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Abstract. We have completed a comparison of SiO, film thicknesses obtained with the three dominant measurement tech-
niques used in the Integrated Circuit industry: ellipsometry, capacitance-voltage (C-V) measurements and high resolution
transmisission electron microscopy (HRTEM). This work is directed at evaluating metrology capability that might support
NIST- traceable Reference Materials for very thin dielectric films. Particular care was taken in the design of the sample set to
allow redundancy and enable estimates of oxide layer consistency. Ellipsometry measurements were analyzed using a variety
of models of the film structure, and C-V results were analyzed using three different quantum-mechanical based algorithms to
account for quantized states in the substrate and depletion effects in the polysilicon capacitor electrode. HRTEM results were
supplemented with Electron Energy-Loss Spectroscopy. A range of thicknesses was found with each of the methods, but
with some overlap of values. HRTEM and STEM values showed less consistency between wafers than the C-V data for the
capacitors used and were seen to be more influenced by local variations such as interface non-uniformities. Sources of varia-
tion and estimates of uncertainty for the analyses are presented. Implications of these results for Reference Materials are dis-
cussed.
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INTRODUCTION ess monitoring, such as through the use of Reference
Material(s). Unfortunately, it is difficult to generate
As gate dielectric film thicknesses shrink along with Reference Materials for very thin films, with thick-

other transistor dimensions, process tolerances for film nesses traceable to SI units, and also with uncertainties
thickness and the resulting demands on measurements for thickness anywhere close to the requirements stated
have become truly challenging, with 3-0 process toler- in the ITRS. The procedure used for full analysis of the
ance already below 0.1 nm and measurement require- conceptually accurate interface-layer model, as used
ments below 0.01 nm. Ellipsometry continues to be the for NIST elllpsomeﬂy—based oxide thickness Standard
measurement of choice for in-line monitoring of film Reference Materials from 10 nm to 200 nm, resulted in
thickness because it is rapid and highly precise, al- uncertainties of film thickness, + 0.5 nm, that would be
though other measurements may also be needed for considered unacceptable for current needs'.

added film information. Film thickness values obtained While ST unit thickness traceability is not truly re-
from ellipsometry depend on an assumed film structure quired for verifying consistency of ellipsometer per-
model, as well as on the optical index values assumed formance or “tool-matching”, it is a significant consid-
for the silicon substrate and the silicon dioxide film. eration for Reference Materials that are used interna-
The resulting thicknesses, therefore, are not absolute, tionally, or where ISO requirements become important.
although they can be very precise for a fixed set of as- This study utilizes a carefully designed set of 2 nm
sumptions. It is believed that most companies develop SiO, films to determine the relation of film thickness
a “translation table” to relate ellipsometry-based film obtained from several simple ellipsometry models with
thicknesses in terms of how “thick” they are electri- electrical thickness and SI-traceable physical thickness
cally, e.g. as a capacitor dielectric, which is the critical values. It also identifies the major uncertainties from
because it indicates electrical circuit performance . each type of measurement in this study.

It is highly desirable to be able to verify the perform-
ance of ellipsometry tools used for gate dielectric proc-
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EXPERIMENTAL OVERVIEW

A set of nine, 150 mm diameter wafers, with thermal
oxides, grown at 850 °C for 30 min, was used for these
studies. These wafers, seven with blanket oxides and
two others with arrays of poly-gate capacitors, were
from the center of a furnace stack of 30 wafers. The
poly-gate capacitors were fabricated in square arrays at
four different sizes in each of the four wafer quadrants.
They were arranged so that in each of the four wafer
quadrants a different one of the capacitor sizes was
proximate to the wafers’ central sweet-spot (out to a
25 mm radius about wafer center) The capacitors were
designed to have active areas of (16, 36, 64 and 100)
x 10™* cm®. The oxides were grown and the capacitors
fabricated at NC State University.

All seven blanket-oxide wafers were mapped by
ellipsometry immediately after oxide growth. Wafer to
wafer center-spot thickness differences for the blanket
wafers was within a range of 0.064 nm. The thick-
nesses at the 50 mm radius corresponding to the loca-
tion of the capacitors used for TEM analysis were up to
0.11 nm. larger than the center spot thicknesses.

These measurements served to set limits on the thick-
ness differences that might be expected in this study
simply because not all measurements could be made in
the same region of the same wafers. They did not
provide an estimate of thickness differences resulting
from the additional thermal cycles and possible poly-
silicon/Si0O, interdiffusion during capacitor fabrication.

