition to leakage outs
the qubit manifold, the desired qubit rotation may al
slightly deviate from the ideal rotation even whene50. For
example, one deviation is due to transient Bloch-Sieg
shifts, similar to NMR,17,18but these effects can be correcte
using a method similar to the one described in Ref. 19.

We can numerically calculate the error via Eq.~13!, but in
order to gain an intuitive understanding of which tim
dependent amplitude modulation could be most useful, i
helpful to estimate the error first, using a more conventio
method based on simple bandwidth considerations. This
tem’s response is approximately linear for small rotati
angles, and hence Fourier analysis provides useful insigh
fact, Fourier analysis has been used extensively in NM
even for large rotation angles in order to get a first idea of
selectivity of a shaped pulse.

The relative power of the frequency component of t
untruncated Gaussian shaped pulse at a frequencydv away
from v10 is given by

e~tpw!'exp@2~dvtg!2#5expF2S ptpw

a D 2G . ~16!

This is plotted in Fig. 2 and is compared with both the Fo
rier analysis of a truncated Gaussian shaped pulse and
exact calculation using Eq.~13!. For small pulse widths, the
exact calculation and the one based on the Fourier ana
of untruncated shapes are similar, but the exact calcula
flattens out fortpw.4. Though approximate, it is eviden
that Fourier analysis still provides a rough estimate of
error, especially if truncation effects are included. From Fo
rier analysis we expect hard pulses to perform poorly co

FIG. 2. Numerical calculation of the errore as a function of
normalized pulse widthtpw5tpwdv/2p52atgdv/2p via Fourier
analysis using the untruncated and truncated Gaussian shape,
pared with the exact calculation.
8-3
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STEFFEN, MARTINIS, AND CHUANG PHYSICAL REVIEW B68, 224518 ~2003!
pared with Gaussian or Hermite shapes. In order to quan
the performance accurately however, we must calculate
error exactly using Eq.~13!.

Figure 3 plotse as a function of the normalized puls
width for hard, Gaussian and Hermite shaped pulses. Cle
for low error rates, a long pulse must be used. Since our g
is to apply the desired rotation as quickly as possible
appears that the Gaussian shape is best suited for this p
lem. Also, the Gaussian shape could probably be further
timized using our calculational methods outlined here.

There exist other pulse shapes which have been desi
for NMR experiments to invert or select spins over a ve
sharp and specified bandwidth. These belong to the clas
BURP ~band-selective, uniform-response, pure-pha!
pulses,20 and their performance is shown in Fig. 4 compar

FIG. 3. Plot of the errore as a function of the normalized puls
width tpw for three different pulse shapes and several different l
els of truncation.

FIG. 4. Plot of the errore as a function of normalized puls
width tpw for several traditional NMR pulse shapes. The Gauss
shape here corresponds toa53 from Fig. 3.
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with hard, Gaussian and Hermite shapes. Rather surprisin
these specially designed shapes perform rather poorly in
three-level system. This is probably because these pu
were designed for use in two-level systems whose dynam
are quite different compared to a Josephson junction wh
successive transitions share one energy level.

It is also interesting to note that the errore ~or the maxi-
mum occupation probability of stateu2&! during the applica-
tion of the pulse may be much higher than at the end of
pulse, as indicated in Fig. 5. Depending on the experim
this may still be undesirable, for example when the lifetim
of the third energy level is short. We discuss the impact
such short lifetimes later, in Sec. V.

While pulse shaping clearly offers advantages in t
three-level system, it may not necessarily be straightforw
to do so experimentally, and hence it is useful to look
alternatives to pulse shaping. In the next section we disc
how composite pulses could provide an alternative appro
towards improving single-qubit operations in a Joseph
phase qubit.

