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Analytical and Numerical Techniques for Analyzing an Electrically Short Dipole with a 
Nonlinear Load 

Abstract-An electrically short dipole with a nonlinear dipole load is 
analyzed theoretically using both analytical and numerical techniques. The 
analytical solution is given in terms of the Anger function of im- 
order  and imaginary argument  and is derived from the nonlinear 
differential  equation  for  the  "Ikvenin's equivalent circuit of a dipole with a 
diode. The numerical  technique is to solve the  nodal equation using a 
timestepping finite difference equation method.  The nonlinear resistance 
of  the  diode is treated using the Newton-Raphson iteration technique. A 
comparison between the a n a l y t i c a l  and numerical solutions is given. 

I. INTRODUCTION 

I T IS  WELL  accepted  that  microwave  radiation  can  pro- 
duce  biological  effects.  Although  it is very  difficult t o  

determine  the  biological  hazards  associated  with  electromag- 
netic  (EM)  fields,  the  biological  effects  resulting  from  the EM 
fields  can  be  adequately  described  from  the  knowledge of one 
or  more  parameters  that  characterize  the EM field.  One  of  the 
advocated  field  parameters  for  quantifying  hazardous EM 
fields is an  electric  energy  density  which  can  be  easily  calcu- 
lated  from  the  electric  field  strength [ 11.  For  this  reason  the 
National  Bureau  of  Standards  has  recently  developed  a  broad- 
band  isotropic  electric  energy  density  meter  (EDM).  The EDM 
consists  of  three  orthogonal  electrically  short  dipoles  with 
diode  detectors  between  the  arms  of  the  dipoles. To synthesize 
such  an EDM in  terms  of  its  frequency  response  and  its  dy- 
namic  range  one  needs  to  theoretically  analyze  an  electrically 
short  dipole  with  a  nonlinear  load  such  as  a  diode. 

Traditionally,  the  characteristics  of  an  antenna  with  a  non- 
linear  load  have  been  analyzed  in  the  frequency  domain  by 
considering  the  spectral  components  of  the  solutions  at har- 
monic  frequencies [ 2 ] .  For  example,  Sarkar  and Weiner [ 3 ]  
have  used  the  Volterra  series  analysis  to  obtain  the  scattering 
due to nonlinearly  loaded  antennas.  The  nonlinear  transfer 
function of a  nonlinearly  loaded  antenna was determined  at 
several  harmonic  frequencies.  The  calculation of the  non- 
linear  transfer  function is generally  tedious,  particularly  when 
the  circuit  model  of  the  nonlinear  load is complicated  and  its 
nonlinearity is strong.  Recent  analyses  of  nonlinearly  loaded 
antennas  have  been  considered  using  direct  time-domain  tech- 
niques.  Schuman  [4]  has.  described  the  application of the 
time-domain  method  of  moments  technique to determine  the 
scattering  current  on  a  thin  wire  with  discrete  nonlinear resis- 
tive  loading. Liu and  Tesche [ 51, [ 61 have  used  frequency- 
domain  data to compute  the  time-dependent  currents  and  volt- 
ages  across  a  nonlinear  load  by  means of the  Laplace  transform. 
A unified  numerical  procedure was recently  proposed  by 
Landt [ 71.  The  antenna  characteristics  were  derived  from  a 
time-domain  electric  field  integral  equation,  whereas  the  non- 
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linear  network  analysis  was  performed  in  a  simple  timedomain 
nodal  analysis. 

Two  techniques  for  analyzing  an  electrically  short  dipole 
with  a  nonlinear  load  are  described  here.  The  first  technique, 
described  in  Section 11-A, gives an  analytical  solution  to  the 
first-order  nonlinear  time-domain  differential  equation in 
terms  of  Anger  functions.  The  second  technique,  described in 
Section 11-B, is a  time-stepping  finite  difference  solution  tech- 
nique  for  obtaining  a  numerical  solution  to  the  time-domain 
nonlinear  differential  equation.  The  nonlinear  effect  due  to  a 
diode is solved  by  the  Newton-Raphson  iteration  method.  This 
numerical  technique gives the  physical  insight  for  nonlinear  load 
effects  on  antennas  in  terms of the  time-domain  waveform  and 
also  permits  the  consideration  of  certain  problems  which  are 
too  complicated  to  be  treated  by  an  analytical  technique. 

