
801 ~~~1.8 I<s (typical)

BCLK

BREQ

BPRN

BUSY*

Ai

Di

MWTC*

August 1985

Y.lid_addregs"

.T.ata.

35

AUgUSt 19)85

IEEE 796 BUS MULTIPROCESSORI

to SBC0. In order for the reporting
mechanism to operate correctly, only one PE
at a time can execute the sequence of steps 1
to 3; thus, there is a requirement for mutual
exclusion in accessing location DONE.

Simulating the task performed by a PE with
a counting loop allows tasks of different dura-
tions to be assigned to the PEs. However, the
most interesting situation-the one considered
in the study-occurs when all PEs execute
tasks of the same duration and attempt to
report simultaneously.

Synchronization and mutual
exclusion mechanisms

There are three techniques for providing
mutual exclusion during the reporting process.
In one, the reporting PE locks the bus during
its reporting process. In the second, a software
flag controls the sequence in which PEs
report. In the third, a semaphore implemented
by a combination of hardware and software
controls the sequence. Below, we examine

(a)

1NT5*
(SBC1) BREQe
(SBC2) BREQ*
(SBC3) BREQ

BUSY'
MRDC*
MWTCF
XACK'

(b)

1NT5*
(SBG1) BREQe
(SBC2) BREQ-
(SBC3) BREQ

BUSY'
MRDC'
MWTC
XACK'

l lI l11l111l

Figure 2. Timing diagrams for four cases: (a) Case 0-no mutual exclusion, (b) Case
1-locked bus, (c) Case 2-flag, and (d) Case 3-FIFO semaphore. Time divisions are
marked below each photo; time-per-division information is included in the photo. The

38 IEEE MICRO

these techniques, as well as the effects of not
providing mutual exclusion.

Case 0: No mutual exclusion. In this case
there is no mechanism for providing mutual
exclusion during the reporting process. When a
PE completes its task, it begins reporting to
SBC0 without regard for whether other PEs
are reporting at the same time. If the PEs
begin reporting at about the same time, their
Multibus cycles are interleaved in an unpredict-
able sequence during the reporting process. In

general, the reporting process is not performed
correctly in this case. For example, it is possi-
ble for all three PEs to read DONE before
any PE writes the incremented count value
back to DONE, resulting in DONE having a
final value of 1 rather than 3. The final values
of the LOCx variables will also be incorrect in
this case.
The timing diagram of Figure 2a describes

Multibus activity during a typical run. The left

Cont'd on page 43

(c)

INT5*

(SBC1) BREQF
(SBC2) BREQt
(SBC3) BREQ

BUSYe
MRDC'
MWTC
XACK*

(d)

INT5'
(SBC1) BREQ

(SBC2) BREQ*
(SBC3) BREQe

BUSY *

MRDCF
MWTCe
XACKe

I lIllIllIll II

time shown in reverse video is the duration of the reporting period (from the start of
the first bus request to the end of the last bus request) for all three PEs. The traces are
recorded on a Hewlett-Packard 1615A logic analyzer.

Augustl1985 39

IEEE 796 Bus~[MTPOCS

The reporting process

Figure 1 lists the program segment im-
plementing the reporting process for SBC2.
Implementation of the cases using no mutual
Sexclusion, a locked bus, and the flag $ t
mechanisms is straightforward. In the FIFO
semaphore implementation, the four high-
order bits of FIFO (a location in the dual-i
port memory of SBC0) hold the count, en
coded as the complement of the number of
PEs waiting on the resource. An all-zero bit

pattern in FIFO indicates the resource is free
and there are no pending requests. The
twelve low-order bits of FIFO frm a bit map
which identifiestheV PE conrolng the
resource and the PEs waiting on the
resource. For the run shown in Figure 2d in
the main text, the following 5sequence of
hexadecimal values is stored in FIFO durn
the run:

ON ENTRY:: AH = 01; BL =0, 1,2, OR3AD IDETIS THE ILOCKING
MECHANISM TO BEt USED; ID2EQU 0F:1:H. 0 000

ENTRY FOR FLAG MECHANISM (CASE 2)
LOCK XCHG AHES:BYE PTRILAGI TST AN ET FLAG.E
TEST AH,AH ? V0;USES LOC PREFIX00

JMP RPT1 0:0:0 2; NOT BUSYf, REPORT

ENTRY FOR LOCKED BUS MECANISM; (CAE 1) 0 00 0)
MOV AL,0H 020 SET I/O ITTO LOCKBUS
OUT OCEH,AL

;ENTRY
RPT1 INC

MOV
MOV
CMP
JNE
MOV

MOV

OUT

JMP

FOR NO MUTUAL EXCLUSION MECHANISM (CASE 0)
ES:BYTE PTRWIDONIE] ;005f REPORT TO SBC0O m
AL,ES::BYTEPT DONE1
ES:BYTE PTR IOC2I,AL
BL,2 00. X.02

ES:BYTE PTR LFAGI,O X: RESETFLG IN CAS 2

AL,09H

OCEH,AL

EXI

:;RESET TO UNLOCK BUS

ENTRY FOR FIFO fSEMAPHORE MECHANISM (CASE 3)