IV. COMPOSITE PULSES

A composite pulse is a pulse that consists of a sequenc
individual pulses, and is designed to reduce certain type
errors, but often at the cost of longer total duration. T
individual pulses are typically square wave pulses, but ca
principle be shaped pulses as well. Similar to shaped pul
composite pulses have also found a wide variety of appl
tions in NMR.13,21,22 The overall unitary evolutionU of a
composite pulse is calculated viaU5PkUk , where theUk

-

n

FIG. 5. Plot of the errore ~maximum occupation probability! as
a function of time normalized with respect to the total pulse len
tpw during a hard and Gaussian shaped pulse and the second
posite pulse~Sec. IV B!. A Gaussian-shaped pulse with a pul
width of tpw54 has a very small error~about 1028), butduring the
pulse the error can be as high as 531022. The error during the
pulse can be reduced by applying the pulse for a longer dura
since the maximum error scales as approximately 1/tpw , based on a
Fourier analysis of the truncated pulses.
8-4
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ACCURATE CONTROL OF JOSEPHSON PHASE QUBITS PHYSICAL REVIEW B68, 224518 ~2003!
are the unitary evolutions of the individual pulses contain
in the sequence. We next describe the design of two diffe
composite pulses, both of which perform better than h
pulses.

A. Composite pulses—method 1

We begin by noting thatg50 is a valid choice for a pulse
This corresponds to applying no electromagnetic radia
for some time. Working with the rotating frame Hamiltonia
of Eq. ~12!, and letting the quantum system freely evolve f
a time t5p/dv , we obtain the transformation

Z25F 1 0 0

0 1 0

0 0 21
G , ~17!

where the subscript denotes that stateu2& acquires a 180°
phase shift with respect to all other states. Now, if we sa
wich a driven evolutionU(t) between two free evolution
periodsZ2 , we obtain

V~ t !5Z2U~ t !Z25expS 2
i t

\ F 0 g 0

g 0 2&g

0 2&g \dv

G D ,

~18!

where we assumedg to be real andU(t)5e2 iH̃ t/\. Note
that we can interpret the exponent ofV(t) as applying an
x̂ rotation on the u0&↔u1& transition and anegative
x̂-rotation on the u1&↔u2& transition, in the limit of
fast pulses (dv /g→0). If we now apply a second puls
U(t) which can be regarded as anx̂-rotation on both transi-
tions, the excitation of the undesired transition is undo
The overall transformation is then given byW(t)
5U(t/2)V(t/2)5U(t/2)Z2U(t/2)Z2 , and is an interesting
pulse sequence because it becomes a nontrivial unitary tr
form on just the desired qubit manifold in the limit of fa
pulses withg@dv .

This procedure, however, only works for small rotati
angles. Even though the interpretation of theexponentsof
V(t) andU(t) above is correct, the matricesV(t), U(t), and
W(t) themselves have elements connecting theu0& and u2&
states whose magnitudes are second order in timet. We can
only ignore these for small rotation angles. For larger ro
tion angles, one may have to apply a sequence ofW(t/n),

R~ t !5@W~ t/n!#n, ~19!

to suppress theu0&↔u2& excitation. Furthermore, if we
chosen sufficiently large, then stateu2& also only has a very
small transient populationduring the pulse sequence. Th
total operation time is equal ton(2p/dv)1t ~wheret is the
total duration of the electromagnetic radiation!, which be-
comes quite long for largen. Surprisingly, this composite
method still performs rather well even when the system is
away from the short pulse limitg@dv , as shown in Fig. 6.
22451
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B. Composite pulses—method 2

Another composite pulse design is based on the prev
solution, supplemented by Bloch-sphere intuition and
knowledge of the excitation profile of a hard pulse. Suppo
we excite a two-level systemdv/2p hertz away from reso-
nance via a hard pulse of durationt. Wheneverdv/2p is an
integer multiple of 1/t, the system is not excited. Howeve
in our system the two transitions share an energy le
Hence, even if we excite the undesired transition o
resonance, there is still a substantial error, as evident f
Fig. 3. Nonetheless, such a carefully timed pulse is still u
ful for the design of our composite pulse.