The  nonlinear  effects  on  an  electrically  short  dipole  are  first 
investigated  in  Section 111 in  the  time  domain  using  a  time- 
stepping  finite  difference  solution  technique.  The  frequency 
responses  and  the  dynamic  ranges  of  the  dipole  with  a  non- 
linear  diode  are  then  compared  using  the  two  different  tech- 
niques  described  above. 

11. THEORY 

Using the  frequency-domain  concept  of  the  effective  length 
and  the driving  point  impedance  of  an  electrically  short  dipole 
without  a  nonlinear  load,  the ThCvenin's equivalent  circuit  for 
a  diode  with  a  nonlinear  load  is  shown  in Fig. 1. The  element 
ui ( t )  is the  induced  open-circuit  voltage  at  the  dipole  terminal 
and is given  by 

where einc is  the  normal  incident  electric  field  strength  and 
he is the  effective  length  of  the  dipole.  The  element C, is the  
equivalent  driving  point  capacitance of the  dipole. A parallel 
combination of a  linear  capacitance Cd and  a  nonlinear resis- 
tance Rd represents  a  simplified  model  of  a  diode. 

For  an  electrically  short  dipole  antenna (i.e., kh < 1 where 
k is the free-space  wavenumber),  the  effective  length he and 
the driving  point  capacitance C, of an  antenna  are given by 
[81 

h(i2 - 1) 

2(!2 - 2 + In 4)  
he = m, 

and 

4T&o h c, = F 
( ! 2 - 2 - h 4 )  

The  symbols  have  the  following  meanings: h is half the  physical 
length of a  dipole  antenna in meters, EO is  the  free-space 
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Fig. 1. ThGvenin’s equivalent circuit of an electrically short dipole 
with a diode. 

permittivity  in  farads/meter,  and R is the  antenna  thickness 
factor  (i.e., R = 2 In(2h/a),  where a is  the  antenna  radius  in 
meters).’When h = 0.02 m  and a = 2.84 x m (Le., the  
antenna  thickness  factor = 14.50),  the  effective  length he 
and  the  equivalent  antenna  input  capacitance  of  the  antenna 
C, become,  respectively,  9.72 x m  and 0.2 x F. 

A  beam  lead  Schottky  barrier  diode is chosen as a  nonlinear 
load  detector  since  it  has  a  natural  high-frequency  perform- 
ance  due  to  small  junction  capacitance,  high  sensitivity,  and 
low  noise  characteristics. When an  electrically  short  dipole is 
terminated  with a beam  lead  Schottky  barrier  diode,  the  effect 
of  loading  on  an  antenna  can  be  analyzed  using  the  simple 
equivalent  circuit  shown in Fig. 1,  which  consists  of  a  parallel 
combination  of  a  nonlinear  resistance R d  and  a h e a r  capaci- 
tance c d .  Here,  the  nonlinear  resistance R d  of the  diode is 
characterized  by  its u-i characteristic, i.e., 

i(t) = I,(eQVo(t) - 1). (4) 

The  symbols  have  the  following  meanings: i ( t )  is the  current 
(ampere)  and u o ( t )  is the voltage  (volt)  across  the  diode  junc- 
tion; I, is the  saturation  current  which is assumed to   be 2 X 

A;  and cy = q / n k T  3 8  V-l ,  where q is the  electronic 
charge  (1.6 x 1 0-19 C),  n is the  diode  ideality  factor (-1.05), 
k is Boltzmann’s  constant  (1.38 X 1 OBZ3 J/K), and T is the 
temperature (-290 K). 

The  junction  capacitance Cj and  the  package  capacitance 
C, are  combined  and  are  shown  as c d  in  Fig.  1. The  exact 
vdue  of c d  varies from  diode  to  diode  and is very  difficult 
to determine. In this  paper, C d  is assumed to be  constant  and 
equal  to 0.34 pF  for  a  beam  lead  Schottky  barrier  diode. In a 
more  elaborate  diode  model  the  junction  capacitance Cj is 
nonlinear  and is.a function of the built-in  potential Vb as 

(5) 

for  a  step  junction.  The  package  capacitance C, is generally 
constant.  The  more  general  treatment of an  antenna  with 
linear  and  nonlinear  loads,  such  as  a  nonlinear  resistance  and  a 
nonlinear  junction  capacitance as well as  a  linear  package  in- 
ductance  and  a  linear  series  resistance  of  a  diode, is being 
pursued.  A  simple  nonlinear  resistance R d  with  a  constant 
diode  capacitance c d  for  the  beam  lead  Schottky  barrier  diode 
shown in Fig. 1 is used  in  the  following  sections  for  analyzing 

the  loading  effect  of  an  electrically  short  dipole  with  a  non- 
linear  diode  using  analytical  and  numerical  techniques. 

