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Theoretical -and Experimental Investigations of Electromagnetic Fieid

Distortion Due to a Perfectly Conducting Rectangular
Cylinder in a Transverse Electromagnetic Cell

Motohisa Kanda

Electromagnetic Fields Division
National Bureau of Standards
Boulder, Colorado 80303

The study of electromagnetic compatibility (EMC), that
is the electronic and biological effects due to
electromagnetic (EM) radiation, and EM calibration require
accurate EM measurement techniques for defining the EM
interference (EM) characteristics. Thus, fully enclosed
rectangular  transverse electromagnetic (TEM) transmission
lines with thin inner conductors are often used for
generating standard known test fields. In all cases it is
desirable that only the dominant TEM mode should propagate.

In the EMC measurements, an object under test is placed
inside of a TEM cell. The field from the TEM mode incident
upon this scattering object is identical to that of a plane
wave in a free space. However, the scattered field produced
by the object in the TEM cell is different from the
scattered field produced by the object in a free space,
because of multiple reflections from the TEM cell walls, or
equivalently, the mutual coupling between the object and the
TEM cell. ' : :

The purpose of this paper is to discuss the 1loading
effects, i.e., the electromagnetic field distortion caused
by an object under test in a TEM ceil. In the theoretical
analysis, the frequency domain integral equation for the
magnetic field, or equivalently, the current density on the
surface of a perfectly conducting cylinder in a parallel
plate waveguide is solved by the method of moments to
predict the degree of magnetic field distortion .

The experimental investigations are performed by
mounting a number of electrically small half loops on the
surface of the perfectly conducting cylinder in a TEM
cell. The loading effects in terms of magnetic field
distortion are analyzed as the ratio of one of the object
dimensions (height) to the separation distance between the
inner conductor and the ground plane of the TEM cell. Also,
the response of an electrically small loop to both the
magnetic and electric components of the electromagnetic
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field is used to measure the phase relation between the
magnetic and electric fields, which in turn can be used to
determine the degree of degradation of the TEM mode due to
the presence of the perfectly conducting cylinder. These
theoretical and experimental results are compared with the
available quasi electrostatic results.

Keywords: Electromagnetic Compatibility (EMC); Green's
function; 1integral equation; Tlinear equation; method of
moments; parallel plate waveguide; quasi electrostatic; TEM
cell.

I. INTRODUCTION

The study of electromagnetic compatibility (EMC), thét is the
electric and biological effects due to electromagnetic (EM) radiation,
and EM calibration require accurate EM measurement techniques for def-
ining the EM interference (EMI) characteristics. Thus, fully enclosed
rectangular transverse electromagnetic (TEM) transmission lines with
thin inner conductors are often used for generating standard known test
fields. In all cases, it is desirable that oﬁ1y the dominant TEM mode
should propagate. Thus, the usefulness of these structures is 1imited
to a frequency region below some upper frequency bound in or&er to
suppress the higher order modes.

The higher order mode cutoff frequencies of the rectangular TEM
cell have been well studied by many workers [1,2,3,4]. While in a
rectangular hollow waveguide, the dominant mode is always the TE;o mode
as long as the width exceeds the height, the same conclusion does not
hold for the rectangular line with an inner conductor even if its thick-
ness is infinitesimally small. In fact, it is found [1,2,4] that,
depending on the width of the inner conductor and the size of the TEM

cell, the cutoff frequency of the TEOl mode can be much Tower than that
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of the TElO mode as jllustrated in figure 1. While the cutoff frequency