For the first step of the composite pulse, let the hard pu
be applied on resonance with theu0&↔u1& transition for a
time of 2p/dv . Let this pulse be denoted byU(2p/dv) and
let the power be such that we would obtain only a sm
rotation angle~less than 45°!. The resulting matrix elemen
of U(2p/dv) connecting theu1& and u2& states is very smal
because this transition isdv/2p Hz off-resonance, in accor
dance with our Fourier intuition from the previous par
graph. However,U(2p/dv) still has a matrix element con
necting theu0& andu2& states because the two transitions sh
an energy level, leading to errors~similar to U(t) andV(t)
from above!. The last step of the composite pulse simp
consists of undoing theu0&↔u2& excitation.

The u0&↔u2& excitation can be reversed by using the fa
that a 180°ẑ rotation sandwiched between twox̂-rotations
leads to no net excitation. Suppose we apply the seque
C5U(2p/dv)Z2U(2p/dv). Let us investigate the effect
of C on the three possible excitations:~1! The first and last
pulses,U(2p/dv), excite theu0&↔u1& transition, whereas
Z2 has no effect on the statesu0& and u1&. ~2! Neither

FIG. 6. Plot of the errore as a function of normalized total time
tpw for the two composite pulses (n52) described in Sec. IV, com
pared with a hard and Gaussian shaped pulse. The first comp
method outperforms hard pulses whenever the pulses are mult
of 2p/dv even though the limit ofg@d does not apply here. Fo
the second composite pulse, when the applied pulses are in
multiples of 2p/dv , the error is minimized as expected.
8-5
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STEFFEN, MARTINIS, AND CHUANG PHYSICAL REVIEW B68, 224518 ~2003!
U(2p/dv) nor Z2 excite theu1&↔u2& transition as described
in the previous paragraph.~3! The two pulsesU(2p/dv)
lead to excitations between the statesu0& and u2&, which can
be regarded asx̂-rotations, whereasZ2 acts like a 180°
ẑ-rotation on the same states. Hence, the sequenceC leads to
no net excitation between theu0& and u2& states.

As a result, the sequenceC acts non-trivially only on the
desired qubit manifold. By carefully adjusting the power
the pulses we can create any arbitraryx̂ rotation on the de-
sired transition. The sequence thus consists of the applica
of two pulses of length 2p/dv interlaced with a free evolu
tion of lengthp/dv .

Similar to the previous composite pulse, this method
sults in low errorse only whenU(2p/dv) implements small
rotations. Hence in general, we may also have to appln
instances ofU(2p/dv)Z2U(2p/dv) if our goal is to achieve
large rotation angles. The resulting duration of this comp
ite pulse is 2.5n(2p/dv).

Figure 6 shows the results of the composite pulse meth
compared to a hard pulse and the Gaussian shaped pulse
time axis denotes thetotal duration of the pulses. For th
composite pulses, this includes the duration of the elec
magnetic radiation plus the delay period implementingZ2 .
As can be seen, the two composite pulse methods outper
hard pulses but not a Gaussian pulse witha53. It is clear
that the two simple composite pulses may provide use
alternatives for implementing accurate single qubit rotatio
in a Josephson phase qubit. Furthermore, it should be
sible to combine shaped and composite pulses to even fu
improve qubit operations.

Nonetheless, as is the case with shaped pulses, the o
pation probability of stateu2& during the application of the
composite pulse can be rather large. For the second com
ite pulse, this number is 331022 ~see Fig. 5!, which is much
larger than the occupation probability at the end of the pu
In the next section we show how transient populations in
third energy level can be highly undesirable in the prese
of high tunneling rates.

V. EFFECTS OF TUNNELING

Thus far we have only considered the ideal case where
two transitions of the three-level system are close in f
quency but otherwise there exist no sources of decohere
However, in a real Josephson phase qubit, the quantum
can tunnel through the barrier of the cubic well, and t
process acts as a source of decoherence. What consequ
do we expect from this?