A.  Analytical Technique 

Using ThCvenin’s equivalent  nonlinear  circuit  shown in 
Fig. 1, the  voltage  equation  and  the  corresponding  current 
equation  are 

and 

where qa and q d  are  the  charges on C,, and c d ,  respectively, 
and i is the  current  through  the  nonlinear  resistance R d .  With 
the  substitution 

(4),  (6),  and (7) reduce  to 

where 

Equation (9) is a  first-order  nonlinear  differential  equation. 
The  original  investigations  for  solving  the  equation  have  been 
performed  by P. F.  Wacker,  and  the  detailed  mathematical 
steps involved are given in  Appendix A. When the  induced 
voltage u j ( t )  is a pergdic  sinusoid, Le., q ( t )  = Vi sin ut, the  
detected  dc  voltage VO averaged  over a complete  cycle  is given 
by 

(1 2) 

where JjT(jU) is the Anger  function  of  imaginary  order UT) 
and  imaginary  argument UU), Tis  the  normalized  period 

and U is the  normalized  induced  voltage 

Using the  series  representation  for  the  Anger  function  one  can 
show  from  Appendix  B  that  the  detected  dc  voltage  averaged 
over  a  complete  cycle  is given by 
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where 

m um 
SlV,  v) = 1 + c 

m = 2  ij[ ( k 2  + T 2 )  even 
k = 2  
even 

and 

k = l  
odd 

At high  frequencies  where 

In order to deal  with  nonlinear  equations  which  result  from 
nonlinear  elements  such as a  diode,  the  general  approach  to  a 
solution of suchproblems is by  the  Newton-Raphson  iteration. 

( l  6, The basic  technique  used  is  discussed  below.  Given  a  nonlinear 
systemf(i,u),  the  solution of f(i,u) = 0 yields  the  solution  for  the 
system  response. First f(i,  u )  is expanded  at  an  initial  solution 

[::I * 

(17 )  that is, 

f(i. u )  = f(io, uo)  + J [ f ( i O ,  u o ) ]  [:;I 
where J is the  Jacobian  off  and  has  the  form 

4 T =  < 1,  (1 8) 
a(ca + cd> 

one  can  show  from  Appendix C that  for  small Vi 

- Vi ..=-E[ ] 2 , J =  
(1 9) 

4 1 + cd/ca -...- a f n + m  a f n + m  
ai, 

and  for  large Vi 

(20)  Now f ( i ,  U) = 0 determines 

Equation (19) indicates  that  for  the  _small  induced  steady- 
state  voltage Vi, the  output  dc voltage V ,  is  a  square-law  func- 
tion of the  induced  voltage Vi. On the  other  hand,  (20)  indi- 
cates  that  for  the  large  induced  voltage Vi, the  output  dc  volt- as 
age  is proportional  to  the  induced  voltage Vi. 

B. Numerical Technique Avo 
J[fG 0, u 0 1 [ = - f(i0, uo).  

A  time-stepping  difference  equation  technique  can  be  used 
for  solving  the  nonlinear  network  showh  in  Fig.  1.  The  basic  The  solution of 
idea of a  time-stepping  finite  difference  equation  technique is 
briefly  discussed  below.  More  detailed  discussion on  this  sub- 
ject is given by  Calahan [ 91 . 

tance-current  source  equivalent  networks  in  the  nodal  equa- 
tion method.  For  instance,  in  a  regular R ,  C,  and L circuit  we  updates the value Of 

have 

The  linear  and  nonlinear  elements  are  converted  into  resis- [:::I 
un = Ri,, (21) 

in+l = C 
- un 

, 
7 

and 
(27' 

u n + 1  = L  , (23) The  operation is repeated  for n = 0, e-- until  the  change 
i n + l  - i n  

7 

where 7 is a  sampling  time  interval.  Once  the  initial uo or io is 
given, one  can  determine u1 and  il,  then u2 and i 2 ,  etc.;  such 
a  method is,  therefore,  called  a  time-stepping  finite  difference 
equation  method. is significantly  small. 