-, (1)
2a Yue

of the TE;y mode is simply calculated from
1
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the cutoff frequencies of the TEny; mode are much more involved and have

n

been calculated by many workers [1,2,3,4] as shown in figure 2. Let us
consider, for example, a typical 50a TEM cell having a width of a = 1 m,
a height of b = 0.6 m, and a width of inner conductor of s = 0.72m.
While the cutoff.frequency of the TE;y mode is 150 MHz, the cutoff
frequency of the TEny; mode is approximately 135 MHz according to figuré
2. It can also be shown that the cutoff frequencies of all TM modes of
a TEM cell are a]wayé higher than those of their hollow waveguide
counterparts. Thus, the dominant cutoff frequency (i.e., the Towest) is

either the TEOl mode or the TE;q mode. It is interesting to note that

vthe cutdff frequency of the TEOl mode decreases as the gap between the

inner conductor and the wall of the TEM cell becomes narrower. This
phenomenon has also been observed in a ridge waveguide [5] and is asso-
ciated‘with the infinite gap capacitance. |

In the EMC measufements, an object under test is placed inside of a
TEM cell. The field from the TEM mode incident upon the scattering
object is identical to that of a plane wave in a free space. However,
the scattered field produced by the object in the TEM cell is different
from the scattered field produced by the object in a free space because
of multiple reflections from the TEM cell walls, or equivalently, the

mutual coupling between the object and the TEM cell.
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Placing a test object in a TEM cell is equivalent to introducing a
capacitive discontinuity. For low frequencies, where the transverse
dimensions of the object are negligible compared to the wavelength, the
discontinuity due to the pbject is a pure capacitive reactance, and may
be regarded as the fringing capacitance of the corresponding electro-
static problems. Under this assumption, the ratio of the electric field
strength near the metal object in the TEM cell to the unperturbed elec-
tric field strength at the same location in a pure TEM mode has been
calculated by G. Meyer [6] and is shown in figure 3.

The purpose of this paper is to discuss the loading effects, i.e.,
the electromagnetic field distortion caused by an object under test in a
TEM cell. In the theoretical analysis, the frequency domain integral
equation for the magnetic field, or equivalently, the current density on
the surface of a perfectly conducting cylinder in a parallel plate
waveguide is solved by the method of moments to predict the degree of
mangetic field distortion. For the purpose of mathematical tracta- '
bility, a parallel plate waveguide is used to model a TEM cell
structure. The results given in the paper are for the magnetic field
intensity on the surface of the cylinder. Other related quantities,
such as the electric field intensity and the poynting vector, can be

readily derived from the surface current by use of Maxwell's equations.

IT. THEORY

The problem of determining the electromagnetic field scattered by a

perfectly conducting rectangular cylinder has been studied by many




workers [7,8,9]. The coordinate system used to analyze the current
density on the surface of the rectangular cylinder in a parallel plate
waveguide is shown in figure 4. The source of the TEM wave is a delta
function voltage source of the form

>
=3V () sz -z), (2)
where V, is the magnitude of an- equivalent voltage source located at the

o+ Since there is no variation in the y direction and

source location z
the voltage source has only a y-component, we will have a scalar wave
equation in H,, i.e.,

2H +k2H'-' M (3)
v y y—st o

32 2 .
where v2 = 3?7'+‘§§7 and k is the free space wave number. The boundary

condition is that the normal H field be zero on all of the reflecting

conducting surfaces, i.e.

aH
Y.
S - o, (4)

d

where n = x and z.
The solution of equation (3) may be found through the Green's

Function technique,

v2 G(r,r') + k2 G(r,r') = -s(x-x") &(z-z'). (5)
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&

Multiplying eq. (3) by G (r,r') , eq. (5) by H,, subtracting the two

Hy
results and integrating over the free space volume V,

fv[G(r,ri) v2 Hy(r') - Hy(r') v2 G(r,r')] dv'
| (6)
= Jue [, G(r,r") My(r') dv' + fv'Hy(r') §(x-x') s8(z-z") dv'.