Figure 1. Prgrm segmentfr C's reprig prcs. Idenial program
segments are used in SBC1 and SBC3 exceSpt that the texpression name ID2
is replaced by ID1 or ID3, which Qhave values OFOOIHdand OFO4H, respec-
tively, and the variable LOC2 is replaced :by LOC1 or LOC3. Listings are in
the 8086 assembly language of tXhe Hewlett-Packard ;64000 dev,elopment
system.X

~~~~~~~~~~~~~~~~~~~~~IEEEMICRO

FLG1

LCK1

FIN1

40



0000 (initial value), 0Xt
F001 (after SBC l's P operation),00
E005 (after SBC3's P operation),
D007 (after SBC2's P operation),
E006 (after SBCl's V operation),
F002 (after SBSC3's Vs operation), xand
0000 (after SBCC2's V operation).

Figure 2 is a tfming analyzer trace showing
the Multibus signals generated as SBCl car-

fries out its reporting process under the con-
fditions that n0to mutual exclusion mechanism
is used (i.e., Case 0) and SBCl is the only
processing element reporting. Four bus
cycles occur. The first two are generated by
theisrucio whic incremWents DONE: INC
ES: BYTE5 PTR [DONEI In theS firstf bus
cycle, MRDC* i asserteid aSs SBCl reads the
initial value of DONE from the dual-port
memory of SBC0. Between the first and sec-

FIF1 MOV
MOV
OUT
ADD
MOV
MOV
OUT
JNC

SL1 SUB
CMP
JE
WAIT
JMP

EL1 WArIT

ENL1 INC
MOV
MOV

MOV:
OUT
SUB
MOV
MOV
OUT
JNC
MOV
OUT
XOR
OUT
JMP

BX, #1D2
AX,0908H3
OC:EH,AL -
BX,ES:WORD PTR [FIFOI
ES:WORD PTR [FIFO],BX
AL,AH
OCEH,AL
ENL1i
BsH,OFOH $000d0
BH,OFOH ; Qi
ELi;

SL1i 0

ES:BYTE PTsR [DONE]:
AL,ES:BYTE PTR [DONE]
ES:BYTE P;TR [LOC2],AL

tAX,0908Hi: : ;:f ::;X
OCEH,AL ;t at

ES:WORD PTR IFIFOI,#1D2
BX,:ES:WORD PTR [FIFO]
AL,AH A0f
OCEH,AL
0EXIT4 0 :? :0 A
AL,;BL A Di t
OCAH,AL
AL,AL
OCAH,AL
EXIT

;BX = OF002H
;SET I/O BIT TO LOCK BUS

;DECREMENT COUNT AND
;INSERT ID IN BIT MAP
;RESET I/O TO UNLOCK BUS

;iF RESOURCE FREE, REPORT
;tIF RtESOURCEk BUS8Y, COXMPUJTE
;0POSITION ON WAITING LIST
;AND WAITS FOR WAKE-UP PULSE
;WAIT HERE IF NOT AT TOP

WAIT HERE IF AT TOP OF LIST

;fREPORT TO SBC

SE I/O9 BIT TO LOC BUS

;INCREMENT COUNT AND
;REMOVE ID FROM BIT MAP
;RESET I/O TO UNLOCK BUS

;EXT IF NO PEs WAITING
;fISSUE WAKE-UP PULSES IF
;ANY PEs ON WAITING LIST

August 1985 441



IEEE 796 BUS MULTIPROCESSOR

ond bus cycles, the value is incremented
within the CPU of SBC1. In the second bus
cycle, MWTC * is asserted as SBC1 returns
the incremented value to DONE. The in-
struction MOV AL,ES:BYTE PTR [DONE]
generates the third bus cycle; MRDC'* is
asserted as the new value of DONE is read
from the dual-port memory of SBC0 to the
AL register within the CPU of SBC1. The
instruction MOV ES:BYTE PTR [LOC1],AL
generates the final bus cycle; MWTC'* is
asserted as SBC1 writes the value from its
AL register into LOC1 in the dual-port
memory of SBC0.
SBC1 requests control of the bus prior to

each bus cycle by asserting its bus request
signal, (SBC1) BREQ'. Because no other
requests are being made, SBC1 has the
highest-priority active request and takes con-

INT5'

(SBC1) BREQ* 1_

BUSY' 4_

MRDC*

MWTC*

XACK*

Figure 2. Timing of SBCl's reporting
mechanism and no bus contention.

trol of the bus after one bus clock cycle (i.e.,
after 100 nanoseconds) by asserting BUSY$.
The dual-port memory of SBC0, functioning
as a slave memory, responds to memory
read and write commands issued by SBC1
by asserting XACK'
The different durations of the bus cycles in

Figure 2 reflect the effects of contention for
access to the dual-port memory of SBC0.
This contention arises from concurrent re-
quests by a Multibus master (viz., SBC1) and
by the CPU of SBC0. The first bus cycle is
clearly longer than the others. This is due to
SBC1's request for access to the dual-port
memory being held off while the CPU of
SBC0 completes a memory cycle. In the
absence of this contention, the duration of
each bus cycle would be the same.

lIl l l ll l
process with no mutual exclusion

42 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IEEE \¶1( R(O42



side shows the high-to-low transition of the in-
terrupt signal issued by SBC0 and the
responses of the three PEs. SBC1 responds
first, followed by SBC3 and SBC2. The se-
quence in which the PEs respond to the inter-
rupt is unpredictable; it depends on the state
of each processor when the interrupt occurs.
Note that the iSBC 86/12A acquires control of
and locks the Multibus during its response to
an interrupt. This accounts for the three inter-
vals at the start of the timing diagram during
which the BUSY* signal is active.

Because the three PEs perform identical pro-
cessing tasks and execute at about the same
rate, the sequence in which the PEs complete
their responses to the interrupt is also the se-
quence in which they complete their processing
tasks and attempt to initiate their reporting
processes. Table 1 interprets the timing
diagram by identifying the bus master, the
operation performed, and the value read from
or written to DONE or LOCx during each
Multibus cycle. The table shows, for example,
that SBC1 begins reporting first and completes
one Multibus cycle (i.e., it reads DONE)
before SBC3 begins reporting. SBC3 controls
the second bus cycle as it reads DONE. SBC1
and SBC3 control the third and fourth bus
cycles, respectively, as they write incremented
values to DONE. SBC2 controls the fifth bus
cycle as it performs its initial read of DONE.
Note that after the fourth bus cycle the value
in DONE is 1 even though both SBC1 and
SBC3 have incremented DONE. The reporting
process is not performed correctly in this run;
Table 2 lists the final values of DONE, LOGC1,
LOC2, and LOC3 for the runs in Figure 2.

Case 1: Locked bus. In this case a processor
completes its task and begins its reporting pro-