The wafers were characterized as follows: the blanket
wafers were measured at wafer center by single-
wavelength ellipsometry (SWE) immediately following
a thermal desorption cycle. The two wafers with ca-
pacitors were measured by C-V in the wafer sweet
spots to extract thicknesses for comparison with the
center-point ellipsometry thicknesses of the blanket

wafers. Capacitors of the largest size, located at a dis-

tance of 45 mm to 50 mm from each wafer’s center,
were also measured by C-V and one of these capacitors
from each wafer was then sectioned and HRTEM and
high-angle annular dark field (HAADF) STEM thick-
nesses were obtained.

ELLIPSOMETRY MEASUREMENT and
ANALYSIS

It has been appreciated for some time that surface
contamination will accumulate on the surfaces of wa-
fers with time and, if not removed before ellipsometry
measurements, will cause an inaccurate value of a layer
thickness to be determined because ellipsometry is
generally not capable of separately determining the
thicknesses of the contamination layer and the film
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being investigated. For this study, we chose to remove
the contamination by thermal desorption, 300 °C for
5 min on a hot plate, followed by 90 s cooling on a
massive copper heat sink, immediately prior to meas-
urement. Ellipsometric measurements were taken at
5 min intervals for one hour; SWE was chosen so that
each measurement was fast enough to be considered a
snapshot, and did not average over a period of con-
tamination redeposition. After analysis by each of sev-
eral models, the resulting thicknesses were fitted to a
straight line vs. time following removal from the hot
plate, and extrapolated to time equals zero to estimate
the oxide thickness before any recontamination started.

Three basic models were used to analyze the ellip-
sometry measurements. The first, known to be overly
simple, was used because it was expected to give the
highest precision and thus serve as a base-line. The
model treated the entire SiO, film as having a known
and constant index of refraction, n, of 1.461, as used
for the stoichiometric part of the oxide of previous
NIST SRMs for SiO, (1). The second model assumed a
transition, or interlayer, between the silicon substrate
and the SiO,. The interlayer, is a suboxide of silicon
that contains the bridging bonding arrangements be-
tween the crystalline silicon substrate and the
stoichiometric amorphous SiO, 2. This model was em-
ployed for analysis of the previous NIST SiO, SRMs
which were thick enough to allow an estimate to be
made of the interlayer parameters. Because the inter-
layer parameters cannot be determined directly from
the very thin oxides in this study, the values for the
previous SRMs: thickness = 0.7 nm and refractive in-
dex, n = 2.8, were used here, as were a number of other
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FIGURE 1. SWE results: Interface layer model -
with a 0.7nm, index = 2.8 interlayer.

Calculated Film Thickness, nm

1.7550l - 70

combinations with slightly higher and lower thickness
and index values. The third model considered the SiO,
index to be constant, but with a value higher than 1.461
to account for the added optical path length arising
from the higher index interlayer’. This model was im-
plemented in two ways: 1) allowing the analysis soft-
ware to find an individual best-fit thickness-index pair
for each of the measurements during the one-hour
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FIGURE 2. SWE results: Single layer model -
fit on thickness and index at each point.

period, 2) searching for a single index value, compara-
ble to the point-by-point values, that provided low re-
sidual fitting errors simultaneously for all measure-
ments on a given wafer. While all procedures but the
one that fitted the thickness and index separately at
each point (Fig. 2) showed a smooth linear trend for
film regrowth, as expected, the goodness of fit parame-
ter reported by the fitting algorithms were not always
satisfactory. Table 1 summarizes the assessment of
results from each of the models used for fitting the el-
lipsometry data.

CAPACITANCE-VOLTAGE

The C-V measurements were taken at 100 kHz, the
highest frequency that did not show roll-off in accumu-
lation due to series resistance. The measurements were
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FIGURE 3. SWE results: Single layer model -
index fixed at 2.49 — near the pt. by pt. average.

taken in steps of 0.05 V from —2.6 V t0 2.6 V on 9 ca-
pacitors of each size from the sweet spots of both wa-
fers, and also on 9 of the extra large capacitors at a
distance of about 50 mm from the centers of the 2 wa-
fers. For each of the capacitor sizes, the capacitance
values, in accumulation, of the 2 wafers were well
within 1 % of each other; slightly larger differences
were found in depletion due to substrate resistivity dif-
ferences. For the largest size, (XL), capacitors at the 50
mm radius used for TEM measurements, the two wa-
fers had equivalent (within 1%), accumulation capaci-
tance values, but for both wafers the capacitance at
50 mm was about 2.5 % less than at 25 mm suggesting
slightly thicker oxide at 50 mm.

TABLE 1. A summary of the results from Single Wavelength Ellipsometry Analyses.

Model

7 wafer Total Film Thickness
Avg.* & Std. Dev.