Evaluating the integration of the right hand side of eq. (6) and using

Green's theorem on the left hand side, we get

vy oH(r") vy 8G(r,r') .
IS [G(r,r") Sn o~ Hy(Y‘ ) —*a‘ﬁr“—] ds
(7).
= jwe fv G(r,r") My(r') dv' + Hy(r).
On the perfectly conducting surface, s, of the plates, we set the
boundary condition as
aHy(r')
- =0 (8)

Equation 7 then reduces to

Hy(r) = -jue [ G(r,r') Myr') dv' -'fsc Hy(r')-i—ggg%ill ds', (9)

where Sc indicates the surface of the rectangular cylinder. The first
term on the right hand side of eq. (9) corresponds to the incident

field, and the second term to the scattered field. The known incident

6
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magnetic field is given by

p1ne (x,2)

© b
. i . ] ] ] !
-jwe fo fo'vo §(z'-z) G(x,z; x',z") dx'dz
(10)
Jjkz _ —

we 0
—E'Vo e cos kz.

L

Equation (9) is an integral equation which can be solved for Hy(r) once
Green's function G (r,r') is obtained. ;
The Green's function is the solution of eq. (5). By imposing the

proper boundary condition for the parallel plate waveguide, i.e.

oG _
=0 (11)

at x=0 and x=b, then one finds [10]

J_pedklzez') | Jkiz-2' 15

1 (12)
. ] ©  COS Egf-cos Egﬁ jrn(z+z') jran-Z'l
5 I = [ e + e s
n=1 .n
where
r = ‘Jr k2 .- (21)2. ’ (13)
n b

Once the Green's function is obtained and the source is specified, eq.
(9) can be solved by the method of moments. The technique used is

discussed briefly below. A detailed discussion on this subject is given




by Harrington [11].

The unknown H, is expahded in terms of a set of known basis func-

y
tions fi with unknown coefficients % i.e.

n -
H = z a, .. (14)

Substituting eq. (14) into eq. (9) we obtain

1ai [fi (x,z) + fs.fi (x',z") BG,(Xgﬁfxl’zl) ds'] = Hinc(x,z). (15)

e~

i

Equation (15) is a single equation with n unknown a;. To create at
least n linear equations, a set of testing function, Wis is introduced,
and the inner products (integral over the surface) of both sides of eq.

(15) for each Wy are set equal. This forms a set of linear equations of

the form

[z] [1] = [V],- (16)
where the métrix element Zij is given by
Zoo= [ Fr) + [ ofr) 80D 4o w (n) s, (17)
J s -~ st
and the column matrix element Vj is given by
Vs = /s HIMC () wj(r) ds. (18)

The unknown coefficients aj are found by solving the matrix eq (16).




The expression for Hy is then giveﬁ by eq (14).

III. THEORETICAL AND EXPERIMENTAL RESULTS

A number of electrically small half loops whose diameters are
1.5’cm are mounted transverse]y across a perfectly conducting rectan-
gular cylinder. The cylinder is p1éced in a TEM cell which acts approx-
imately as a parallel plate waveguide. A vector voltmeter is used to
measure both the magnitude and‘pﬁase of the magnetic field strength and
therefore the current density on the surface of the cylinder. 1In the

theoretical analysis, the frequency domain integral equation for the

magnetic field on the surface of the cylinder in a paralilel plate wave-

guide given in section II is solved by the method of moments. Gther
related quantities, such as the electric field intensity and the
poynting vector can be readily derived from the surface currenf by use
of Maxwe]]'é equations.

In this paper, the loading effects due to the perfectly conducting

rectangular cylinder in a TEM cell are indicated in terms of the

‘magnetic field distortion, which is defined as the ratio of the magnetic

field strength on the surface of the cylinder in a TEM cell to that at
the same position in an empty TEM cell. 1In this paper, the separation
distance of the parallel plate waveguide, i.e., the distance between the
center conductor and the ground plane in the TEM cell is chosen to be

30 cm. Three different perfectly conducting rectangular cylinders are
used, all of which have the same widths of 18 cm, but have different

heights of 5.5 cm, 15 -cm, and 18 ¢cm. The magnetic field distortion and

L
!




the corresponding phase are shown in.figures 5 through 20 for
frequencies from 1 MHz to 100 MHz. The phase reference is taken to be
at the center of the top of the cylinder (x=h and %J. Figures 21
through 25 show the magnetic field distortion at the center of the top
of the cylinder as the ratio of its height to the separation distance of
the TEM cell. For a comparison, the electric field distortion due to a
metal cube reported by G. Meyer [6] is also shown in these figureé. In
general, it is found that the magnetic field distortion due to a
perfectly conducting rectangular cylinder is quite small and much less
than the electric field distortion reported by G. Meyers [6].