cess. Once it gains control of the bus, it main-
tains exclusive control until it completes its
reporting process. It achieves exclusive access
to DONE because no other PE is able to gain
control of the bus, something which is re-
quired to access DONE.

Figure 2b describes bus activity during a
typical run for this case. During the reporting
process, the BUSY* signal is asserted three
times for relatively long periods. The pro-
cessors complete their tasks in the sequence
SBC2, SBC3, SBC1. Because SBC2 gains con-
trol of the bus first, it completes its reporting

process first. Both SBC1 and SBC3 request
control of the bus while SBC2 is reporting,
but their requests are not immediately granted
because SBC2 retains control of the bus during
its reporting period. When SBC2 finally sur-
renders control of the bus, SBC3 gains control
because it has a higher priority than SBC1 in
the parallel priority resolution scheme; SBC3
gains control even if it finishes its task after
SBC1, as long as both requests are active
when SBC2 surrenders control of the bus.

August 1985 443



IEEE 796 BUS MULTIPROCESSOR 1

Case 2: Flag. A flag is a binary variable
which controls access to a resource. If the flag
is in its RESET state, the resource is free; if
the flag is in its SET state, the resource is
busy. Initially, the flag is reset. A processor
gains access to the resource by performing a
test-and-set operation which tests the state of
the flag and then forces the flag to its SET
state. If the test indicates the SET state, the
processor repeats the test-and-set operation. If
the test indicates the RESET state, the pro-
cessor takes control of the resource and main-
tains control until it resets the flag. To work
correctly, the test-and-set operation must be
indivisible; that is, the processor performing
the operation must have exclusive access to the
flag during the test-and-set operation. In this
case access to DONE is controlled by a flag (a
location labeled FLAG) located in the dual-
port memory of SBCO. Each PE locks the
Multibus during its test-and-set operation to
ensure mutually exclusive access to FLAG.

Figure 2c describes bus activity during a
typical run. The PEs complete their tasks in
the sequence SBC1, SBC2, SBC3. On its first
test-and-set operation, SBC1 gains access to
DONE and begins its reporting process. SBC's
bus request signal indicates that SBC1 makes
six bus requests during its reporting process.
The first is for the test-and-set operation,
which requires two bus cycles during which the
bus is locked. The next four are those required
by the reporting procedure. The last bus
request-which requires one cycle-is made so
FLAG can be cleared. When SBC2 and SBC3
complete their tasks, the flag is set, causing
them to enter loops in which they repeatedly
test and set FLAG, generating the regular pat-
terns of bus requests shown in the figure.
After SBC1 clears FLAG, SBC2 gains access
to DONE because it performs the first test-
and-set operation after SBCI clears FLAG.
SBC3 continues to perform test-and-set opera-
tions while SBC2 reports and finally gains ac-
cess to DONE on its eighth try.

Case 3: FIFO semaphore. A semaphore com-
prises an integer variable (count) and a list of
processes or tasks waiting for the semaphore.
Two primitive operations, P and V, are de-
fined on the semaphore:

* P operation. A process decrements the
count of the semaphore. If the count is non-
negative, the process continues executing. If
the count is negative, the process is blocked
and a pointer to the process is added to the
list associated with the semaphore.

* V operation. This the inverse of the P
operation. A process increments the count by
1. If the result is positive, no further action is
taken. If it is negative or zero, there is at least
one process waiting on the list. One process is
removed from the list and reactivated.

Note that the V operation does not specify
how the process to be activated is selected; a
first-in/first-out scheme, a priority scheme, or
some other scheme can be used. The initial
value of the count depends on the intended
application.

In this case access to DONE is controlled by
a semaphore; blocked processes are reactivated
on a first-in/first-out basis. The count
associated with the semaphore, and a bit map
identifying processors waiting on the
semaphore, are held in a location labeled
FIFO in the dual-port memory of SBCO. The
discussion of the reporting process (see page 40)
includes a program listing of the FIFO
semaphore implementation. In implementing
the semaphore, we found it convenient to off-
set the count value used in the definitions of P
and V by -1. SBCO initializes the count to 0
and clears the bit map. When a PE completes
its task and is ready to report, it asserts its bit
in the bit map, decrements the count, and
copies the resulting value to a local register.
This is done in an indivisible operation which
is implemented by locking the bus during the
operation. The count value copied by the PE
determines the PE's position in the list of
waiting PEs. If the count is -1, the waiting
list is empty; in this case the PE begins its
reporting process immediately. If the count is
less than -1, the PE computes its position on
the waiting list and enters a WAIT state in
which it remains until it receives a wake-up
call. When a PE completes its reporting pro-
cess, it negates its bit in the bit map and in-
crements the count in an indivisible operation.
If the resulting count value is negative, some
PE is waiting to gain access to DONE, and
the PE that has just finished reporting issues

IEEE MICRO44