Goodness of Fit to Data
and Comments

Single Stoichiometric SiO, Layer:
SiO, Index = 1.461

2.409nm + 0.012nm

Very Poor-
Clearly an inappropriate model

Single SiO, Layer: Point-by-point
fit on Index & Thickness

2.234nm + 0.037nm

Excellent, but erratic time trend
to thickness values for each wafer

Single SiO2 Layer; Set SiO,
Index at 2.49 (pt. by pt. average)

2.211nm + 0.032nm

Very Good
Some wafer to wafer variability in
average index values

0.7nm, n = 2.8 Interface Layer 2.472nm + 0.012nm Poor**
under Stoichiometric SiO, Conceptually correct model
0.7nm, n = 3.2 Interface Layer 2.659nm + 0.017nm Poor**

under Stoichiometric SiO,

*A change of assumed angle of incidence of 0.004 deg. (our uncertainty limit) causes thickness changes < 0.004nm;
a change of silicon substrate refractive index within range of published values causes thickness change < 0.005nm
** Only use of an angle of incidence well outside the uncertainty limit gave good values for the “goodness of fit” to

data with any reasonable variant of the interlayer model
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The nine-capacitor average capacitance vs. voltage
was calculated at each size for each of the wafers; the
averages were calculated separately for the XL capaci-
tors at 25 mm and 50 mm radius. Capacitor areas were
obtained for all sizes by using both photographic blow-
ups, and a microscope filar eyepiece. To eliminate the
effect of field oxide overlap capacitance, a linear re-
gression was done of average capacitance vs. area for
each wafer’s sweet spot capacitors. This was done
separately at each bias voltage used for C-V measure-
ment; correlation coefficients from the regressions ex-
ceeded 0.999 for all voltages. The result of the regres-
sions vs. bias voltage was a reconstructed capaci-
tance/unit area C-V curve applicable to the sweet spot
capacitors of each wafer, and a capacitance, C, (V), at
zero area, attributed to overlap capacitance. The C, (V)
values were subtracted from the capacitance values at
each voltage for the XL capacitors at 50 mm radius.

Oxide layer thicknesses were extracted from the C-V
data by using three different quantum mechanical
(QM) simulators which account for quantized states in
the substrate and depletion in the poly-silicon elec-
trode* > ©. Results are summarized in Table 2. Differ-
ences in thickness among the QM simulators are ex-
pected from previous work’.

NAlIF2 2.2 nm gate

FIGURE 4. HRTEM image of a capacitor section on wafer
N-III-2. Thin lines show the electronically generated meas-
urement box used to determine the value of the oxide thick-
ness (central band in photograph)
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FIGURE 5. Two HAADF-STEM traces from capacitor
section used for HRTEM images on wafer N-III-2. The two
separate scan traces differed by 0.1 nm in thickness.

Table 2. A summary of the results from C-V analysis by three Quantum-Mechanical Algorithms: Calculated thickness and uncer-

tainty due to two different procedures for capacitor area.

Sweet Spot 50 mm Radius
Ellipsometry Region HRTEM/STEM area
w 2 wafer 2 wafer
; N-III-1 N-III-2 N-III-1 N-III-2
Algorithm average average
IBM Tqm_v6 2.165 = 2.169 + 2.167 « 2.188 = 2.191 = 2.190 +
- 0.079 nm 0.081 nm 0.080 nm 0.115 nm 0.112 nm 0.114 nm
NIST C-V 2.140 = 2.140 + 2.140 = 2.162 + 2.162 + 2.162 +
0.078 nm 0.078 nm 0.078 nm 0.113 nm 0.113 nm 0.113 nm
2.376 = 2379 + 2377 = 2401 =+ 2.404 + 2403 +
NCSU-CVC 0.087 nm 0.086 nm 0.087 nm 0.126 nm 0.124 nm 0.125 nm
HRTEM and HAADF STEM

One extra large capacitor at approximately 50 mm
radius was sectioned from each wafer with final thin-
ning performed using 3.5 kV Ar+. The sections were
characterized in an FEI Co. TECNAI™ F30 TEM at
International SEMATECH (ISMT). The samples were
aligned with the electron beam parallel to z = [110]
direction of the substrate silicon. HRTEM and
HAADF-STEM results were obtained from each of the
wafers with results exemplified in Figs. 4 and 5 and
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summarized in Table 3. There was a wafer to wafer
thickness difference found with both of the TEM
methods, and also a method to method difference found
for both wafers. The wafer to wafer difference is not
seen in the C-V results for capacitors from the same
regions as the TEM data. The TEM differences are
believed to be due to the effects of interface roughness
on the localized sampling of the TEM measurements.



TABLE 3. A summary of HRTEM and HAADF-STEM
thickness results: Measured vale and estimated absolute-
uncertainty.

HRTEM HAADF-STEM

Wafer N-III-1 24nm+ 0.2nm | 2.5nm = 0.15 nm

Wafer N-III-2 22nm+ 0.2nm | 2.3nm =+ 0.15nm

COMPARISON of MEASUREMENTS
and DISCUSSION

The results from the three types of measurements in
this study are summarized in Figs. 6 and 7 which group
the results according to the region of the wafers used
for the measurements. The measurement uncertainties
shown are not comprehensive, but represent the major
contributions for each of the methods in this study.