74 IEEE TRANSACTIONS ON ANTENNAS  AND PROPAGATION, VOL. AP-28, NO. 1, JANUARY 1980 

Fig. 2. Time-domain  waveform of first detected 100-MHz sinusoid. 
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Fig. 3. Timedomain waveform of tenth detected 100-MHz sinusoid. 

111. RESULTS 

In this  section  the  time-domain  waveforms  of  a  sinusoidal 
wave at  various  nodes  are  shown  first  using  the  time-stepping 
difference  equation  technique  discussed  in  Section 11-B. Here 
a  single  time-domain  sinusoidal wave is divided  into  16  discrete 
digitized  points (1  7 points  including  both  ends)  in  the  analysis. 
Then  the  detected  sinusoidal wave  averaged over  many  cycles 
which  correspond  to  dc  output  of  an  electrically  short  dipole 
with  a  beam  lead  Schottky  barrier  diode is  given. 

Fig. 2 shows  the  time-domain  waveform of t h e   f i s t  sinus- 
oidal  wave  at  100 MHz a t  various  nodes.  At  node  1  an  applied 
sinusoidal wave Vi is shown  with  unit  amplitude.  At  node 2 
the  detected  sinusoidal  wave,  which is skewed or  distorted  due 
to the nonlinearity  of  the  diode, i s  shown.  It is obvious  that  at 
node 2 the  detected  voltage  starts  developing in the negative 
polarity,  which  eventually  leads to d c  negative  output  for  the 
dipole  with  the  diode. 

Fig. 3 shows  the  time-domain  waveform  of  the  dipole  with 
the diode  due to the  tenth  sinusoidal wave driving  voltage. 
Again,  a  sinusoidal wave at   node 1 is an  applied  driving  votlage 
wiih  unit  amplitude.  The  detected  time-domain  waveform  at 
node 2 after  diode  detection  indicates  a  much  more  pro- 
nounced  negative  charge  accumulation.  Finally,  an  almost  dc 
detected  voltage  starts  appearing  in  the  negative  polarity  after 
a  ten-cycle  time  average. 

Fig. 4 shows  the  time-domain  waveforms  of  the  dipole  with 
the diode  due to the  100th  sinusoidal wave induced  voltage. 
The  negative  charge  accumulation  is  much  more  pronounced, 
and  constant  detected  dc  voltage  appears  after  a  IOOcycle 
time  average. To arrive at  the  steady-state  time  average of 
these  sinusoidal wave excitations  using  the  time-stepping  finite 
difference  equation  technique  with  the  Newton-Raphson  itera- 
tion  method, 400 sinusoidal waves, which  correspond  to 6400 

Fig. 4. Time-domain  waveform of 100th detected 100-MHz sinusoid. 

INDUCED VOLTAGE (Vi )  

Fig. 5. Detector voltage  response at 100 Mhz. 

discrete  points( 16 points  per  one  cycle),  are  applied successively 
to  compute 6400 discrete  output  voltages,  which  are  then  nu- 
merically  time-averaged. 

Fig. 5 shows  the  detected  dc  voltage Vo from  the  dipole 
with  the  diode as a  function  of  induced  voltage Vi(= einc h e ,  
where einc is the  normal  incident  electric  field a_nd he is the 
dipole  effective  length).  The  detected d c  voltages Vo as  a  func- 
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Fig. 6 .  Transfer function of  an electrically short dipole with a nonlinear  load. 
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Fig. 7. Timedomain waveform of detected sinusoids at various frequencies. 

tion  of  induced  voltage Vi are  calculated  using  both  the  anal- 
ytical  technique given in  Section 11-A and  the  numerical  tech- 
nique  described  in  Section 11-B. Below  an  icduced  voltage Vi 
of  about  one  volt,  the  detected  dc  voltage V ,  is equal  to  the 
square  of  the  induced  voltage Vi. On the  other  hand,  above  an 
icduced  voltage Vi of about  one  volt:  the  detected  dc  voltage 
Vo is  proportional  to  the  induced  voltage Vi. Thus  the  diode 
detection is square-law  at  a  small signal  level but  becomes 
linear a t  a  large  signal level. 