From first principles we know that the tunneling rate d
pends exponentially on the barrier height and width. He
in our cubic potential, we expect the upper level to be m
susceptible to tunneling. When the tunneling rate out of t
energy level is high, then there exists a significant sourc
decoherence if the state becomes even transiently popul
It is thus desirable to keep transient populations in stateu2& as
small as possibleduring our single qubit rotations. This ma
not necessarily be the case however, as indicated in Fig
We next estimate the impact of this tunneling effect, first
using a simple model, followed by a more rigorous approa
22451
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A. A simple tunneling model

A first model that gives insight into the importance
transient populations during the pulses can be set up as
lows. Let the probability of being in stateu2&, and the tun-
neling rate out ofu2& be defined asp2 and G2 respectively.
The probability of tunneling out of stateu2& can then be
calculated byPt5*p2G2dt. If we bias the system such tha
G2 is on the order ofdv/2p, which is about 10 times large
than the inverse of typical pulse widths,6 we expect any tran-
sient populations in stateu2& to tunnel out of the potentia
well during the pulse. Since the tunneling rates out ofu1&
(G1) and u0& (G0) are about 103 and 106 times less thanG2 ,
we ignore their effects in this simple calculation.6

In Fig. 7 we plot Pt as a function of normalized puls
width for a hard, Gaussian, and the second composite p
with a tunneling rateG2'(v10/2p)/100'dv/2p. Clearly,
the error is several orders of magnitude higher thane, and
tunneling thus appears to be an important source of deco
ence for this system, as expected. Note thatPt is only an
approximate overall error because it reflects only the pr
ability of tunneling and does not include the occupati
probability of being in stateu2& at the end of the pulse, which
can be non-zero regardless of the tunneling rate. We n
describe a more rigorous approach that analyzes the ef
of tunneling and includes the leftover occupation probabi
of stateu2&.

B. A tunneling model using the operator-sum representation

We shall model the tunneling behavior similar to amp
tude damping by using the operator-sum representatio23

This type of model has been successfully used to predict
impact of decoherence in several NMR quantum comput

FIG. 7. Plot ofPt as a function of normalized pulse width for
hard, Gaussian and composite pulse takingG2'dv/2p
'(v10/2p)/100. Clearly, the estimate of the tunneling probability
several orders of magnitude higher thane, indicating that tunneling
effects are important.
8-6
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experiments.15,24 In the operator sum representation, an i
tial density matrixr i is mapped to a final density matrixr f
via

r f5(
k

Ekr iEk
† , ~20!

where(kEk
†Ek5I andEk are the Kraus operators.23 For am-

plitude damping acting on a single qubit, we have only t
Kraus operators, taking the form

E05F1 0

0 A12PG
G , ~21!

E15F0 APG

0 0
G , ~22!

wherePG512e2tG with G denoting the inverse lifetime o
the u1& state. From this, it becomes clear that any quant
state eventually collapses to the ground stateu0&.

The tunneling mechanism out of stateu2& is now modeled
by using a fourth, fictional auxiliary energy leveluT& which
acts as a reservoir for the tunnel states. We now defin
fictitious qubit with basis statesu2& and uT&. The tunneling
mechanism fromu2& to the auxiliary level is then captured b
modeling amplitude damping on the fictitious qubit. In th
case the two Kraus operators take the forms

E05F 1 0 0 0

0 1 0 0

0 0 A12PG 0

0 0 0 1

G , ~23!

E15F 0 0 0 0

0 0 0 0

0 0 0 0

0 0 APG 0

G , ~24!

with the basis statesu0&, u1&, u2&, and uT& going from left to
right. These operators also ensure that if the state tunne
then all coherences to that state vanish. For example, if
initial state was an equal superposition ofu0& and u2&, then
after tunneling we have a mixed state without coherenc
and find that the system is in stateu0& or uT&, each with
probability 0.5.