415 AN-IIF1
i ® N-Ik2
E ]
c »
& 2.45
g A = -
=]
%230 s
| [
2.15 : l ‘I
2.00 . , : - ;
o« S ‘\os\’ & @t

FIGURE 6. Thickness values and uncertainties from TEM
and C-V measurements on two wafers.

They represent different considerations for the three
types of measurements and are based, at least in part,
on the amount, and kind, of replicate measurements for
the three techniques.

The original wafer screening by ellipsometry indi-
cated wafer to wafer oxide thickness differences should
be less than 0.035 nm for all wafers in this study; the
C-V results for the 2 capacitor wafers are even tighter,
although that tightness is masked somewhat by as-
sumptions made dealing with the capacitor area data
from the two procedures used. On-wafer radial nonuni-
formity between wafer center and the region used for
HRTEM was expected to be less than 0.11 nm from the
ellipsometry screening of all blanket oxide wafers, and
no more than 0.05 nm different from the sweet-spot
area ( ~ 25 mm radius) by capacitor measurement.
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FIGURE 7. Thicknesses within wafer sweet Spots:
Averages and standard deviations as follows -
C-V (2 wafers); SWE (7 wafers).

For the ellipsometry measurements, the error bars for
each of the models evaluated represent the 7 wafer
standard deviations of the time = O thickness values;
additional uncertainty due to angle of incidence and
other instrumental effects adds an estimated
+ 0.007 nm. Ellipsometry results yield a range of val-
ues with simple models that are within the uncertainties
of both C-V and TEM results. All models except the
“point-by-point fit of index” give a smooth linear de-
scription of wafer recontamination with time; however,
only the use of an effective fixed index of refraction
value near the “point-by-point” average gave both a
smooth linear description and a very good fit to the
measured ellipsometry parameters, A and ¥. All the
models used, even the interlayer model, are simplifica-
tions of the real film structure. As film thickness be-
comes very small, the ability to fit the measurement
data well is highly dependent on using the correct
model or else finding an optimal simplification such as
the effective fixed index in Fig. 3.

For the C-V measurements, the largest internal un-
certainty is due to the difference in capacitor area
measurements resulting from the photo and filar eye-
piece methods used; the availability of a CD SEM
would have improved dimensional accuracy. Variabil-
ity of results among the capacitors of a given size was
much smaller than the uncertainty due to absolute area.
The dominant overall factor in the C-V analyses is the
effect of the QM correction algorithm used, see Fig. 6.
It is not yet known which of the available QM simula-
tors is the closest to being accurate.

The uncertainty error bars shown for HRTEM and
HAADF-STEM, Fig. 6. are estimates of absolute un-
certainty for the basic measurements. The use of a
TEM with a spherical aberration correction would have
reduced the uncertainty for the HRTEM measurements.



An extended discussion of HRTEM and STEM analy-
sis of thin dielectric films is not possible here; the
reader is referred to reference 8.

The spread in ellipsometry and C-V thickness values
are principally dependent on models used to analyze
the data, with only minor dependence on sample uni-
formity concerns. The spread in TEM results is domi-
nated by sample layer interface nonuniformity that is
not the same for both wafers in the regions sampled by
the TEM foils. The core uncertainties of the TEM re-
sults relative to absolute thickness values, 0.2 nm for
HRTEM and 0.15 nm for HAADF-STEM, listed in
Table 3 are the principal limit to obtaining SI length
unit traceability for thickness values even if sample
uniformity and interface abruptness problems are
eliminated.

CONCLUSIONS

The sample set design was found to be an effective
way to provide information on material nonuniformity
concerns related to the fact that it is not possible to
perform all 3 measurements on the same wafer spot.
However, comparison of thickness measuring tech-
niques requiring both blanket and capped-oxide wafers
requires still better wafer-to-wafer and on-wafer radial
uniformity of thickness, and particularly, less interface
roughness.

The results obtained indicate that it should be possi-
ble to select an effective ellipsometry analysis model
for developing Reference Materials in good agreement
with “centerline” TEM and/or electrical thickness
scales. This would be subject to improving sample uni-
formity to enable tightening of TEM results and assist
resolution of the best QM algorithm for analysis of
C-V measurements.

However, it does not yet appear possible to develop
thin oxide film reference materials with uncertainties in
the sub 0.01 nm range, i.e. consonant with ITRS tool
precision requirements, when accuracy considerations
(traceability to the SI unit for length) are factored in.
The principle limitation in this case is the core uncer-
tainty of TEM thickness values as shown in Table 3.
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