Fig. 6 shows  the  transfer  function  of  an  electrically  short 
dipole  with  a  beam  lead  Schottky  barrier  diode as a  function 
of frequency.  Here  the tran_sfer function  is  defined as a  ratio 
of the  detected  dc  voltage Vo to  the  amplitude  of  the  induced 
voltage Vi(= einc h e )  expressed  in  decibels  when einc is equal 
to  1 V/m  rms.  Thus  the  transfer  function so defined is for  a 
detected  dc  voltage To of  several  millivolts,  which  corresponds 
t o  a  square-law signal  level. As indicated  in ( 2 ) ,  the  effective 
length of an  electrically  short  dipole is independent of fre- 
quency.  The  transfer  functions of the  dipole  with  the  diode 
are  calculated  both  analytically  and  numerically. 

The  sharp  cutoff (20 - 40 dB  per  octave)  below  10  kHz  in 
the  transfer  function  predicted  from  both  analytical  and nu- 
merical  results  can  be  explained  as  follows.  Fig. 7 shows  the 
detected  time-domain  sinusoidal  waveforms  at  node 2 at  
various  frequencies.  Since  the  induced  voltage Vi becomes  very 
small a t  low frequencies  below  10  kHz,  the  diode  provides  a 
very  high  and  almost  linear  impedance  for  both  the  positive 
and  negative  cycles  of  the  sinusoids.  Therefore,  the  detected 
timedomain  sinusoidal  waveform  becomes  very  similar  to  the 
original  sinusoidal wave excitation.  For  example, Fig. 7 clearly 
shows  that  the  time-domain  waveform  at 1 kHz  (whose  ampli- 
tude is magnified  by  a  factor of IO) is almost  sinusoidal  for 
both  the  positive  and  negative  cycles. On the  other  hand,  at  
high  frequencies  above 10  kHz,  during  the  positive  cycle  the 
diode  conducts  and  provides  a  very low impedance,  whereas 
during  the  negative  cycle  the  diode  does  not  conduct  and 
provides  a  very  high  impedance.  Therefore,  the  time-domain 
waveforms  at high frequencies  above 10 kHz  are  more  skewed 
or  distorted  compared  with  the  original  sinusoidal  waveforms. 
Fig. 7 clearly  shows  that  the  detected  time-domain  waveforms 
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a t  1  and  100 MHz are  more  skewed  or  distorted  compared 
with  those  at  1  kHz.  The  detected  time-domain  sinusoidal 
waveform is less strongly  skewed  or  distorted  at  lower  fre- 
quencies  than  at  higher  frequencies.  Because  the  skewness  of 
the detected  waveform  and  the  rate  of  charge  accumulation 
decrease  in  the  lower  frequency  range  below  10  kHz,  the  trans- 
fer  function of the  dipole  with  the  diode  also  decreases  as 
shown  in  Fig.  6. 

IV. CONCLUSION 

This  paper  introduces  two  independent  techniques  to  anal- 
yze  an  electrically  short  dipole  with  a  nonlinear  load.  The 
nonlinear  load  considered  in  this  paper is a  beam  lead  Shottky 
barrier  diode.  The  analytical  solution, given in  Section 11-A in 
terms  of  the  Anger  function  of  imaginary  order  and  imaginary 
argument, was derived  from  the  nonlinear  differential  equation 
for  the  Thivenin’s  equivalent  of  the  dipole  with  the  diode.  The 
numerical  technique,  explained  in  Section 11-B, is basically t o  
solve  nodal  equations  using  a  time-stepping  finite  difference 
equation  technique.  The  nonlinear  resistance of a  diode  was 
treated  by  the  Newton-Raphson  iteration  method. 

The  transition  from  the  square-law  detection  region  to  the 
linear  detection  region was observed as the  induced  voltage 
was  varied.  The  transfer  function of an  electrically  short  dipole 
with  a  diode  was  also  investigated.  The  decrease  in  the  transfer 
function  at  frequencies  below  10  kHz  was  explained  through 
the tirne-domain  sinusoidal  waveforms  obtained  from a time- 
stepping  finite  difference  equation  technique. 