In order to confirm the result by G. Meyer [6], a electrically
small dipo]e\is mounted on the center of the top of the perfectly con-
ducting rectahgu]ar cy]inder. The electric field distortion (defined as
the ratio of electric field at the surface of the cylinder to that at
the same position in an empty TEM cell) is shown in figure 26 as the
ratio of the cylindrical height to the separation distance of the
parallel plate waveguide. Figure 26 indicates that the electric field
distortion is much larger than that predicted by G. Meyer [6]. The
discrepangy may be due to the fact that the Meyer calculation is based
on the quasi electrostatic approximation.

When the perfectly conducting rectangular cylinder is placed in the
TEM cell, the scattered field produced by the cylinder can be far
different from the original incident TEM mode. In order to determine
the degree of degradation of the TEM mode due to thé presence of the
cylinder, the response of an electrically small loop to.both the

magnetic and electric components of an electromagnetic field is

10
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examined. Consider the loop loaded at each of the diametrically
opposite points as shown in figure 27. One can show that the sum of the

two Toad currents IZ is given by [12]

I CI.=K H, (19)

I, =K, E (20)

where Kn and.Ke are, respectively, the loop sensitivity constant for
magnetic and electric fields. These formulas clearly show that the use
of the sum current gives a measure of the magnetic field, whereas that
of its difference gives a measure of the electric field.

While the phase between magnetic and electric field is normally in
phase for the pure TEM mode, the presence of the perfectly conducting
réctangu1ar cylinder in the TEM cell will cause a distortion and thus a
phase degradation of the TEM mode around the cylinder. The phase degra-
dation of the TEM mode thus obtained is shown in figure 28 as the ratio
of the cylinder height to the separation distance of the TEM cell. It
is very 1nterestingvto note that the phase degradation at the center of
the cylinder becomes predominant as the frequency approaches to the
cutoff frquency of the TEgp; mode and also the height of the cylinder
becomes comparably large compared to the separation of the parallel
plate waveguide. The phase deg;adation observed at the low frequencies

around 2 MHz is not well understood, but is probably due to the experi-

11




mental problems caused by the vector voltmeter and the hybrid junction

used in the experiments.

IV. CONCLUSIONS

This paper discussed the Toading effects, i.e., the electromagnetic
field distortion caused by a metal object placed in a TEM cell. In the
theoretical analysis, the frequency domain integral equation for the
magnetic field intensity on the surface of a perfectly conducting
cylinder in a parallel plate waveguide was solved by the method of _
moments to obtain the deQree of magnetic field distortion. The results
given in the paper are for the magnetic field intensity on the surface
of the cylinder. Other related quantities, such as the electric field
intensity and the poynting vector can be readily derived from the
surface current by use of Maxwell's equations.

The experimental investigations were performed by mounting a number
of electrically small half loops on the surface of a perfectly
conducting cylinder placed in a TEM cell. The loading effects in terms
of magnetic field distortion were expressed as the ratio of the object
height to the separation distance between the inner conductor and the
ground plane of the TEM cell. Also, the response of an electrically
small Toop to both the magnetic and electric components of an electro-
magnetic field was used to measure the phase relation between the
magnetic and electric fields, which in turn was used to assess the
degree of degradation of the TEM mode due to the presencéyof the

perfectly conducting cylinder. These theoretical and experimental

12



results were compared with the available quasi electrostatic results.
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