The tunneling ratesG1 andG0 are;103 and;106 times
lower thanG2 , as described earlier. WhenG2'dv/2p, we
estimate their contributions to be only on the order of 1025

for typical pulse widths, using the simple tunneling mod
from above. Hence we do not include their effects in o
operator-sum approach. Later, we show how to genera
our method to include tunneling from an arbitrary number
levels, and use this generalized method to verify thatG1 and
G0 are indeed negligible, though we do not explicitly sho
our results here.

The Kraus operators above describe the tunneling me
nism, but they do not include excitation effects. The n
22451
-

a

d,
e

s,

l
r
e

f

a-
t

step to model the single-qubit rotations in the presence
tunneling is to include the excitation of the transitions due
the applied radiation. The excitations of the two transitions
our three-level system do not commute with the tunnel
mechanism. Thus, strictly speaking, one may have to de
a more complex formalism that captures both the tunne
effect and the qubit excitation simultaneously. However,
approximate the simultaneous behavior by slicing the mic
wave pulses into many discrete steps~as has been done i
Secs. III and IV!, and then simulate the tunneling and exc
tation one after the other in each step. In the limit as
number of steps goes to infinity this approximation becom
exact; we have used 256 steps for our simulation.

From Eq.~20!, it becomes clear that the operator forma
ism takes density matrices as the input, which we have
yet specified. Our goal is to find the maximum possible er
over all possible input states, which are arbitrary superp
tions of the qubit, defined asau0&1bu1&. We vary the values
a andb to maximize the error, which is defined as the sum
the u2&^2u anduT&^Tu elements of the resulting density matri
This corresponds to the maximum probability of being in t
statesu2& and uT&. It is a useful error measure, and in th
absence of tunneling it yields thesameerror e that we have
defined before.

In Fig. 8 we plot the error as a function of normalize
pulse width for a tunneling rateG2'v10/100'dv/2p. From
this figure, we notice that the error is on the order of 1022 for
typical pulse widths. Note that especially for the Gauss
shaped pulse, the exact calculation matches the result o
simple tunneling model from Fig. 7 reasonably well. It
evident from both plots that for typical pulse widths the err
is much larger than the 1024 threshold required for fault-
tolerant computations.25 How can we reduce the error resul
ing from tunneling without significantly increasing the pul
widths?

FIG. 8. Plot of the error as a function of normalized pulse wid
when including tunneling effects withG2'dv'(v10/2p)/100. The
error is given by the maximum ofu2&^2u1uT&^Tu over all possible
input superpositionsau0&1bu1&. Now, the hard pulse shows th
best performance, but still with a large error.
8-7
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From the simple theoretical model described earlier,
most straight forward method is to decrease the tunne
rates, which can be done by adjusting the bias currentI to
include more than three energy levels in the well. In t
case, the frequency differencedv/2p between the transition
becomes slightly smaller. However, the tunneling rate is
ponentially dependent on the barrier thickness, and thus
can reduce the tunneling rate by many orders of magnit
while only slightly decreasing the frequency difference b
tween the transitions. With four levels in the well, we c
reduce G2 by three orders of magnitude to abo
(dv/2p)/1000 while decreasingdv/2p by only 30%. Though
G3 is still high ~aboutdv/2p), level u3& is sparsely populated
because theu2&↔u3& transition is about 2dv/2p Hz off-
resonance and hence should not be significantly excited