One  of  the  advantages  of  using  the  analytical  solution  in 
terms  of  the  Anger  function  of  imaginary  order  and  imaginary 
magnitude is that  the  solution is  given in  the closed  form  and 
is very  easy to evaluate.  However,  it is very  difficult,  or  maybe 
even  impossible,  to  find  the  closed-form  solution of a  non- 
linear  differential  equation  for  much  more  complicated  models 
of  an  antenna  and  a  diode, e.g., including  a  nonlinear  capaci- 
tance,  a  linear  inductance, as  well as  nonlinear  and  linear  re- 
sistances,  and  a  linear  capacitance.  In  such cases a  time- 
stepping  finite  difference  equation  technique  along  with  the 
Newton-Raphson  iteration  method  provides  an  accurate  time- 
domain  solution  for  more  general  nodal  equations.  The  analysis 
of a linear  antenna  with  a  nonlinear  load  (in  which  a  diode 
model  consists  of  a  parallel  combination of a  nonlinear  resist- 
ance  and  a  nonlinear  junction  capacitance  along  with  a  linear 
series inductance,  a  lineir  series  resistance,  and  a  linear  package 
capacitance)  has  been  carried  out  using  a  time-stepping  finite 
difference  equation  technique  along  with  the  Newton-Raphson 
iteration  method  and will be  presented  in  the  future. 

APPENDIX  A 

THE  SOLUTION FOR A FIRST-ORDER  NONLINEAR 
DIFFERENTIAL  EQUATION 

With the  following  substitution 

1 du(t)  
y(t)  f - -, (A1 1 

au(t) dt  

(9) reduces  to 

d2u(?)  du(t)   -dw(t)  
+ f - = ( ) E -  + fw( t ) ,  

d t 2  d t  dt 

where 

The  solution  of (. -2) is  given by 

where 

and  from  the  initial  condition 

c = 0. 

(A31 

Then 

(A8 1 
Hence  the  detected  output  voltage u 0 ( t )  is  given by 

When the  induced  voltage u i ( t )  is  a  periodic  sinusoid, i.e., 
ui( t )  = Vi sin ut, the  second  term  in  the  natural  logarithms 
can  be  integrated  analytically.  The  integration  over  a  complete 
cycle  becomes 

where p is the  period, [ t / p ]  is the largest  integer  in t / p ,  and 
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By substituting  (A10)  into  (A9), Using the  series  representation  for  the  Anger  function 

where 

Note  that  the  first  term in the  natural  logarithms  goes to zero 
for  large  positive t. 

By taking  a  time  average of uo(t)  over  a  complete  cycle,  the 
detected  dc  voltage  becomes 

k = 2  
even 

and 

since 
- 
Q(t) = 0. 

Equation  (A1 1) can  be  integrated  analytically  for  a  sinusoidal 
induced  voltage u,(tj = Vi sin ut: 

Since 

we  have 

where 

where JjT(jU) is the  Anger  function of imaginary  order GT) 
and  imaginary  argument (jU), Tis  the  normalized  period 

even 
k = 2  

(A16) 

and 
and U is  the  normalized  induced  voltage 

Substituting  (A15)  into  (A13)  the  detected  dc  voltage  average 
over  a  complete  cycle  becomes 

odd 

By substituting (B6) into  (Bl)  the  detected  dc  voltage averaged 
over  a  complete  cycle  becomes 

- which is  given in  (1 2). 

APPENDIX  B 

SERIES  REPRESENTATION  FOR  THE  DETECTED 
DC VOLTAGE 

The  detected  dc  voltage  averaged  over  a  complete  cycle is 
given by  (1 2 )  

which is  given  in (1 5). 

APPENDIX C 

HIGH-FREQUENCY  APPROXIMATION 

At high  frequencies  where 
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(1 6 )  and ( 17)  are  approximated  as 

u2 u4 
22 2242 

S1(T, U) 2 1 + - + - + ... 

For  small Vi, i.e., small U ,  the  detected  dc  voltage averaged 
over  a  complete  cycle  becomes 

which  is given in (19). FOT large Vi, i.e.,  large U ,  the  detected 
dc voltage  averaged  over  a complete  cycle  becomes 

1 u2 u4 
1 +-+-+ 

22 2242 

where Io(U)  is the  modified Bessel Function  of  zeroth  order. 
Applying  asymptotic  expansion  for lo(u) for large  arguments 
U ,  the  dc voltage  becomes 

which  is given in (20). 
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