The tunneling effects fromu2& and u3& during single-qubit
rotations can be calculated via the operator-sum represe
tion as follows. The effect of the radiation and tunneli
acting simultaneously is approximated as before by slic
the pulse into many steps and simulating tunneling and
citation one after the other in each step. The tunneling
modeled by sequentially modeling tunneling out of statesu2&
and u3&. In other words, we first apply the two Kraus oper
tors that describe the tunneling fromu2& to uT&. Then, we
apply the two Kraus operators that the describe the tunne
from u3& to uT&. Strictly speaking this is not correct becau
the Kraus operators that describe tunneling fromu2& do not
commute with those describing the tunneling fromu3&. How-
ever, since the pulse is already discretized into many s
~we used 256!, during each of which we model tunnelin
separately, our approach becomes a good approximation
resulting four Kraus operators can be easily derived fr
Eqs.~23! and~24!. Furthermore, we can model the tunnelin
from an arbitrary number of states in this manner, and h
verified that the error for a three-level system is indeed do
nated by the tunneling from stateu2& and that tunneling from
u1& and u0& is negligible.

Figure 9 shows the error for a four level system w
tunneling ratesG2'(dv/2p)/1000, andG3'dv/2p. As can
be seen, the results are much improved compared with
8. In fact, now the composite pulse can be as good as
Gaussian shaped pulse.

It is possible to continue increasing the number of lev
in the well to suppress tunneling even further. However, t
may not be practical much beyond four or five levels beca
the state measurement needs a transition between stau1&
and a higher energy state with a very large tunneling ra6

This becomes increasingly difficult for more energy levels
the well. In the four level case, it is possible to directly exc
the u1&↔u3& transition.26

Finally, we point out that other proposals for performin
single qubit rotations in a three or multilevel system7–9 are
also problematic whenever energy levels with high tunnel
rates are populated. We believe that our method for simu
ing the tunneling mechanism could be useful to estimate
feasibility of these and other methods.

VI. CONCLUSIONS

In summary, we have shown how shaped and compo
pulses can improve the accuracy of single-qubit operation
22451
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a Josephson phase qubit. We estimate the feasibility of
methods by including tunneling effects to show that tunn
ing can be a significant source of decoherence, and we
clude that operating a Josephson phase qubit with three
els is not recommended. Instead, to reduce decoher
effects from unwanted tunneling one may wish to operate
system with four energy levels. Note that we have ignored
other sources of decoherence in our calculations such as
coherence due to current noise and dissipation12,27 which
would actin addition to leakage and tunneling.

Our proposed method of using shaped and compo
pulses should be realizable using commercial electron
Typical junction parameters arev10/2p'10 GHz, DU/\vp
'4, anddv'0.04v10, leading to typical pulse widthstpw
that are on the order of a few nanoseconds or tens of na
seconds. Using analog filters, commercial electronics can
commodate shaped and composite pulses at even sh
time scales than nanoseconds. Considering that reported
herence times are 100 ns or longer,5,26 the performance of
shaped and composite pulses can be immediately experim
tally investigated.

In this work we have only considered single-qubit ga
which are not sufficient to build a quantum computer. Hen
to estimate the feasibility of building a quantum compu
using coupled Josephson junctions, it will be necessary
characterize the performance of two-qubit gates as w
Work towards that direction has already begun,28 but without
considering pulse shaping. As we have demonstrated, sh
pulses are capable of reducing leakage to other energy le
and hence we envision that our techniques can also o
practical solutions for two-qubit gates.

Our work demonstrates that NMR quantum computi
and spectroscopy techniques are a valuable resource w
applied to related quantum systems, for example the su
conductor based qubit system. We believe that contin

FIG. 9. Plot of the error as a function of normalized pulse wid
when including tunneling effects in a four level system. The tunn
ing rateG2 is (dv/2p)/1000, andG3 is 1000 times higher. The erro
is given byu2&^2u1u3&^3u1uT&^Tu after maximizing over all pos-
sible input superpositionsau0&1bu1&. In this case, the composit
pulse can perform about as well as a Gaussian pulse.
8-8
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effort towards this direction could prove fruitful for othe
implementations of quantum computers including solid st
and trapped ion implementations. Furthermore, we app
fundamental ideas from quantum computing to simulate t
neling effects in Josephson junction qubits, illustrating h
quantum computing is useful in modeling and simulating
physics of real quantum systems in a straightforward man
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